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ABSTRACT

Heterogeneous parallel architecture (HPA) are inherently more complicated than their homogeneous 
counterpart. HPAs allow composition of conventional processors, with specialised processors that 
target particular types of task. However, this makes mapping and scheduling even more complicated 
and difficult in parallel applications. Therefore, it is crucial to use a robust modelling approach that can 
capture all the critical characteristics of the application and facilitate the achieving of optimal mapping. 
In this study, we perform a concise theoretical analysis as well as a comparison of the existing modelling 
approaches of parallel applications. The theoretical perspective includes both formal concepts and 
mathematical definitions based on existing scholarly literature. The important characteristics, success 
factors and challenges of these modelling approaches have been compared and categorised. The results 
of the theoretical analysis and comparisons show that the existing modelling approaches still need 
improvement in parallel application modelling in many aspects such as covered metrics and heterogeneity 
of processors and networks. Moreover, the results assist us to introduce a new approach, which improves 
the quality of mapping by taking heterogeneity in action and covering more metrics that help to justify 
the results in a more accurate way.

Keywords: Heterogeneous parallel architectures, mapping, parallel application modelling, scheduling

INTRODUCTION

In the last two decades, many distributed 
high-performance computers with thousands 
or millions of processing units have been in 
use. The emphasis on distributed and parallel 
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computers is on shorter execution time, decreasing energy consumption, and reducing idle 
time of resources. By means of efficient mapping and scheduling, a substantial improvement 
in these issues can be achieved (Lastovetsky & Manumachu, 2017; Tekinerdogan & Arkin, 
2012). Mapping problems is the assignment of the processors to processes and communication 
links to data elements that are exchanged between the processes. Each processor in a distributed 
architecture usually manages more than one process in a single application. Managing the order 
of execution of these processes on each processor is known as the scheduling problem. These 
two crucial problems in parallel computing fall into NP-hard categories (Kumar, Grama, Gupta, 
& Karypis, 1994; Lewis & El-Rewini, 1992; Sarkar, 1989; Ullman, 1975).

Mapping and scheduling problems becomes more complex when it involves heterogeneous 
parallel architecture because this architecture is more complicated than homogeneous parallel 
architecture (Rico-Gallego, Lastovetsky, & Diaz-Martin, 2017). The first step in solving 
mapping and scheduling problems lies in the modelling phase. In computer science, to represent 
real entities, such as processing architecture, computational models are used. A computational 
model is a simplified version of these entities, where crucial characteristics are captured and 
implementation details are ignored (Leopold, 2001). The information captured from the 
programme to be executed is modelled by programme graphs or hyper-graphs.

There are several modelling approaches studied in the literature to capture the behaviour 
of parallel applications such as PRAM (Kumar et al., 1994), LogP (Culler et al., 1996), BSP 
(Bulk-Synchronous Parallel) (Valiant, 1990), TIG (Task Interaction Graph) (Long & Clarke, 
1989), TPG (Task Precedence Graph) (Kasahara & Narita, 1985), TTIG (Task Temporal 
Interaction Graph) (Roig, Ripoll, & Guirado, 2007; Roig, Ripoll, Senar, Guirado, & Luque, 
2000, 2002), TTIGHa (Temporal Task Interaction Graph in Heterogeneous Architecture) (De 
Giusti, Chichizola, Naiouf, Ripoll, & De Giusti, 2007), MPAHA (Model on Parallel Algorithms 
on Heterogeneous Architectures) (De Giusti, Naiouf, Chichizola, Luque Fadón, & De Giusti, 
2009) and the hypergraph-based model proposed in the UMPa scheduling algorithm (Deveci, 
2015; Deveci, Kaya, Ucar, & Catalyurek, 2015).

The varieties in modelling approaches motivated this research, which focused on an 
analysis and comparative study of frameworks, similarities, differences, characteristics and 
principles. The comparison will assist in determining the suitability, success factors and 
challenges of each modelling approach. 

