
Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

Article history:
Received: 7 June 2017
Accepted: 5 December 2017

E-mail addresses:
zangbari@gmail.com (Sina Zangbari Koohi)
asila@upm.edu.my (Nor Asilah Wati Abdul Hamid)
mothman@upm.edu.my (Mohamed Othman)
ibragimov@upm.edu.my (Gafurjan Ibragimov)
*Corresponding Author

Review Article

On Modelling Parallel Programmes for Static Mapping: A
Comparative Study

Sina Zangbari Koohi1, Nor Asilah Wati Abdul Hamid1*, Mohamed Othman1 and
Gafurjan Ibragimov2

1Department of Communication Technology and Network, Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
2Department of Mathematics and Institute for Mathematical Research, Faculty of Science Universiti Putra Malaysia,
University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

ABSTRACT

Heterogeneous parallel architecture (HPA) are inherently more complicated than their homogeneous
counterpart. HPAs allow composition of conventional processors, with specialised processors that
target particular types of task. However, this makes mapping and scheduling even more complicated
and difficult in parallel applications. Therefore, it is crucial to use a robust modelling approach that can
capture all the critical characteristics of the application and facilitate the achieving of optimal mapping.
In this study, we perform a concise theoretical analysis as well as a comparison of the existing modelling
approaches of parallel applications. The theoretical perspective includes both formal concepts and
mathematical definitions based on existing scholarly literature. The important characteristics, success
factors and challenges of these modelling approaches have been compared and categorised. The results
of the theoretical analysis and comparisons show that the existing modelling approaches still need
improvement in parallel application modelling in many aspects such as covered metrics and heterogeneity
of processors and networks. Moreover, the results assist us to introduce a new approach, which improves
the quality of mapping by taking heterogeneity in action and covering more metrics that help to justify
the results in a more accurate way.

Keywords: Heterogeneous parallel architectures, mapping, parallel application modelling, scheduling

INTRODUCTION

In the last two decades, many distributed
high-performance computers with thousands
or millions of processing units have been in
use. The emphasis on distributed and parallel

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

524 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

computers is on shorter execution time, decreasing energy consumption, and reducing idle
time of resources. By means of efficient mapping and scheduling, a substantial improvement
in these issues can be achieved (Lastovetsky & Manumachu, 2017; Tekinerdogan & Arkin,
2012). Mapping problems is the assignment of the processors to processes and communication
links to data elements that are exchanged between the processes. Each processor in a distributed
architecture usually manages more than one process in a single application. Managing the order
of execution of these processes on each processor is known as the scheduling problem. These
two crucial problems in parallel computing fall into NP-hard categories (Kumar, Grama, Gupta,
& Karypis, 1994; Lewis & El-Rewini, 1992; Sarkar, 1989; Ullman, 1975).

Mapping and scheduling problems becomes more complex when it involves heterogeneous
parallel architecture because this architecture is more complicated than homogeneous parallel
architecture (Rico-Gallego, Lastovetsky, & Diaz-Martin, 2017). The first step in solving
mapping and scheduling problems lies in the modelling phase. In computer science, to represent
real entities, such as processing architecture, computational models are used. A computational
model is a simplified version of these entities, where crucial characteristics are captured and
implementation details are ignored (Leopold, 2001). The information captured from the
programme to be executed is modelled by programme graphs or hyper-graphs.

There are several modelling approaches studied in the literature to capture the behaviour
of parallel applications such as PRAM (Kumar et al., 1994), LogP (Culler et al., 1996), BSP
(Bulk-Synchronous Parallel) (Valiant, 1990), TIG (Task Interaction Graph) (Long & Clarke,
1989), TPG (Task Precedence Graph) (Kasahara & Narita, 1985), TTIG (Task Temporal
Interaction Graph) (Roig, Ripoll, & Guirado, 2007; Roig, Ripoll, Senar, Guirado, & Luque,
2000, 2002), TTIGHa (Temporal Task Interaction Graph in Heterogeneous Architecture) (De
Giusti, Chichizola, Naiouf, Ripoll, & De Giusti, 2007), MPAHA (Model on Parallel Algorithms
on Heterogeneous Architectures) (De Giusti, Naiouf, Chichizola, Luque Fadón, & De Giusti,
2009) and the hypergraph-based model proposed in the UMPa scheduling algorithm (Deveci,
2015; Deveci, Kaya, Ucar, & Catalyurek, 2015).

