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The aim of this research is to analyze parametric survival models in the presence

of left, right, interval and doubly interval censored data with time-dependent

covariates. In this research we utilize and extend two important parametric sur-

vival models, the Gompertz and the exponential, to accommodate these censoring

schemes and time-dependent covariates.

The analysis starts with the extension of the Gompertz model to incorporate

time-dependent covariates in the presence of right-censored data. Then, the per-

formance of the model is compared with the fixed covariate model. Following

that, comparison is made when a fixed covariate model was fitted wrongly to a

data set with time-dependent covariate. In addition, two methods of constructing

confidence intervals, the Wald and jackknife are explored for the parameters of

this model. Conclusions are drawn based on the coverage probability study.

In the next step, the Gompertz model is further extended to incorporate time-
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dependent covariates with left, right and interval censored data as well as un-

censored data. The model is then investigated thoroughly at dependent and

independent covariate levels through a comprehensive simulation study. Follow-

ing that, the model is compared with a fixed covariate model. Then, two methods

of constructing confidence intervals the Wald and likelihood ratio are investigated

for the parameters of the model and conclusions are drawn based on the coverage

probability study.

Finally, a parametric survival model that accommodates doubly interval-censored

data with time-dependent covariates is developed and studied. In order to formu-

late this censoring scheme let V and W be the times of two related consecutive

events where both of them are interval-censored and V ≤ W . Then, the survival

time of interest could be defined as, T = W −V . Here it is assumed that the time

to the first event, V , and the survival time, T , follow the exponential distribution

(special case for Gompertz distribution).

In order to get to this final model, we had to explore three separate models in

advance. Firstly, a simple model consisting doubly interval-censored data without

any covariate was studied. Following that, a model with doubly interval-censored

data and fixed covariates is considered. Lastly, a model with fixed covariates is

studied where some of the covariates affect T and the others affect V . All these

models are studied by the simulation study and two methods of constructing

confidence intervals, the Wald and jackknife are explored for the parameters of

the models.

The results indicate that the Gompertz model with left, right and interval cen-

sored data with a time-dependent covariate works rather well despite its com-

plexity. Similarly, although doubly interval-censored data with a time-dependent

covariate requires more computational effort, the model will perform well if both

V and T are exponentially distributed.
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Oleh

KAVEH KIANI

May 2012

Pengerusi: Jayanthi Arasan, PhD

Fakulti: Fakulti Sains

Matlamat kajian ini adalah untuk menganalisis model mandarian berparameter

dengan data tertapis kiri, kanan, selang dan selang berganda dengan kovariat

yang bersandar kepada masa. Dalam kajian ini, kita mengguna pakai dan melan-

jutkan dua model mandirian berparameter yang penting, Gompertz dan ekspo-

nen, untuk menampung skim penapisan tersebut dan kovariat yang bersandar

kepada masa. Kajian bermula dengan lanjutan model Gompertz untuk mengam-

bilkira kovariat-kovariat yang bersandar kepada masa dengan data tertapis kanan.

Kemudian, prestasi model ini dibandingkan dengan dengan model berkovariat

tetap. Seterusnya perbandingan dilakukan apabila model berkovariat tetap yang

digunakan dan bukannya model sebenar dengan kovariat yang bersandar kepada

masa. Di samping itu, dua kaedah membina selang keyakinan, iaitu Wald dan

jackknife telah dikaji bagi parameter-parameter model ini. Kesimpulan telah

dibuat berdasarkan kajian kebarangkalian liputan.

Dalam langkah seterusnya, model Gompertz telah dilanjutkan lagi untuk mengam-

bilkira kovariat-kovariat yang bersandar kepada masa dengan data tertapis kiri,
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kanan dan selang disamping data tidak tertapis. Model ini kemudiannya telah

dikaji secara menyeluruh pada tahap kovariat yang bersandar dan tidak bersandar

melalui kajian simulasi yang komperhensif. Berikutan itu, model ini dibandingkan

dengan model berkovariat tetap. Kemudian, dua kaedah membina selang keyaki-

nan iaitu Wald dan kemungkinan nisbah dikaji bagi parameter-parameter model

ini dan kesimpulan telah dibuat berdasarkan kajian kebarangkalian liputan.