The remaining sections are organised as follows. In Section 2, each model is discussed 
in detail and its mathematical structure is shown. In Section 3, a comparative study of these 
models is presented and discussed. In Section 4, the new model is proposed as a future work 
and in Section 5, the study is concluded.

MODELLING STRUCTURES

In this section, modelling approaches are introduced. In the next section, a comparative study 
is presented based on these modelling approaches.
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Task Interaction Graph (TIG)

The Task Interaction Graph (TIG) model isolates an application into the maximum number of 
sequential blocks (tasks) that are connected by edges. These edges represent the interactions 
between the blocks. The TIG model uses an undirected graph to abstract the application into 
the model. This model is an undirected graph  (Long & Clarke, 1989), where:

●●  is a set of nodes. Each node in this set represents a task .

●●  is a set of edges. Each edge in this set represents communication between tasks.

●●  is a positive cost associated with task, . This cost represents the computation time 
of the task, .

●●  is a non-negative weight associated to the edge between  and . This weight 
represents the total communication volume between two edges. 

To illustrate the model, the sample application exhibited in Figure 1 is considered. 
This sample application consists of three tasks communicating with each other. Each 
curve in this figure is a task. The corresponding pseudo-code of this sample application 
is given in Figure 2. 

Figure 1. Temporal flow graph of sample application
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Figure 2. Pseudo-code 1 sample application

In this pseudo-code,  stands for block of computation and  stands for computation 
time, while  is a communication command that sends the data element , with 
volume , to the task .  is another communication command that receives 
data element  with volume  from task .

Holding the above example, the TIG model for this application is formed. Figure 3 
illustrates the TIG model of the sample application.

Figure 3. TIG graph for sample application
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In the early years of heterogeneous parallel computing, this model was used by many 
researchers and in different studies, such as by El-Rewini, Lewis and Ali (1994), Hui and 
Chanson (1997), Kalinov and Klimov (2005), Phinjaroenphan and Bevinakoppa (2004), 
Sadayappan, Ercal and Ramanujam (1990), and Sanyal and Das (2005). However, with the 
growth of parallel computers and the appearance of more complex parallel applications, the 
drawbacks of this model were exposed. 

Task Precedence Graph (TPG)

Liu, Shi, Lu and Mao (2007) proposed a new model named the Task Precedence Graph (TPG). 
The TPG is a refined version of the TIG model that attempts to capture the precedence relations 
between tasks. The authors used a directed graph to model the parallel applications and their 
communications and relations. Besides the details captured in the model, the TIG model records 
the predecessor and successor relations in its graph.

The TPG is a directed graph , where:

●●  is a set of nodes. Each node  represents a task  in the application.

●●  is a set of edges. Each edge  represents a direct drive relation between two 
communicating nodes  and .

In this model, each edge shows both communication volume and the precedence relation 
between the tasks. Like TIG, in this model, each node has a cost representing its computation 
time and each edge has a weight, representing its communication volume. Considering the 
sample application illustrated in Figure 1, the TPG model for this application is shown in 
Figure 4.

Figure 4. TPG graph for sample application

Task Temporal Interaction Graph (TTIG)

Roig et al. (2007, 2000, 2002) proposed a new model named Task Temporal Interaction Graph 
(TTIG), which is a refined combination of the TIG and TPG (Roig et al., 2000). In this model, 
a new parameter, the degree of parallelism, is proposed. This new parameter adds the ability 
to model recording the potential parallelism for communicating tasks with an arbitrary task 
interaction pattern (Roig et al., 2007).
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The TTIG model for parallel applications is defined as a directed graph  with 
three maps  where:

●●  is a set of nodes. Each node in this set represents a task .

●●  is a set of directed edges. Each edge in this set represents a temporal relation between 
two nodes.

●●  is a function that assigns a non-negative computation time  to each task 
in .

●●  is a function that assigns a non-negative communication cost to each edge. 
 is the total volume of messages being transferred between  and .

●●  is a function that assigns a normalised index to each edge. Without considering 
any communication cost or any other dependencies,  is the maximum degree of 
parallelism that two tasks  and  can obtain during parallel execution.