The varieties in modelling approaches motivated this research, which focused on an
analysis and comparative study of frameworks, similarities, differences, characteristics and
principles. The comparison will assist in determining the suitability, success factors and
challenges of each modelling approach.

The remaining sections are organised as follows. In Section 2, each model is discussed
in detail and its mathematical structure is shown. In Section 3, a comparative study of these
models is presented and discussed. In Section 4, the new model is proposed as a future work
and in Section 5, the study is concluded.

MODELLING STRUCTURES

In this section, modelling approaches are introduced. In the next section, a comparative study
is presented based on these modelling approaches.

On Modelling Parallel Programmes for Static Mapping

525Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Task Interaction Graph (TIG)

The Task Interaction Graph (TIG) model isolates an application into the maximum number of
sequential blocks (tasks) that are connected by edges. These edges represent the interactions
between the blocks. The TIG model uses an undirected graph to abstract the application into
the model. This model is an undirected graph (Long & Clarke, 1989), where:

●● is a set of nodes. Each node in this set represents a task .

●● is a set of edges. Each edge in this set represents communication between tasks.

●● is a positive cost associated with task, . This cost represents the computation time
of the task, .

●● is a non-negative weight associated to the edge between and . This weight
represents the total communication volume between two edges.

To illustrate the model, the sample application exhibited in Figure 1 is considered.
This sample application consists of three tasks communicating with each other. Each
curve in this figure is a task. The corresponding pseudo-code of this sample application
is given in Figure 2.

Figure 1. Temporal flow graph of sample application

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

526 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Figure 2. Pseudo-code 1 sample application

In this pseudo-code, stands for block of computation and stands for computation
time, while is a communication command that sends the data element , with
volume , to the task . is another communication command that receives
data element with volume from task .

Holding the above example, the TIG model for this application is formed. Figure 3
illustrates the TIG model of the sample application.

Figure 3. TIG graph for sample application

On Modelling Parallel Programmes for Static Mapping

527Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

In the early years of heterogeneous parallel computing, this model was used by many
researchers and in different studies, such as by El-Rewini, Lewis and Ali (1994), Hui and
Chanson (1997), Kalinov and Klimov (2005), Phinjaroenphan and Bevinakoppa (2004),
Sadayappan, Ercal and Ramanujam (1990), and Sanyal and Das (2005). However, with the
growth of parallel computers and the appearance of more complex parallel applications, the
drawbacks of this model were exposed.

Task Precedence Graph (TPG)

Liu, Shi, Lu and Mao (2007) proposed a new model named the Task Precedence Graph (TPG).
The TPG is a refined version of the TIG model that attempts to capture the precedence relations
between tasks. The authors used a directed graph to model the parallel applications and their
communications and relations. Besides the details captured in the model, the TIG model records
the predecessor and successor relations in its graph.

The TPG is a directed graph , where:

●● is a set of nodes. Each node represents a task in the application.

●● is a set of edges. Each edge represents a direct drive relation between two
communicating nodes and .

In this model, each edge shows both communication volume and the precedence relation
between the tasks. Like TIG, in this model, each node has a cost representing its computation
time and each edge has a weight, representing its communication volume. Considering the
sample application illustrated in Figure 1, the TPG model for this application is shown in
Figure 4.

Figure 4. TPG graph for sample application

Task Temporal Interaction Graph (TTIG)

Roig et al. (2007, 2000, 2002) proposed a new model named Task Temporal Interaction Graph
(TTIG), which is a refined combination of the TIG and TPG (Roig et al., 2000). In this model,
a new parameter, the degree of parallelism, is proposed. This new parameter adds the ability
to model recording the potential parallelism for communicating tasks with an arbitrary task
interaction pattern (Roig et al., 2007).

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

528 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

The TTIG model for parallel applications is defined as a directed graph with
three maps where:

●● is a set of nodes. Each node in this set represents a task .

●● is a set of directed edges. Each edge in this set represents a temporal relation between
two nodes.

●● is a function that assigns a non-negative computation time to each task
in .

●● is a function that assigns a non-negative communication cost to each edge.
 is the total volume of messages being transferred between and .

