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In this study, we constructed the Improved Runge-Kutta (IRK) type of methods

for solving first and second order ordinary differential equations as well as fuzzy

differential equations. With the aim to increase the computational efficiency of

the methods, we obtained the methods of higher order with less number of stages

or function evaluations. The methods which arise from the classical Runge-Kutta

methods can also be considered as a special class of two-step methods, that is the

approximation at the current point is based on the values or information from

the two previous points. Hence, the methods contain the current internal stage ki

as well as the previous internal stages k−i. The aim here is to use the available

internal stage in the previous step so that the resulting methods are more accurate.

In the first part of the thesis, the order conditions of the methods are obtained

using Taylor series expansion. Based on the order conditions, IRK methods of

different orders and stages for solving first order ODEs are constructed. The con-

vergence of the method is proven and the stability regions of the methods are
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also presented. Numerical results based on the new methods are compared with

the existing methods in the literature showed that they are computationally more

efficient.

Next, the order conditions of the methods for solving some special second order

ODEs are obtained using Taylor series expansion. Based on the order conditions

as well as work done by Dormand (1996), Improved Runge Kutta Nystrom (IRKN)

methods of different orders and stages for solving the special second order ODEs

y′′ = f(x, y) are constructed. The stability polynomial and stability region of of

the methods are discussed. Numerical results based on the new methods are com-

pared with the existing methods in the literature and it is showed that the new

IRKN methods are computationally more efficient.

We also derived IRKN methods which are specifically designed for the autonomous

second order ODEs of the form y′′ = f(y) based on the order conditions. These

methods are called Accelerated Runge-Kutta Nystrom methods. The stability

properties of the methods are discussed and numerical results showed that they

are more efficient compared to the existing RKN methods.

Finally, both IRK and IRKN methods are adapted for solving first and second

order fuzzy differential Equations (FDEs). The convergence of IRK methods when

applied to FDEs is also proven and numerical results proved that the IRK and

IRKN methods give accurate results compared to the existing methods in the

literature.

In conclusion, the methods derived in this thesis are more efficient than existing

methods for solving first and second order ordinary differential equations and fuzzy

differential equations.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENAMBAHBAIKAN JENIS KAEDAH RUNGE-KUTTA UNTUK
MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA DAN

SAMAR

Oleh

FARANAK RABIEI

November 2012

Pengerusi: Profesor Fudziah Ismail, Ph.D.

Fakulti: Sains

Dalam kajian ini, kami telah menerbitkan Kaedah Runge-Kutta Penambahbaikan

(RKP) untuk menyelesaikan persamaan pembezaan peringkat pertama dan ke-

dua dan juga persamaan pembezaan kabur. Dengan tujuan untuk memperbaiki

kecekapan kaedah tersebut, kami cuba memperolehi kaedah berperingkat tinggi

dengan tahap atau pengiraan fungsi yang kurang. Kaedah yang terhasil dari

kaedah Runge-Kutta klasik ini boleh di kategorikan sebagai kaedah dua langkah

iaitu penghampiran bagi titik semasa bergantung kepada informasi dari dua titik

sebelumnya. Maka kaedah ini mengandungi tahap dalaman ki semasa dan juga

tahap dalaman pada titik sebelumnya iaitu k−i. Tujuannya di sini adalah untuk

menggunakan tahap yang sedia ada di titik sebelumnya supaya kaedah yang ter-

hasil adalah lebih jitu.

Dalam bahagian pertama tesis ini, syarat peringkat bagi kaedah tersebut diper-

olehi menggunakan kembangan siri Taylor. Berdasarkan syarat peringkat ini,

Kaedah Runge-Kutta Penambahbaikan dengan peringkat dan tahap berbeza untuk

iv



© C
OPYRIG

HT U
PM

menyelesaikan persamaan pembezaan peringkat pertama diterbitkan. Penumpuan

kaedah ini telah dibuktikan dan kestabilannya juga dipersembahkan. Keputusan

berangka bagi kaedah yang baru ini dibandingkan dengan kaedah sedia ada dalam

literatur telah menunjukkan pengiraannya lebih cekap.