To set the TTIG graph for an application, four different steps should be taken:
1.	 Acquiring the Temporal Flow Graph
2.	 Calculating the task execution and communication costs
3.	 Calculating the degree of parallelism 
4.	 Forming the Temporal Task Interaction Graph (TTIG)

For more details about the degree of parallelism and the TTIG model, refer to Roig et al. 
(2007, 2000, 2002).

Based on the previously explained steps, the TTIG graph for the sample application 
introduced in Figure 1 will appear as given below (Figure 5).

Figure 5. TTIG  graph for sample application

Temporal Task Interaction Graph in Heterogeneous Architectures (TTIGHa)

Temporal Task Interaction Graph in Heterogeneous Architectures (TTIGHa) is a refined version 
of the TTIG model, where the heterogeneity of processors and heterogeneity of communication 
media in a distributed architecture are taken into account.
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●● Formally, TTIGHa is a directed graph  where:

●●  is a set of nodes. Each node in this set represents a task .

●●  is a set of directed edges. Each edges in this set represents communication between tasks.

●●  is a set of processors. For each type of processor in the target distributed machine, there 
is an element in this set exhibiting the corresponding processor type.

●●  is a set of communication media. For each type of communication medium in the target 
distributed machine, there is an element in this set exhibiting corresponding medium type, 
startup time and transfer time for one byte of the data element.

This model gathers more information about the application. First, the model determines the 
execution time of each task on every type of processor.  is the execution time of the task 

 on processor type . A  dimension matrix named  is built for each edge ,  
where  is the number of processor types in the distributed architecture ( ). For 
each edge , the value of  is the time needed for transferring one byte of 
data from task  on processor type  to task  on processor type . A  

 dimension matrix named  is formed, where  is the degree of parallelism 
between tasks  on processor type  and  on processor type . For more 
information about adjusting these matrices, refer to De Giusti et al. (2007).

After the formal definition of the TTIGHa model, the sample application presented in 
Figure 1 and Pseudo-code 1 is modelled using this approach. As this model needs information 
regarding the distributed architecture that the application will run on, a distributed machine 
with two types of processor,  and  is considered, where the execution speed of processor 

 is half that of processor , i.e. if task  takes  seconds to run on processor , it will take 
 seconds on processor . Furthermore, it is considered that this machine utilises only one 

type of communication medium with a startup time of 1 second and communication speed of 
0.2 seconds per byte. Considering this distributed machine, the TTIGHa model for the sample 
application illustrated in Figure 1 is as shown in Figure 6.

Figure 6. TTIGHa graph for sample application
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Model of Parallel Algorithms on Heterogeneous Architectures (MPAHA)

The model of Parallel Algorithms in Heterogeneous Architectures (MPAHA) takes the 
heterogeneity of processors and networks into account, but in a clearer and simpler way. This 
model tries to arrange the information captured from the application in a systematic way.

According to the definition, the MPAHA is a directed graph  where:

●●  is a set of nodes. Each node in this set represents a task .

●●  is a set of edges. Each edge in this set represents communication between tasks.
In this model, besides the tasks and the communication between them, two other aspects of 

the application are recorded in the graph. The first one is the execution time of the computation 
phases (in this model called subtasks) for each task on different types of processor. The other 
one is the communication volume between computation phases (subtasks). Each task  
consists of multiple subtasks , where there is no communication within each subtask i.e. 
communication takes place between subtasks. The subtasks for each task  is defined 
as the computation time of the subtask  in task  on processor type . For each task 

, the corresponding matrix  is formed as assigned.
The other parameter is the communication volume.  is set as the communication 

volume between the subtask  in the task  ( ) to subtask  in task  ( ). 
Then, the matrix  is assigned to the communication  (De Giusti et al., 2007). As 
in previous approaches, the sample application in Figure 1 is modelled using this modelling 
method. The result is shown in Figure 7.