Akhirnya, model mandirian berparameter yang mengambilkira data tertapis se-

lang berganda dengan kovariat-kovariat yang bersandar kepada masa telah dikira

dan dikaji. Bagi tujuan untuk memformulasikan skim data tertapis ini, biar V dan

W menjadi masa-masa bagi kejadian berturutan yang berkaitan dimana kedua-

duanya adalah data tertapis selang dan V ≤ W . Kemudian, masa mandirian yang

dikehendaki boleh di definasikan sebagai, T = W − V . Disini, adalah dianggap

bahawa masa ke kejadian yang pertama, V dan masa mandirian, T , bertaburan

eksponen (kes khas bagi Gompertz).

Untuk mencapai model terakhir, kita terpaksa mengkaji tiga model yang berasin-

gan dahulu. Pertama sekali, model ringkas yang terdiri daripada data tertapis

selang berganda tanpa sebarang kovariat telah dikaji. Seterusnya, model dengan

data tertapis selang berganda dan satu kovariat tetap telah diambilkira. Akhir

sekali, model dengan kovariat-kovariat tetap telah dikaji dimana sebahagian dari-

pada kovariat tersebut memberi kesan kepada V . Kesemua model-model ini

telah dikaji dengan menggunakan kajian simulasi dan dua kaedah pembinaan se-

lang keyakinan, Wald dan jackknife telah dikaji bagi parameter-parameter model

ini. Keputusan menunjukkan bahawa model Gompertz dengan data tertapis kiri,

kanan dan selang dangan kovariat yang bersandar kepada masa berfungsi dengan

agak baik walaupun ianya kompleks. Begitu juga, walaupun data tertapis selang

yang bersandar kepada masa memerlukan usaha komputasi yang lebih, model

tersebut berfungsi dengan baik apabila kedua dua V dan T bertaburan eksponen

.
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CHAPTER 1

INTRODUCTION

1.1 Background Study

In this section, survival time data analysis along with some basic definitions,

models and concepts that will be used in subsequent chapters are introduced.

These topics will not be discussed in detail.

1.1.1 Survival Time Data Analysis

Survival time or in some literature, life time, time-to-event and failure time, T , is

the time from an initiating event (birth, marriage, affecting with a virus, enroll

for a PhD. program) for a subject to some final event (death, divorce, onset of

the diseases, graduation). T is the non-negative random variable and usually

continuous, unless stated otherwise.

Survival time data analysis, briefly, survival analysis is a collection of statistical

methods for analyzing survival data where, the focus of these methods is to

describe the distribution of T on a population and relationship between T and

some covariates. A serious analytical problem in analyzing survival time data

arises when a portion or even all ti, i = 1, 2, ..., n, are censored. The ith subject’s

survival time, ti, is censored when we do not know its exact value due to one of

these four main reasons, the subject is lost to follow-up, the subject withdraws

from the study, the subject does not experience the event before the study ends

and the subject is not under continuous observation. However, we may have some

partial information regarding the subject’s survival time.

In survival analysis it is essential to have clear and explicit definitions of the time

origin and endpoint. Following Kalbfleisch and Prentice (2002), time origin is
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the time from which survival is measured, t = 0. In some instances, time origin

and endpoint could be the birth and death of the subject. Another example is

infection with a virus and onset of the disease. In clinical trials time origin could

also be assumed to be the time when all of the subjects in the trial had been

event free.

The statistical analysis and modeling of survival time data are usually done by

applying various kinds of non-parametric, semi-parametric or parametric models.

Non-parametric models do not assume any parametric assumption about the form

of the survivor function, S(t).

On the other hand, a semi-parametric model is partially attached to some para-

metric assumption for S(t). As Sasieni (2005) explains, ”There is no widely

accepted rigorous definition of a semi-parametric model. Informally we will call

a model semi-parametric if it is not fully parametric but has a finite dimensional

parameter of interest”. In contrast, parametric models completely assume a fully

parametric form for S(t). More discussions about these three models are given

in Sections 1.1.4 to 1.1.6.