●● is a function that assigns a normalised index to each edge. Without considering
any communication cost or any other dependencies, is the maximum degree of
parallelism that two tasks and can obtain during parallel execution.

To set the TTIG graph for an application, four different steps should be taken:
1.	 Acquiring the Temporal Flow Graph
2.	 Calculating the task execution and communication costs
3.	 Calculating the degree of parallelism
4.	 Forming the Temporal Task Interaction Graph (TTIG)

For more details about the degree of parallelism and the TTIG model, refer to Roig et al.
(2007, 2000, 2002).

Based on the previously explained steps, the TTIG graph for the sample application
introduced in Figure 1 will appear as given below (Figure 5).

Figure 5. TTIG graph for sample application

Temporal Task Interaction Graph in Heterogeneous Architectures (TTIGHa)

Temporal Task Interaction Graph in Heterogeneous Architectures (TTIGHa) is a refined version
of the TTIG model, where the heterogeneity of processors and heterogeneity of communication
media in a distributed architecture are taken into account.

On Modelling Parallel Programmes for Static Mapping

529Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

●● Formally, TTIGHa is a directed graph where:

●● is a set of nodes. Each node in this set represents a task .

●● is a set of directed edges. Each edges in this set represents communication between tasks.

●● is a set of processors. For each type of processor in the target distributed machine, there
is an element in this set exhibiting the corresponding processor type.

●● is a set of communication media. For each type of communication medium in the target
distributed machine, there is an element in this set exhibiting corresponding medium type,
startup time and transfer time for one byte of the data element.

This model gathers more information about the application. First, the model determines the
execution time of each task on every type of processor. is the execution time of the task

 on processor type . A dimension matrix named is built for each edge ,
where is the number of processor types in the distributed architecture (). For
each edge , the value of is the time needed for transferring one byte of
data from task on processor type to task on processor type . A

 dimension matrix named is formed, where is the degree of parallelism
between tasks on processor type and on processor type . For more
information about adjusting these matrices, refer to De Giusti et al. (2007).

After the formal definition of the TTIGHa model, the sample application presented in
Figure 1 and Pseudo-code 1 is modelled using this approach. As this model needs information
regarding the distributed architecture that the application will run on, a distributed machine
with two types of processor, and is considered, where the execution speed of processor

 is half that of processor , i.e. if task takes seconds to run on processor , it will take
 seconds on processor . Furthermore, it is considered that this machine utilises only one

type of communication medium with a startup time of 1 second and communication speed of
0.2 seconds per byte. Considering this distributed machine, the TTIGHa model for the sample
application illustrated in Figure 1 is as shown in Figure 6.

Figure 6. TTIGHa graph for sample application

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

530 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Model of Parallel Algorithms on Heterogeneous Architectures (MPAHA)

The model of Parallel Algorithms in Heterogeneous Architectures (MPAHA) takes the
heterogeneity of processors and networks into account, but in a clearer and simpler way. This
model tries to arrange the information captured from the application in a systematic way.

According to the definition, the MPAHA is a directed graph where:

●● is a set of nodes. Each node in this set represents a task .

●● is a set of edges. Each edge in this set represents communication between tasks.
In this model, besides the tasks and the communication between them, two other aspects of

the application are recorded in the graph. The first one is the execution time of the computation
phases (in this model called subtasks) for each task on different types of processor. The other
one is the communication volume between computation phases (subtasks). Each task
consists of multiple subtasks , where there is no communication within each subtask i.e.
communication takes place between subtasks. The subtasks for each task is defined
as the computation time of the subtask in task on processor type . For each task

, the corresponding matrix is formed as assigned.
The other parameter is the communication volume. is set as the communication

volume between the subtask in the task () to subtask in task ().
Then, the matrix is assigned to the communication (De Giusti et al., 2007). As
in previous approaches, the sample application in Figure 1 is modelled using this modelling
method. The result is shown in Figure 7.

Figure 7. MPAHA graph for sample application

Hypergraph Based Modelling: UMPa

All the models discussed in the previous sections use the graph theory as their basic tool to
capture the parallel application’s details. However, the Hypergraph Based Modelling: UMPa
proposed by Deveci (2015) and Deveci et al. (2015) uses a new structure named hypergraph.
Hypergraph-based modelling approaches are more flexible in modelling parallel heterogeneous
structures than graph versions.