Figure 7. MPAHA graph for sample application

Hypergraph Based Modelling: UMPa

All the models discussed in the previous sections use the graph theory as their basic tool to 
capture the parallel application’s details. However, the Hypergraph Based Modelling: UMPa 
proposed by Deveci (2015) and Deveci et al. (2015) uses a new structure named hypergraph. 
Hypergraph-based modelling approaches are more flexible in modelling parallel heterogeneous 
structures than graph versions.
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UMPa utilises a directed hypergraph  where:

●●  is a set of nodes. Each node in this set represents a task  or data exchange in 
communication .

●●  is a set of nets. Each net in this set connects the task that starts the communication 
 (producer), the data element being exchanged  and the task receiving the 

data element  (consumer).

A weight to each node and a cost to each net are assigned. The weight  for the node 
 is the computation time of the task  if this node denotes a task and  if this node 

denotes a data element:

where,  is the computation time of the task .

This weight has two functions. While it shows the computation time for each task, it also 
serves as a factor to distinguish between task nodes and communication nodes.

Another function,  which assigns a cost  to each net  provides the value 
of  for each communication between nodes equal to the communication volume of the 
data element being exchanged.

where,  is the communication volume of the data element  (Deveci, 2015; 
Deveci et al., 2015). The model hypergraph for the sample application in Figure 1 using the 
UMPa approach is shown in Figure 8.

Figure 8. UMPa graph for sample application
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COMPARATIVE STUDY

The modelling approaches discussed in the previous section established a set of numerous 
features to cover different characteristics and principles in modelling parallel applications. 
Due to this fact, all their possible characteristics cannot be simply listed in this study, but 
a group of basic characteristics and principles can be provided to distinguish between the 
modelling approaches. This group is divided into four dimensions: 1- temporal behaviour; 
2- mathematical structure; 3- heterogeneity, and; 4- metrics. In this section these dimensions 
are discussed. 

Temporal Behavioural

Temporal behaviour such as, “the output  within the next  time must be produced by a 
given system” or “the produced output must be sent in no bounded delivery time” allow for 
the solving of the problem of mapping and scheduling, making it more sufficient. The main 
objective in modelling an application is the minimisation of resource usage such as execution 
time (Roig et al., 2000). Inattention to temporal behaviour or task precedence relation in 
modelling causes tasks to be trapped in wait conditions. Waiting for a task for a message 
from another task to be received imposes an overhead and increases the total execution time 
of the application, and this reduces the performance of the mapping (Liu et al., 2007). This 
characteristic is not supported by all modelling approaches. Table 1 indicates the approaches 
that do support this feature. 

Table 1
Temporal behaviour

Model Temporal Behaviour

TIG

TPG 

TTIG 

TTIGHa 

MPAHA 

UMPa

Mathematical Structure

Each model employs a mathematical structure that helps to extract information from the subject 
application. Each structure has specific features and can capture certain types of information. 
In case of mapping, the common structures are graphs and hypergraphs. Moreover, each graph 
or hypergraph can be directed or undirected. Each modelling approach tries to capture essential 
details of the target application as much as possible in an unambiguous arrangement. However, 
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the structure being used should be able to handle the details captured. Overall, it has been 
shown that hypergraphs are more suitable structures in parallel application modelling and are 
able to capture more details than graph structures (Deveci, 2015; Deveci et al., 2015). In Table 
2, the mathematical structures of the models are summed up.

Table 2
Models’ mathematical structures

Models
Graph

Hyper-graph
Undirected Directed

TIG 

TPG 

TTIG 

TTIGHa 

MPAHA 

UMPa 

Heterogeneity

According to the structure being used and the weights and costs assigned to it, models can 
embrace some levels of heterogeneity. In modern parallel systems, two types of heterogeneity 
are common: processor heterogeneity and network heterogeneity. Processor heterogeneity 
means that a task can have a different execution time on different processors in the machine. 
Moreover, network heterogeneity indicates that a data block can have different transmission 
times on varied media that are connected to the processors. Failure to capture the heterogeneity 
of the target structure leads to inefficient scheduling and mapping, which reduces the overall 
execution performance (Asaadi, Khaldi, & Chapman, 2016; Xie, Zeng, Xiao, Li, & Li, 2017). 
Table 3 presents the models’ ability to apprehend the heterogeneity of the machine.