1.1.2 Different Censoring Mechanisms

The ith subject is observed exactly (OE) at ti if the event of interest occurs at

this time and this information is available to the observer. This subject is left-

censored (LC) when ti ∈ (0, li] or, the subject has met the event at unknown time

prior to li and after time origin and it is right-censored (RC) when ti ∈ (ri,∞) or,

the subject has been event free at the last known time ri. Finally, the ith subject

is interval-censored (IC) if instead of observing ti only an interval (tLi , tRi ] is

observed where ti ∈ (tLi , tRi ] and tLi ≤ tRi .

Following Lawless (2003), there are two types of RC data, type-I and type-II.

To describe type-I right censoring scheme let us assume that each subject has

2



© C
OPYRIG

HT U
PM

a potential censoring time ci and an event time ti. The ith subject is RC if

ci < ti; otherwise, subject is OE. This scheme usually occurs when study period

is determined in advance. Type-II right censoring scheme arises when the study is

terminated after first k failures where k ≤ n and n is number of subjects. Type-I

RC data is referred to as RC data in this study.

IC data occur when subjects are under discontinuous observations/inspections.

In this case, T is not always OE or RC. IC data are more common in fields

such as, sociology, economic, biology and epidemiology. Occurrence of IC data in

medical studies is also very common when subjects are under scheduled follow-

ups according to a predetermined calendar time for example weekly, monthly or

yearly. In this study the term ”actual inspection time (AC)” is used to denote

the time when the subject was inspected.

Following Sun (2006) and Schick and Yu (2000) the six types of IC data are,

case-I, case-II, case-k, mixed case and doubly IC data and panel count data.

Case-I IC data or current status data is referred to the IC data when all the

(TL, TR] intervals include either 0 or∞ (Groeneboom and Wellner, 1992; Huang,

1996 and Schick and Yu, 2000). In this scheme, the ith subject is inspected only

once at aci1 where aci1 will be left or right censoring time. Case-I IC data differ

from RC data and LC data because there is not any OE data in this case. This

type of IC data could be represented by

{
aci1, δi1 = I(ti ≤ aci1), δi2 = I(ti > aci1), i = 1, ..., n

}
,

where I is an indicator variable and aci1 is the actual inspection time for the ith

subject. In this case

(tLi , tRi ] =


(0, aci1], δi1 = 1,

(aci1,∞), δi2 = 1.

(1.1)
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In case-II IC data each subject is inspected twice. As a result, there is at least

one finite interval (TL, TR] belonging to (0,∞) (Groeneboom and Wellner, 1992;

Huang and Wellner, 1997; Sun, 2005; Schick and Yu, 2000). This type of IC data

could be represented by

{
aci1, aci2, δi1 = I(ti ≤ aci1), δi2 = I(aci1 < ti ≤ aci2), δi3 = I(ti > aci2), i = 1, ..., n

}
,

where aci1 and aci2 are two actual inspection times and aci1 ≤ aci2. In this case

(tLi , tRi ] =


(0, aci1], δi1 = 1,

(aci1, aci2], δi2 = 1,

(aci2,∞), δi3 = 1.

(1.2)

Case-k IC data occurs when there are k actual inspection times for subjects,

aci1 ≤ aci2 ≤ ... ≤ acik where, k is a fixed number (Schick and Yu, 2000;

Wellner, 1995). This type of IC data could be represented by

{
acij , k, δij = I(aci(j−1) < ti ≤ acij), δi(k+1) = I(ti > acik), i = 1, ..., n, j = 1, ..., k

}
,

where aci0 = 0. In this case

(tLi , tRi ] =


(0, aci1], δi1 = 1,

(aci(j−1), acij ], δij = 1 and 1 < j ≤ k,

(acik,∞), δi(k+1) = 1.