On Modelling Parallel Programmes for Static Mapping

531Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

UMPa utilises a directed hypergraph where:

●● is a set of nodes. Each node in this set represents a task or data exchange in
communication .

●● is a set of nets. Each net in this set connects the task that starts the communication
 (producer), the data element being exchanged and the task receiving the

data element (consumer).

A weight to each node and a cost to each net are assigned. The weight for the node
 is the computation time of the task if this node denotes a task and if this node

denotes a data element:

where, is the computation time of the task .

This weight has two functions. While it shows the computation time for each task, it also
serves as a factor to distinguish between task nodes and communication nodes.

Another function, which assigns a cost to each net provides the value
of for each communication between nodes equal to the communication volume of the
data element being exchanged.

where, is the communication volume of the data element (Deveci, 2015;
Deveci et al., 2015). The model hypergraph for the sample application in Figure 1 using the
UMPa approach is shown in Figure 8.

Figure 8. UMPa graph for sample application

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

532 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

COMPARATIVE STUDY

The modelling approaches discussed in the previous section established a set of numerous
features to cover different characteristics and principles in modelling parallel applications.
Due to this fact, all their possible characteristics cannot be simply listed in this study, but
a group of basic characteristics and principles can be provided to distinguish between the
modelling approaches. This group is divided into four dimensions: 1- temporal behaviour;
2- mathematical structure; 3- heterogeneity, and; 4- metrics. In this section these dimensions
are discussed.

Temporal Behavioural

Temporal behaviour such as, “the output within the next time must be produced by a
given system” or “the produced output must be sent in no bounded delivery time” allow for
the solving of the problem of mapping and scheduling, making it more sufficient. The main
objective in modelling an application is the minimisation of resource usage such as execution
time (Roig et al., 2000). Inattention to temporal behaviour or task precedence relation in
modelling causes tasks to be trapped in wait conditions. Waiting for a task for a message
from another task to be received imposes an overhead and increases the total execution time
of the application, and this reduces the performance of the mapping (Liu et al., 2007). This
characteristic is not supported by all modelling approaches. Table 1 indicates the approaches
that do support this feature.

Table 1
Temporal behaviour

Model Temporal Behaviour

TIG

TPG 

TTIG 

TTIGHa 

MPAHA 

UMPa

Mathematical Structure

Each model employs a mathematical structure that helps to extract information from the subject
application. Each structure has specific features and can capture certain types of information.
In case of mapping, the common structures are graphs and hypergraphs. Moreover, each graph
or hypergraph can be directed or undirected. Each modelling approach tries to capture essential
details of the target application as much as possible in an unambiguous arrangement. However,

On Modelling Parallel Programmes for Static Mapping

533Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

the structure being used should be able to handle the details captured. Overall, it has been
shown that hypergraphs are more suitable structures in parallel application modelling and are
able to capture more details than graph structures (Deveci, 2015; Deveci et al., 2015). In Table
2, the mathematical structures of the models are summed up.

Table 2
Models’ mathematical structures

Models
Graph

Hyper-graph
Undirected Directed

TIG 

TPG 

TTIG 

TTIGHa 

MPAHA 

UMPa 

Heterogeneity

According to the structure being used and the weights and costs assigned to it, models can
embrace some levels of heterogeneity. In modern parallel systems, two types of heterogeneity
are common: processor heterogeneity and network heterogeneity. Processor heterogeneity
means that a task can have a different execution time on different processors in the machine.
Moreover, network heterogeneity indicates that a data block can have different transmission
times on varied media that are connected to the processors. Failure to capture the heterogeneity
of the target structure leads to inefficient scheduling and mapping, which reduces the overall
execution performance (Asaadi, Khaldi, & Chapman, 2016; Xie, Zeng, Xiao, Li, & Li, 2017).
Table 3 presents the models’ ability to apprehend the heterogeneity of the machine.