Table 3
Models’ ability to capture heterogeneity

Models
Heterogeneity

Processor Network

TIG
TPG
TTIG
TTIGHa  

MPAHA  

UMPa 
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Metrics.  The final goal of modelling approaches is to map the subject application to the 
machine. Mapping has better quality if the produced scheduling decreases the resource usage 
on the target machine in comparison with a different scheduling. By defining a relevant cost 
function, the mapping problem transforms into an optimisation problem. The cost function 
for an optimisation problem specifies some constraints in the optimiser being optimised. The 
modelling approach should provide for the evaluation of these constraints. Metrics provided 
by the modelling approach correspond to the constraints of the optimisation cost function. The 
incompetence of the modelling approach in supporting metrics limits the optimiser’s ability 
to produce efficient scheduling plans (Deveci, 2015). To measure the quality of the mapping, 
there are various metrics that have to be examined, such as total communication volume, total 
number of messages being sent, maximum number of messages being sent and total volume 
of messages being sent. The modelling scheme being used determines which metrics can be 
used. The modelling structure and dependent information prepare the mapper for calculating 
some of these metrics.

Table 4 summarises the ability of the models in calculating different metrics. In this table, 
the metrics shown are total communication volume (TCV), total number of messages being 
sent (or received) (TSM), maximum number of messages being sent (or received) (MMS) and 
total volume of messages being sent (or received) (TSV). The definitions and characteristics 
of modelling approaches are collected in the previous sections. According to this, there is 
no general modelling approach that can capture all required principles and characteristics in 
modelling parallel applications. The following is a brief discussion of our observation. 

Table 4
Models’ ability to provide metrics

Models TCV TSM MMS TSV

TIG 

TPG 

TTIG 

TTIGHa 

MPAHA 

UMPa   

The first and simplest modelling approach discussed is the Task Interaction Graph (TIG). 
Besides the broad usage of this model, the most significant flaw of this model is the lack 
of attention to the temporal behaviour of the applications. In this model, there is no tool 
or parameter to capture the temporal behaviour of the parallel programmes. Therefore, for 
example, if this model runs tasks  and  concurrently on different processors, and task 

 needs some data produced by task  at the end of its execution, then task  has to wait; 
this waiting time is an overhead in computation resources. Furthermore, this model does not 
reflect the heterogeneity of the processors or networks. All these debilities make this model 
an inappropriate choice for big, modern distributed machines.
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Nevertheless, different experiments show that this model could yield good performance 
in course-grain applications where a lot of computation is performed between small 
communication events (Ahmad, He, & Liou, 2002; Bishop, Kelliher, & Irwin, 1999; Censor, 
Gordon, & Gordon, 2001; Lam & Suen, 1995; Roig et al., 2007).  For SPMD applications, 
where a single application is applied to different data sets concurrently, this model yields good 
performance (Karypis, Schloegel, & Kumar, 2003; Roig et al., 2002).

The other model discussed is the TPG model. This model attempts to refine the TIG model 
to capture the temporal behaviour of the parallel applications. It was used by many researchers 
such as Ali and El-Rewini (1993), Barbosa, Morais, Nobrega and Monteiro (2005), Bouvry, de 
Kergommeaux and Trystram (1995), Gil, Hernández, Rodriguez, Mauri and Radeva (2006), 
Hwang, Chow, Anger and Lee (1989), Kitajima, Tron and Plateau (1993), Kwok and Ahmad 
(1999, 1996), Ohtaki, Takahashi, Boku and Sato (2004), Topcuoglu, Hariri and Wu (2002), 
Xie and Qin (2005) and Yang and Gerasoulis (1994). These researchers showed that this model 
performed well for tightly coupled applications, where most of the communication events were 
at the beginning or at the end of the tasks. Although to model other applications it is possible to 
break tasks into smaller tasks where communication events take place at the beginning or end, 
this action causes TPG to build a very big graph of the application, which in turn, increases 
the complexity of the model and reduces its performance in a large scale (Roig et al., 2002). 
Moreover, like the TIG, this model does not seize any parameters related to heterogeneity of 
architecture, making it incompetent for use in model applications for modern clusters.