(1.3)

Mixed case IC data occurs when there is ki actual inspection times for the ith

subject or k is a random number, aci1 ≤ aci2 ≤ ... ≤ aciki (Schick and Yu, 2000;
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Wellner, 1995). This type of IC data could be represented by

{
acij , ki, δij = I(aci(j−1) < ti ≤ acij), δi(ki+1) = I(ti > aciki), j = 1, ..., ki, i = 1, ..., n

}
,

where aci0 = 0. In this case

(tLi , tRi ] =


(0, aci1], δi1 = 1,

(aci(j−1), acij ], δij = 1 and 1 < j ≤ k,

(aciki ,∞), δi(ki+1) = 1.

(1.4)

Mixed case IC data is very common in medical trials because the number of actual

inspection times varies from patient to patient. It is clear that representation (1.4)

is the general form of the representations (1.1), (1.2) and (1.3). In this study the

term ”IC” data is used to refer to ”mixed case IC” data. More details about IC

data is presented in Chapters 2 and 4.

Doubly interval-censored (DIC) data is the fifth type of IC data. DIC data often

arises in the follow-up studies where T is the elapsed time between two related

events where both events are IC (Gruttola and Lagakos, 1989; Sun, 2004). If V

is the time to the first event and W is the time to the second event then

V ∈ (VL, VR], W ∈ (WL,WR] and T = W − V ,

where VL ≤ VR and WL ≤ WR. DIC data include usual RC and IC survival time

data as special cases. For example DIC data reduce to IC data if V is OE and

W is IC and DIC data reduce to RC data if V is OE and W is RC. DIC data is

discussed more in Chapters 2 and 5.

Finally, panel count data is another form of IC data where in the presence of

interval censoring, event of interest occurs more than one time during follow-

ups and researcher is interested to know the exact number of these occurrences
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(Lawless and Zhan, 1998; Thall, 1988). This type of IC data is not explored in

this study. For more discussions see Sun (2006).

1.1.3 Independent Censoring

Independent censoring is a realistic assumption in survival analysis. Independent

or random censoring is a censoring mechanism that is independent of the subjects’

survival time distribution. For instance, consider two subjects that are under trial

at time t where one of them has a higher failure risk. Under independent censoring

assumption, both subjects have a same probability to be RC at this time.

An independent censoring mechanism is also equivalent to the non-informative

censoring. However, the reverse may not always true (Sun, 2006; Betensky, 2000;

Oller et al., 2004). In contrast, dependent censoring and informative censoring

are always the same.

For RC data assume S(t), f(t), G(c) and g(c) represent survivor function and

probability density function of survival time T and right censoring time C. If

censoring process produces a potential censoring time ci for the ith subject and

ti is the survival time of this subject then observed survival time would be

oti =min(ti, ci). If oti = ci the indicator variable is δRi = 1 and δRi = 0 if

oti = ti. Dependent (informative) censoring for RC data scheme could be repre-

sented by

Pr(oti = t, δRi = 1) = Pr(ci = t, ti > t) = Pr(ci = t)Pr(ti > t|ci) = g(t)S(t|ci),

P r(oti = t, δRi = 0) = Pr(ti = t, ci ≥ t) = Pr(ci ≥ t|ti)Pr(ti = t) = G(t|ti)f(t),

and for independent (non-informative) censoring is

Pr(oti = t, δRi = 1) = Pr(ci = t, ti > t) = Pr(ci = t)Pr(ti ≥ t) = g(t)S(t),

P r(oti = t, δRi = 0) = Pr(ti = t, ci ≥ t) = Pr(ci > t)Pr(ti = t) = G(t)f(t).
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For IC data assume S(t) and f(t) represent survivor function and probability

density function of survival time T and G(tL, tR) represents joint survivor func-

tion of left and right censoring time. If censoring process produces tLi and tRi as

a left and right censoring times and ti be the survival time of the subjects then

dependent (informative) censoring for IC data scheme could be represent by

Pr(tLi = l, tRi = r|ti = t) = Pr(l < ti ≤ r|tLi = l, tRi = r)G(l, r),

and for independent (non-informative) censoring is

Pr(tLi = l, tRi = r|ti = t) = Pr(l < ti ≤ r).