Table 3
Models’ ability to capture heterogeneity

Models
Heterogeneity

Processor Network

TIG
TPG
TTIG
TTIGHa  

MPAHA  

UMPa 

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

534 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Metrics. The final goal of modelling approaches is to map the subject application to the
machine. Mapping has better quality if the produced scheduling decreases the resource usage
on the target machine in comparison with a different scheduling. By defining a relevant cost
function, the mapping problem transforms into an optimisation problem. The cost function
for an optimisation problem specifies some constraints in the optimiser being optimised. The
modelling approach should provide for the evaluation of these constraints. Metrics provided
by the modelling approach correspond to the constraints of the optimisation cost function. The
incompetence of the modelling approach in supporting metrics limits the optimiser’s ability
to produce efficient scheduling plans (Deveci, 2015). To measure the quality of the mapping,
there are various metrics that have to be examined, such as total communication volume, total
number of messages being sent, maximum number of messages being sent and total volume
of messages being sent. The modelling scheme being used determines which metrics can be
used. The modelling structure and dependent information prepare the mapper for calculating
some of these metrics.

Table 4 summarises the ability of the models in calculating different metrics. In this table,
the metrics shown are total communication volume (TCV), total number of messages being
sent (or received) (TSM), maximum number of messages being sent (or received) (MMS) and
total volume of messages being sent (or received) (TSV). The definitions and characteristics
of modelling approaches are collected in the previous sections. According to this, there is
no general modelling approach that can capture all required principles and characteristics in
modelling parallel applications. The following is a brief discussion of our observation.

Table 4
Models’ ability to provide metrics

Models TCV TSM MMS TSV

TIG 

TPG 

TTIG 

TTIGHa 

MPAHA 

UMPa   

The first and simplest modelling approach discussed is the Task Interaction Graph (TIG).
Besides the broad usage of this model, the most significant flaw of this model is the lack
of attention to the temporal behaviour of the applications. In this model, there is no tool
or parameter to capture the temporal behaviour of the parallel programmes. Therefore, for
example, if this model runs tasks and concurrently on different processors, and task

 needs some data produced by task at the end of its execution, then task has to wait;
this waiting time is an overhead in computation resources. Furthermore, this model does not
reflect the heterogeneity of the processors or networks. All these debilities make this model
an inappropriate choice for big, modern distributed machines.

On Modelling Parallel Programmes for Static Mapping

535Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Nevertheless, different experiments show that this model could yield good performance
in course-grain applications where a lot of computation is performed between small
communication events (Ahmad, He, & Liou, 2002; Bishop, Kelliher, & Irwin, 1999; Censor,
Gordon, & Gordon, 2001; Lam & Suen, 1995; Roig et al., 2007). For SPMD applications,
where a single application is applied to different data sets concurrently, this model yields good
performance (Karypis, Schloegel, & Kumar, 2003; Roig et al., 2002).

The other model discussed is the TPG model. This model attempts to refine the TIG model
to capture the temporal behaviour of the parallel applications. It was used by many researchers
such as Ali and El-Rewini (1993), Barbosa, Morais, Nobrega and Monteiro (2005), Bouvry, de
Kergommeaux and Trystram (1995), Gil, Hernández, Rodriguez, Mauri and Radeva (2006),
Hwang, Chow, Anger and Lee (1989), Kitajima, Tron and Plateau (1993), Kwok and Ahmad
(1999, 1996), Ohtaki, Takahashi, Boku and Sato (2004), Topcuoglu, Hariri and Wu (2002),
Xie and Qin (2005) and Yang and Gerasoulis (1994). These researchers showed that this model
performed well for tightly coupled applications, where most of the communication events were
at the beginning or at the end of the tasks. Although to model other applications it is possible to
break tasks into smaller tasks where communication events take place at the beginning or end,
this action causes TPG to build a very big graph of the application, which in turn, increases
the complexity of the model and reduces its performance in a large scale (Roig et al., 2002).
Moreover, like the TIG, this model does not seize any parameters related to heterogeneity of
architecture, making it incompetent for use in model applications for modern clusters.

The TTIG model is the combination of two previously discussed models and it captures
the temporal behaviour of parallel applications using a newly defined metric called degree of
parallelism. This model is used in many practical algorithms as shown by Guirado, Roig and
Ripoll (2013), Kang, He and Wei (2013), Upadhyaya and Rajan (2015), and Yang, Guang,
Säntti and Plosila (2013). The results obtained by these authors confirmed that this model was
suitable for applications for which the degree of parallelism was more than 0.5 (Roig et al.,
2007, 2000, 2002). Accordingly, it is better to use previous models instead of TTIG in other
applications that have a degree of parallelism more than 0.5. Additionally, this model does
not weigh any parameter regarding heterogeneity of the distributed architectures; this makes
it unsuitable for use in new distributed clusters.