Kemudian syarat peringkat untuk kaedah bagi menyelesaikan persamaan pem-

bezaan (PPB) peringkat kedua yang khas diperolehi melalui kembangan siri Tay-

lor. Berdasarkan syarat peringkat ini dan kerja yang dilakukan oleh Dormand

(1996), kaedah Runge-Kutta Nystrom Penambahbaikan (RKNP) yang berbeza

peringkat dan tahap bagi menyelesaikan PPB peringkat kedua yang khas y′′ =

f(x, y) diterbitkan. Polinomial kestabilan dan rantau kestabilan kaedah ini dipersem-

bahkan. Keputusan berangka bagi kaedah yang baru ini dibandingkan dengan

kaedah sedia ada dalam literatur yang menunjukkan kaedah (RKNP) yang baru

ini adalah lebih cekap dari segi pengiraan.

Berdasarkan syarat peringkat tersebut kami juga menerbitkan kaedah (RKN) yang

khas untuk persamaan pembezaan berautonomi peringkat kedua y′′ = f(y). Kaedah

ini disebut kaedah Runge-Kutta Nystrom dipercepatkan. Ciri kestabilan kaedah

ini dibincangkan dan keputusan berangkanya menunjukkan kaedah ini lebih cekap

berbanding denga kaedah RKN sedia ada.

Akhir sekali kedua-dua kaedah IRK dan IRKN disesuaikan untuk menyelesaikan

persamaan pembezaan kabur (PPK) peringkat pertama dan kedua. Penumpuan

keadah (RKP) bila disesuaikan kepado (PPK) is proven dan di mana ianya juga

memberikan keputusan berangka yang lebih baik dari kaedah sedia ada.

Kesimpulannya kaedah yang diterbitkan dalam tesis ini adalah lebih cekap dari
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kaedah sedia ada bagi menyelesaikan persaman pembezaan peringkat pertama,

kedua dan juga persamaan pembezaan kabur.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Differential equations are used to model problems in science and engineering.

These differential equations basically are classified into two groups, Ordinary Dif-

ferential Equation (ODEs) and Partial Differential Equation (PDEs). A mathe-

matical formulation of physical phenomena in science and engineering often leads

to ODEs such as celestial mechanics, molecular dynamics, semi-discretization of

wave equations, electronics, etc.

The most popular ODEs are in class of first order and second order ODEs. In

nature, the differential equations that model problems are often extremely difficult

or some times impossible to solve analytically. Therefore, numerical methods are

used for understanding the behavior of their solutions. The numerical methods of

finding solution of initial value problems of ODEs may generally be classified into

two classes:

• Single step methods: the approximated solution is evaluated using the infor-

mation of only one previous point.

• Mulistep methods: the approximated solution is evaluated using the infor-

mation of k previous points.

One of the most common numerical methods for solving ODEs is the Runge-Kutta

method which can be of one step and two step. The two step Runge-Kutta method

used the approximated values from the previous step during the current step. Most

second order ODEs can be solved by reducing to the first order or it can be solved

directly using methods which are specified for them. One of the popular numer-

ical methods for solving second order ODE directly is the Runge-Kutta Nystrom
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method.

Fuzzy Differential Equations (FDEs) are another type of differential equations

which are used to analyze the behavior of the problems that are subjected to

imprecise or uncertain factors or ranging. Similarly to ODEs, the exact analyt-

ical solution of FDEs are often difficult or sometime impossible to obtain, thus

constructing the numerical methods with a wide range of accuracy that processes

some properties of solution of FDEs are particularly important.

1.2 Objective of the thesis

The main objective of the research is to construct Improved Runge-Kuta type

methods for solving first and second order ordinary as well as fuzzy differential

equations. This goal can be attained by :

1. Construction of Improved Runge-Kutta method for solving first order ordi-

nary differential equations by using Taylor series expansion. The coefficients

of method are determined by using minimization of the error norm.