For DIC data independent censoring assumption means that survival time, T ,

and time to the first event, V , are independent. Independent censoring for RC,

IC and DIC data schemes are assumed throughout the thesis.

1.1.4 Parametric Survival Models

In parametric survival models T usually follows a continuous distribution func-

tion, f(t) where the cumulative distribution function is F (t) =Pr(T ≤ t), survivor

function is S(t) = 1− F (t) =Pr(T > t), hazard function is h(t) = f(t)/S(t) and

cumulative hazard function is H(t) =
∫ t
0 h(v)dv. When one of these five func-

tions is known other four functions could be specified. As a result, a parametric

survival model is a model with specified Sθ(t) function where, θ is the vector of

parameters.

Some widely used distributions to model T are the exponential, Weibull, Gom-

pertz, log-normal, log-logistic, generalized gamma and generalized F . The ex-

istences of different censoring mechanisms and different type of covariates have

motivated researchers to introduce new parametric models and methods or extend

existing parametric models to accommodate these components. Some of the most
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important advantages of the parametric models are existence of straightforward

methods to obtain the maximum likelihood estimation (MLE) of the parameters,

confidence intervals (CI) and hypothesis testing procedures.

The exponential and Gompertz are two models which are explored in this re-

search. The exponential model has a constant hazard rate

h(t) = λ,

where λ > 0 is a parameter. The survivor function of the model is

S(t) = exp(−λt),

and the probability density function is

f(t) = λ exp(−λt).

The hazard rate of this distribution, λ, is constant or independent of time. Con-

stant hazard rate or lack of aging or memory less property of the exponential

distribution implies that

Pr(T ≥ k) = Pr(T ≥ k + t|T ≥ k).

This implies that the chance for a new born subject to survive at least up to time

k is equal to chance of a k age subject to survive additional t units. Because of

the memory less property this distribution has found limited use in studies where

subject’s aging process play an important role in its survival. This distribution is

frequently used in the simulation studies in order to explore new and complicated

models.

The Gompertz model was introduced by Gompertz (1825) as a model for human
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mortality. Recently, it has found more application in fields such as biology and

demography. The hazard function of the Gompertz model is

h(t) = λ exp(γt),

The scale parameter is λ > 0 and the shape parameter is γ. The survivor function

of the model is

S(t) = exp

[
λ

γ

(
1− eγt

)]
and the probability density function is

f(t) = λ exp(γt)× exp

[
λ

γ

(
1− eγt

)]
.

The properties of the Gompertz distribution is presented in Johnson et al. (1994)

and recently many authors have done studies on different characteristics and

statistical methodology of Gompertz distribution, for instance, Makany (1991)

and Chen (1997). The exponential model is the special case of the Gompertz

model. In other words, Gompertz model could be reduced to the exponential

model when the shape parameter γ is assumed to be zero.

1.1.5 Non-Parametric Survival Models

Non-parametric methods have been discussed the most in the analysis of IC data.

Kaplan and Meier (1958) derived an estimation for the S(t) in the presence of

RC data which is often referred to as the Kaplan-Meier or product-limit esti-

mate. Thus, a non-parametric estimate for the cumulative hazard function has

been proposed by Nelson (1969, 1972). Ayer et al. (1955) and van Eeden (1956)

were the first to introduce non-parametric maximum likelihood estimates (MLE)

of a distribution function based on case-I IC data. Non-parametric likelihood

functions with other types of IC data are more analytically and practically com-

9



© C
OPYRIG

HT U
PM

plicated than that RC and case-I IC data and MLE of a S(t) function does not

have a closed form and should be calculate via an iterative algorithm.