The TTIG model is the combination of two previously discussed models and it captures 
the temporal behaviour of parallel applications using a newly defined metric called degree of 
parallelism. This model is used in many practical algorithms as shown by Guirado, Roig and 
Ripoll (2013), Kang, He and Wei (2013), Upadhyaya and Rajan (2015), and Yang, Guang, 
Säntti and Plosila (2013). The results obtained by these authors confirmed that this model was 
suitable for applications for which the degree of parallelism was more than 0.5 (Roig et al., 
2007, 2000, 2002). Accordingly, it is better to use previous models instead of TTIG in other 
applications that have a degree of parallelism more than 0.5. Additionally, this model does 
not weigh any parameter regarding heterogeneity of the distributed architectures; this makes 
it unsuitable for use in new distributed clusters.

None of the models discussed reflects the heterogeneity of the distributed architecture. The 
next model to be discussed, TTIGHa, is a revision of the TTIG model, which tries to capture 
heterogeneity within the architecture. Therefore, this model needs to be updated with the exact 
details of the architecture in which the parallel application is going to be executed (De Giusti 
et al., 2007). Some studies employ this model in their modelling phase and utilise the TTIGHa 
to model parallel applications (De Giusti, Chichizola, Naiouf, & De Giusti, 2008; De Giusti, 
Chichizola, Naiouf, & De Giusti, 2008). However, since this model is closely dependent on 
the machine’s architecture, its structure is complex and the implementations if this model 
cannot be portable. In this model, the user needs to know the exact details of the architecture; 
however, obtaining this information is difficult or impossible in some contexts.

The MPAHA is a complete model that attempts to capture the benefits of all the previous 
models and propose a model that can be applied in different situations. This model captures 
the temporal behaviour of the applications and heterogeneity of the architecture without the 
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need to know the exact details of the hardware. Successful implementations of this model 
such as shown by De Giusti et al. (2009), and De Giusti, Chichizola, Naiouf, De Giusti and 
Luque (2010) reflect its good performance. However, the weakness of this model is that the 
application that is modelled has a lot of small volume communication in addition to some 
large volume communication. Since this method admits the volume of communication, in 
these circumstances, it induces overheads that reduce performance. In mapping that uses this 
model, the scheduler is able to optimise large-size communication when several such events 
are events are entered into the application.

The last model discussed uses the UMPa method and is called UMPa as well. Unlike 
the other models, this method uses the hypergraph instead of the graphs to model parallel 
applications. It has been shown that hypergraphs are more suitable than graphs for capturing 
the parallel application’s characteristics (Karypis & Kumar, 2000). Although this is a new 
proposed method, different studies have been done on it and various implementations are done 
using this model (Balci & Akgüller, 2014; Schlag et al., 2015; Shahid, Raza, & Sajid, 2015). 
This model tries to cover many features of parallel applications such as temporal behaviour and 
heterogeneous architecture. The implementation of this method attests to its good performance 
and scalability (Balci & Akgüller, 2014; Deveci, 2015; Deveci et al., 2015; Schlag et al., 2015; 
Shahid et al., 2015). Nonetheless, the model has a weakness; tasks need to collect data, which 
are produced with more than one task. In parallel applications where the data element has more 
than one producer, this model cannot be used (Deveci, 2015; Deveci et al., 2015).

FUTURE WORK, A NEW MODELLING APPROACH

The main result of our observations is that the existing modelling approaches do not include all 
principles and characteristics needed in modelling parallel applications. In modern parallel and 
distributed computing, there are numerous situations, and  improvements are to these models 
to abstract the applications.