2. Derivation of the Improved Runge-Kutta Nystrom method for solving sec-

ond order ordinary differential equations based on Improved Runge-Kutta

method given in first part of this thesis and following the approach proposed

by Dormand (1996) on derivation of Runge-Kutta Nystrom methods.

3. Construction the Accelerated Runge-Kutta Nystrom method for solving au-

tonomous second order ordinary differential equations y′′ = f(y), based on

Accelerated Runge-Kutta method derived by Udwadia and Farahani (2008)

and following the same approach of Improved Runge-Kutta Nystrom meth-

ods given in second part of this thesis.

4. Developing the Fuzzy Improved Runge-Kutta method for solving first order

2
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fuzzy differential equations by adapting the Improved Runge-Kutta methods

derived in first part of thesis for solving fuzzy differential equations.

5. Deriving the Fuzzy Improved Runge-Kutta Nystrom method for solving sec-

ond order fuzzy differential equations based on Runge-Kutta Nystrom meth-

ods derived in second part of thesis.

1.3 Scope of thesis

In this study we aim to construct the Improved Runge-Kuta type of methods

for solving first and second order ordinary and fuzzy differential equations. This

scheme proposed here arise from the classical Runge-Kutta methods and also can

be considered as a special class of two-step methods. The advantage of these

constant step size methods is, by using the less number of stages which leads to less

number of function evaluations, require less time to approximate the more accurate

results compared with the existing methods. Therefore, the new schemes with less

number of function evaluations and more accurate results, are computationally

more efficient than the existing methods.

1.4 Outline of thesis

In chapter 1, a brief introduction on differential equations and the application of

numerical methods for solving different type of differential equations are given.

Chapter 2 consists of earlier researches and related study on Runge-Kutta type

of methods for solving ODEs and FDEs. Some basic definitions and theorems on

numerical methods for solving ODEs and FDEs will also be given.

Chapter 3 describes the construction of Improved Runge-Kutta method for solv-

ing first order ordinary differential equations. The scheme is two step in nature

3
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and requires less number of function evaluations when compared with the classical

Runge-Kutta method. The order conditions of the method using Taylor series

expansion are obtained for up to order six and methods of order three, four and

five with different stages are derived. The derivation of the methods are based

on the order conditions together with minimization of the error norm to find the

free parameters. The convergence of the method is proven and the stability re-

gion of the methods is also presented. Numerical results show that the method are

more efficient compared to the existing well known classical Runge-Kutta methods.

Chapter 4 discusses the derivation of Improved Runge-Kutta Nystrom method for

solving second order ordinary differential equations. The order conditions of the

method using the Taylor series expansion are obtained for up to order five and

methods of order three, four and five with two, three and four stages, respectively,

are obtained. The stability properties of the new methods are discussed and to il-

lustrate the efficiency of method a number of tested problem are validated and the

numerical results are compared with some existing Runge-Kutta Nystrom meth-

ods.

Chapter 5 introduces the Accelerated Runge-Kutta Nystrom method for solving

autonomous second order ordinary differential equations y′′ = f(y). The order

conditions, derivation and stability of method are provided. Numerical examples

are given and comparison with existing methods are also presented.

In chapter 6, a brief introduction to fuzzy differential equations are given and Im-

proved Runge-Kutta method of order three, four and five derived in Chapter 3, are

adapted for solving first order fuzzy differential equations. Numerical examples are

given and numerical results are compared with existing Fuzzy Rung-Kutta method.

4
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In chapter 7, we adapt the obtained Improved Runge-Kutta Nystrom method of

order three, four and five in Chapter 4, for solving second order fuzzy differential

equations. Numerical examples are given and the numerical performances of the

methods are compared with existing Fuzzy Rung-Kutta Nystrom method.

Finally the summary of the whole thesis, conclusion and future research are pre-

sented in Chapter 8.

5
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APPENDIX A

Derivation of order condition for IRK4 method with three stages using

Taylor series expansion for solving first order ODEs.