Peto (1973) and Turnbull (1976) studied the estimations based on the case-II

IC data. Suppose that ti ∈ (tLi, tRi] where, i = 1, 2, ..., n and ti’s are iid with

survivor function S(t). Then the likelihood function is

L =
n∏
i=1

{
S(tLi)− S(tRi)

}
. (1.5)

If, 0 < s0 < s1 < s2 < ... < sm−1 < sm =∞ denote the ordered elements of the

set

{
0, tLi, tRi,∞, i = 1, 2, ..., n

}
then define an indicator variable αij = I(Sj ∈

(tLi, tRi]) and pj = S(sj−1) − S(sj), j = 1, 2, ...,m. Expression (1.5) can be

rewritten as

L(P ) =
n∏
i=1

m∑
j=1

αijpj .

MLE of this function could be determine by applying one of the iterative proce-

dures like, self-consistency algorithm of the EM algorithm by Dempster (1977),

ICM algorithm by Groeneboom and Wellner (1992) and later modified by Jong-

bloed (1998) and EM-ICM algorithm proposed by Wellner and Zhan (1997).

Wellner (1995), Groeneboom (1996) and Huang and Wellner (1997) studied the

non-parametric MLE of the case-k IC data and Schick and Yu (2000) and Van

der Vaart and Wellner (2000) discussed non-parametric MLE of the mixed case

IC data.

Non-parametric approaches to estimate S(t) in the presence of DIC data usually

use the self-consistency idea, see Sun (2006). There are three estimation pro-

cedures at the base of this idea. Firstly, a method based on the ML approach

has been proposed by Gruttola and Lagakos (1989). Secondly, a two-step pro-

cedure as a simplification of the first method has been proposed by Gómez and

Lagakos (1994) and finally, a conditional likelihood-based approach proposed by
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Sun (1997). All these three methods can also be regarded as a generalization of

the self-consistency algorithm.

1.1.6 Semi-Parametric Survival Models

Two major semi-parametric models are Cox proportional hazard model (PH)

and accelerated failure time (AFT) or log-rank model. Hazard function of the

PH model is

h(t,X) = h0(t) exp(β′X),

and for the AFT model is

h(t,X) = h0(te−β
′X) exp(−β′X),

where X is the vector of the p covariates, X=(x1, x2, ..., xp), and β is the vesctor

of p parameters, β=(β1, β2, ..., βp) and h0(t) is an unspecified baseline hazard

function.

Three types of methods have discussed in literature for analyzing IC data by the

PH model. Firstly, use an imputation method to reduce IC data to RC data and

then use specified methods for the RC data for example see, Satten (1996), Gog-

gins et al. (1998) and Pan (2000a). Secondly, estimating the unspecified baseline

hazard function, h0(t), non-parametrically and then estimate covariate’s param-

eters, Finkelstein (1986) and Goetghebeur and Ryan (2000). Thirdly and finally,

using regression splines or local likelihood smoothing to estimate baseline hazard

function, h0(t), and then estimate rest of the parameters where, Kooperberg and

Clarkson (1997) and Betensky and Finkelstein (1999) are pioneers of these two

methods.

Analyzing IC data with AFT model is less developed compared to the PH model

and some of the main works were given by Rabinowitz et al. (1995), Betensky et
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al.(2001) and Komárek et al. (2005).

1.1.7 Time-Dependent Covariate

Many parametric regression models have been developed to analyze relationship

between T as an outcome variable and covariates in the presence of censored

data. Covariates can be either fixed or time-dependent (TD). Fixed covariates

are measured at the start of study and stay constant over the study period, for

instance, gender or race. TD covariates on the other hand vary over time, for

example, age of subjects, blood pressure and cholesterol level. Cox (1972) has

introduced idea of TD covariates and he has suggested the use of TD covariate

in the PH regression models. Idea behind using the TD covariates implies that

the history of a TD covariate process up to time t should be incorporated into

the model to assess the full effect of the covariate on the T , because this history

may influence the rate of survival over time.

Following Kalbfleisch and Prentice (2002), TD covariates are categorized as ei-

ther external (exogenous) or internal (endogenous). External TD covariate may

influence the observed survival time of a subject, t, but the covariate’s path af-

ter t and t are independent. For instance, the effect of air pollution on subjects

heart attack. In contrast, the path of the internal TD covariate is dependent on

the survival status of a subject or the TD covariate process is generated by the

subject for example, blood pressure of a subject. This covariate is observable as

long as the subject is under observation.