In this section, a new modelling schema will be introduced that attempts to overcome the 
drawbacks of the modelling approaches. This model is an improved version of the UMPa, 
which was introduced in the previous section. It has been shown that hypergraphs are better 
structures for capturing the structure of parallel applications (Trifunovic & Knottenbelt, 2004). 
This model benefits from the hypergraphs along with the other measures. The detailed definition 
of this model is as follows. However, this is only an introduction of the model; other researchers 
and authors may use this as a basis for future work. In the future, the complete version of this 
modelling along with experiments will be provided.

Definition 

In this model, for each parallel application, there are two sets:
1.	 Set of the tasks 
2.	 Set of the volume of data elements being exchanged 
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Distributed machines on which the application is going to be executed have two sets:

1.	 Set of processors  representing the type of each processor 

2.	 Set of communication links  representing the communication 
delay of each link in transferring 1KB of data.

Using sets  and , a symmetric matrix  with size  is defined for the distributed 
machine as shown below:

where,  represents the communication time of 1KB data between processor  and processor 
. Clearly,  if and only if  as there is no communication delay within any 

processor and for every two processors,  and , .
Using the sets and matrix defined above, a directed hypergraph  is formed, 

where:

●●  is the set of nodes. Each node  in this set represents a task .

●●  is the set of hyperarcs. Each hyperarc  in this set represents a data element .  
The pins inside each hyperarc  ( ) consist of tasks that produce the data  
and the tasks that consume this data. Hyperarc  is an ordered pair 
where  and  are disjointed non-empty subsets of . , which is the origin of   
( ), is a set of the producers of . Moreover, , which is the destination of 

 ( ), is a set of the consumers of . The hyperarc’s flow is from  
to . (For more information on the directed hypergraph and 
its notations, refer to Gallo, Longo, Pallottino and Nguyen (1993))

Each node has a weight and each hyperarc has a cost. Each node  has a row vector 
 assigned to it as its weight. Each element of this vector  

represents the execution time of the task  on processor . Each hyperarc  has a 
cost  assigned to it that shows the volume of the data element  ( ). 

Modelling  

In this part, a sample application presented in Figure 1 is modelled using the proposed modelling 
approach. Since this model needs information about the distributed architecture that the parallel 
application is going to be executed on, a four-processor machine consisting of two types of 
processor connecting by two types of communication medium is considered. Moreover, it is 
considered that the execution speed of the type two processor is half that of the type one and the 
communication delay of the type one medium is half that of the type two medium. The sample 
structure of the considered architecture is shown in Figure 9. Clearly, when there are different 
media connecting two processors, the maximum communication delay is assigned to the link. 
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Figure 9. A schematic representation of a simple parallel machine

The preliminary sets are as below:

	
	
	
	

where,  represents the communication delay of the type  medium for 1KB of data and 
.

The model for this sample application is a directed hypergraph  where:

●●

●●
The presentation of this model for this application is shown in Figure 10.

Figure 10. A graphical representation of the sample parallel application modelled using the proposed 
new modelling approach



On Modelling Parallel Programmes for Static Mapping

539Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

CONCLUSION

This review afforded a general study of the modelling schemes proposed in the literature 
to enhance the understanding of unclear concepts by indicating the common principles and 
characteristics, similarities and differences and limitation and gap analysis of the modelling 
approaches. In order to help readers to make a wise selection between the models according 
to what they need, they are classified and compared from different aspects. The comparison 
framework is applied from theoretical and practical viewpoints that would recommend the 
most suitable model(s) according to the provisions of the machine and application. To support 
the conclusion drawn, four tables have been added as a summary of the evaluation. The main 
result of this study is that there is no one general purpose modelling approach that can capture 
all the principles and characteristics in modelling parallel applications. The study also identified 
the limitations of each modelling approach.

Finally, a new modelling approach that will solve the previous drawbacks by tolerating 
more types of application, allowing more metrics to measure and improving the accuracy of 
the mapping is briefly introduced. Extensive investigating, studying and implementing of the 
proposed model will be our future work.  
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