> restart;

> D(y):= x->f(x,y(x)):

> alias(

F = f(x, y(x)),

Fx = (D[1](f))(x, y(x)),

Fy = (D[2](f))(x, y(x)),

Fxy = (D[1, 2](f))(x, y(x)),

Fyy = (D[2, 2](f))(x, y(x)),

Fxx = (D[1, 1](f))(x, y(x)),

Fxxx = (D[1, 1, 1](f))(x, y(x)),

Fxxy = (D[1, 1, 2](f))(x, y(x)),

Fxyx = (D[1, 2, 1](f))(x, y(x)),

Fxyy = (D[1, 2, 2](f))(x, y(x)),

Fyyy = (D[2, 2, 2](f))(x, y(x)));

> m := 4:

> taylor(y(x+h), h = 0, m+1);

> TaylorPhi := normal((convert(%, polynom)-y(x))/h);

> k1 := taylor(f(x, y(x)), h = 0, m);

km1 := taylor(f(x-h, y(x-h)), h = 0, m);

k2 := taylor(f(x+c[2]*h, y(x)+h*a[2, 1]*k1), h = 0, m);

km2 := taylor(f(x-h+c[2]*h, y(x-h)+h*a[2, 1]*km1), h = 0, m);

k3 := taylor(f(x+c[3]*h, y(x)+h*(a[3, 1]*k1+a[3, 2]*k2)), h = 0, m);

km3 := taylor(f(x-h+c[3]*h, y(x-h)+h*(a[3, 1]*km1+a[3, 2]*km2)),

h = 0, m);
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RungeKuttaPhi := convert(series(b[1]*k1-b[-1]*km1+b[2]*(k2-km2)

+b[3]*(k3-km3), h, m), polynom);

> d := expand(TaylorPhi-RungeKuttaPhi);

eqns := {coeffs(d, [h, F, Fx, Fy, Fxx, Fxy, Fyy, Fxxx, Fxxy, Fxyy,

Fyyy])};
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APPENDIX B

Derivation of order condition for y′ of IRKN5 method with four stages

using Taylor series expansion for solving second order ODEs.

> restart;

> D(D(y)) := x->f(x,y(x))

> alias(

yp = (D(y))(x),

F = f(x, y(x)),

Fx = (D[1](f))(x, y(x)),

Fy = (D[2](f))(x, y(x)),

Fxy = (D[1, 2](f))(x, y(x)),

Fyy = (D[2, 2](f))(x, y(x)),

Fxx = (D[1, 1](f))(x, y(x)),

Fxxx = (D[1, 1, 1](f))(x, y(x)),

Fxxy = (D[1, 1, 2](f))(x, y(x)),

Fxyx = (D[1, 2, 1](f))(x, y(x)),

Fxyy = (D[1, 2, 2](f))(x, y(x)),

Fyyy = (D[2, 2, 2](f))(x, y(x)),

Fxxxx = (D[1, 1, 1, 1](f))(x, y(x)),

Fxxxy = (D[1, 1, 1, 2](f))(x, y(x)),

Fxxyx = (D[1, 1, 2, 1](f))(x, y(x)),

Fxyxx = (D[1, 2, 1, 1](f))(x, y(x)),

Fyxxx = (D[2, 1, 1, 1](f))(x, y(x)),

Fxxyy = (D[1, 1, 2, 2](f))(x, y(x)),

Fxyxy = (D[1, 2, 1, 2](f))(x, y(x)),

Fyxxy = (D[2, 1, 1, 2](f))(x, y(x)),

Fxyyx = (D[1, 2, 2, 1](f))(x, y(x)),
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Fyyxx = (D[2, 2, 1, 1](f))(x, y(x)),

Fxyyy = (D[1, 2, 2, 2](f))(x, y(x)),

Fyyxy = (D[2, 2, 1, 2](f))(x, y(x)),

Fyyyx = (D[2, 2, 2, 1](f))(x, y(x)),

Fyyyy = (D[2, 2, 2, 2](f))(x, y(x)));

> m := 5;

> taylor((D(y))(x+h), h = 0, m+1);

> TaylorPhi := normal((convert(%, polynom)-yp)/h);

> T := taylor((D(y))(x), h = 0, m);