1.2 Objectives

The aim of this research is to obtain parametric survival models for survival time

data with LC, RC, IC, DIC and OE data in presence of TD covariates and obtain

various CI estimates for the parameters of these models. In this research we will
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utilize and extend two important parametric survival models, the Gompertz and

the exponential to accommodate these censoring mechanisms and TD covariates.

As mentioned before the exponential model is the special case of the Gompertz

model. The exponential model is used in Chapter 5 to establish a base for future

extensions with other parametric models include Gompertz.

Three main models will be explored,

• Gompertz model with RC data and TD covariates (GRCTD),

• Gompertz model with IC data and TD covariates (GICTD),

• Exponential model with DIC data and TD covariates (EDICTD).

In order to achieve these final models other models must be explored in advance.

The models are

• Gompertz model with RC data and fixed covariates (GRCF),

• Gompertz model with IC data and fixed covariates (GICF),

• Exponential model with DIC data (EDIC),

• Exponential model with DIC data and fixed covariates, Case 1 (EDICF1),

• Exponential model with DIC data and fixed covariates, Case 2 (EDICF2).

The main objectives of this research are as follows:

• To extend the Gompertz model to incorporate TD covariates in the presence

of RC data or obtaining GRCTD model and conduct simulation to study

the bias, standard error (SE) and root mean square error (RMSE) of the

parameter estimates.
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• To extend the Gompertz model to incorporate TD covariates in the presence

of IC data or obtaining GICTD model and conduct simulation to study the

bias, SE and RMSE of the parameter estimates.

• To extend the exponential model to incorporate TD covariates in the pres-

ence of DIC data or obtaining EDICTD model and conduct simulation to

study the bias, SE and RMSE of the parameter estimates.

• Obtain GRCF, GICF, EDIC, EDICF1 and EDICF2 models and study per-

formance of the models.

• Evaluate the performance of the the Wald, jackknife and likelihood ratio

CI estimate methods for these models and draw the results based on the

coverage probability study.

1.3 Outline of Thesis

This thesis is organized into six chapters. Chapter 2 provides a review of related

literature to the current work. Special consideration in this literature review is

the research conducted on parametric models with RC, IC and DIC data and

parametric models with TD covariate.

Chapter 3 starts with the extension of the Gompertz model to incorporate TD

covariates in the presence of RC data (GRCTD model). Then, the performance of

the model is compared with the fixed covariate model (GRCF model). Following

that, comparisons are made when a fixed covariate model is used instead of the

true TD covariate model. In addition, two methods of constructing CIs, the

Wald and jackknife are explored for the parameters of the model. Conclusions

are drawn based on the coverage probability study.

Chapter 4 concentrates on the extension of the Gompertz model to incorporate

TD covariates with LC, RC, IC data as well as OE data (GICTD model). The
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model is then investigated thoroughly at dependent and independent covariate

levels through a comprehensive simulation study. Following that, the model is

compared with a fixed covariate model (GICF model). Then, two methods of

constructing CIs the Wald and likelihood ratio are investigated for the parameters

of the model and conclusions are drawn based on the coverage probability study.

Chapter 5 investigates a parametric survival model that accommodates DIC data

with TD covariates (EDICTD model). In order to achieve this final model three

models are explored in advance. Firstly, a simple model consisting DIC data

without any covariate is studied (EDIC model). Following that, a model with

DIC data and fixed covariates is considered where all the covariates affect T

(EDICF1 model). Lastly, a model with fixed covariates is studied where some of

the covariates affect T and the others affect V (EDICF2 model). All these models

are studied by the simulation study and two methods of constructing confidence

intervals, the Wald and jackknife are explored for the parameters of these models.

Finally, Chapter 6 summarizes the study and offers some recommendations for

future research.

It should be mentioned all simulation studies were carried out by using the

FORTRAN R©, (FTN95), programming language.
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