Tm := taylor((D(y))(x-h), h = 0, m)

k1 := taylor(f(x, y(x)), h = 0, m);

km1 := taylor(f(x-h, y(x-h)), h = 0, m);

k2 := taylor(f(x+c[2]*h, y(x)+h*c[2]*yp+h^2*a[2, 1]*k1), h = 0, m);

km2 := taylor(f(x-h+c[2]*h, y(x-h)+h*c[2]*Tm+h^2*a[2, 1]*km1),

h = 0, m);

k3 := taylor(f(x+c[3]*h, y(x)+h*c[3]*yp+h^2*(a[3, 1]*k1+a[3, 2]*k2)),

h = 0, m);

km3 := taylor(f(x-h+c[3]*h, y(x-h)+h*c[3]*Tm+h^2*(a[3, 1]*km1

+a[3, 2]*km2)), h = 0, m);

k4 := taylor(f(x+c[4]*h, y(x)+h*c[4]*yp+h^2*(a[4, 1]*k1+a[4, 2]*k2

+a[43]*k3)), h = 0, m);

km4 := taylor(f(x-h+c[4]*h, y(x-h)+h*c[4]*Tm+h^2*(a[4, 1]*km1

+a[4, 2]*km2+a[43]*km3)), h = 0, m);

RungeKuttaPhi := convert(series(b[1]*k1-b[-1]*km1+b[2]*(k2-km2)

+b[3]*(k3-km3)+b[4]*(k4-km4), h, m), polynom);

> d := expand(TaylorPhi-RungeKuttaPhi);
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eqns := {coeffs(d, [yp, h, F, Fx, Fy, Fxx, Fxy, Fyy, Fxxx, Fxxy,

Fxyy, Fyyy, Fxxxx, Fxxxy, Fxxyx, Fxyxx, Fyxxx, Fxxyy, Fxyxy,Fyxxy,

Fxyyx, Fyyxx, Fxyyy, Fyyxy, Fyyyx, Fyyyy])};
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APPENDIX C

Maple program code for IRKN4 with three stages for solving second

order ODEs.

> restart;

> Digits := 20;

> f(t,y):=-y+t:

g(t):=evalf(sin(t)+cos(t)+t):

gp(t):=evalf(cos(t)-sin(t)+1):

> h := 0.005;

n := evalf((b-a)/h);

x[0] := 0;

x[1] := x[0]+h;

y[0] := g(x[0]);

y[1] := g(x[1]);

yp[0] := gp(x[0]);

yp[1] := gp(x[1]);

> for i to n do

k[1] := f(x[i], y[i]);

k[-1] := f(x[i-1], y[i-1]);

k[2] := f(x[i]+c[2]*h, y[i]+yp[i]*c[2]*h+h^2*a[21]*k[1]);

k[-2] := f(x[i-1]+c[2]*h, y[i-1]+yp[i-1]*c[2]*h+h^2*a[21]*k[-1]);

k[3] := f(x[i]+c[3]*h, y[i]+yp[i]*c[3]*h+h^2*(a[31]*k[1]+a[32]*k[2]));

k[-3] := f(x[i-1]+c[3]*h, y[i-1]+yp[i-1]*c[3]*h+h^2*(a[31]*k[-1]

+a[32]*k[-2]));

y[i+1]:= y[i]+(3/2)*h*yp[i]-(1/2)*h*yp[i-1]+h^2*(b[2]*(k[2]-k[-2])

+b[3]*(k[3]-k[-3]));

yp[i+1]:= yp[i]+h*(bp[1]*k[1]-bp[-1]*k[-1]+bp[2]*(k[2]-k[-2])
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+bp[3]*(k[3]-k[-3]));

x[i+1]:= x[i]+h;

error[i+1] := abs(g(x[i+1])-y[i+1]);

errorp[i+1] := abs(gp(x[i+1])-yp[i+1]);

if error[i+1] >= maxerror then

maxeror := eror[i+1]

end if;

if errorp[i+1] >= maxerrorp then

maxerrorp := errorp[i+1]

end if;

maxError := max(maxerror, maxerrorp)

end do;

maxError
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