None of the models discussed reflects the heterogeneity of the distributed architecture. The
next model to be discussed, TTIGHa, is a revision of the TTIG model, which tries to capture
heterogeneity within the architecture. Therefore, this model needs to be updated with the exact
details of the architecture in which the parallel application is going to be executed (De Giusti
et al., 2007). Some studies employ this model in their modelling phase and utilise the TTIGHa
to model parallel applications (De Giusti, Chichizola, Naiouf, & De Giusti, 2008; De Giusti,
Chichizola, Naiouf, & De Giusti, 2008). However, since this model is closely dependent on
the machine’s architecture, its structure is complex and the implementations if this model
cannot be portable. In this model, the user needs to know the exact details of the architecture;
however, obtaining this information is difficult or impossible in some contexts.

The MPAHA is a complete model that attempts to capture the benefits of all the previous
models and propose a model that can be applied in different situations. This model captures
the temporal behaviour of the applications and heterogeneity of the architecture without the

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

536 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

need to know the exact details of the hardware. Successful implementations of this model
such as shown by De Giusti et al. (2009), and De Giusti, Chichizola, Naiouf, De Giusti and
Luque (2010) reflect its good performance. However, the weakness of this model is that the
application that is modelled has a lot of small volume communication in addition to some
large volume communication. Since this method admits the volume of communication, in
these circumstances, it induces overheads that reduce performance. In mapping that uses this
model, the scheduler is able to optimise large-size communication when several such events
are events are entered into the application.

The last model discussed uses the UMPa method and is called UMPa as well. Unlike
the other models, this method uses the hypergraph instead of the graphs to model parallel
applications. It has been shown that hypergraphs are more suitable than graphs for capturing
the parallel application’s characteristics (Karypis & Kumar, 2000). Although this is a new
proposed method, different studies have been done on it and various implementations are done
using this model (Balci & Akgüller, 2014; Schlag et al., 2015; Shahid, Raza, & Sajid, 2015).
This model tries to cover many features of parallel applications such as temporal behaviour and
heterogeneous architecture. The implementation of this method attests to its good performance
and scalability (Balci & Akgüller, 2014; Deveci, 2015; Deveci et al., 2015; Schlag et al., 2015;
Shahid et al., 2015). Nonetheless, the model has a weakness; tasks need to collect data, which
are produced with more than one task. In parallel applications where the data element has more
than one producer, this model cannot be used (Deveci, 2015; Deveci et al., 2015).

FUTURE WORK, A NEW MODELLING APPROACH

The main result of our observations is that the existing modelling approaches do not include all
principles and characteristics needed in modelling parallel applications. In modern parallel and
distributed computing, there are numerous situations, and improvements are to these models
to abstract the applications.

In this section, a new modelling schema will be introduced that attempts to overcome the
drawbacks of the modelling approaches. This model is an improved version of the UMPa,
which was introduced in the previous section. It has been shown that hypergraphs are better
structures for capturing the structure of parallel applications (Trifunovic & Knottenbelt, 2004).
This model benefits from the hypergraphs along with the other measures. The detailed definition
of this model is as follows. However, this is only an introduction of the model; other researchers
and authors may use this as a basis for future work. In the future, the complete version of this
modelling along with experiments will be provided.

Definition

In this model, for each parallel application, there are two sets:
1.	 Set of the tasks
2.	 Set of the volume of data elements being exchanged

On Modelling Parallel Programmes for Static Mapping

537Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Distributed machines on which the application is going to be executed have two sets:

1.	 Set of processors representing the type of each processor

2.	 Set of communication links representing the communication
delay of each link in transferring 1KB of data.

Using sets and , a symmetric matrix with size is defined for the distributed
machine as shown below:

where, represents the communication time of 1KB data between processor and processor
. Clearly, if and only if as there is no communication delay within any

processor and for every two processors, and , .
Using the sets and matrix defined above, a directed hypergraph is formed,

where:

●● is the set of nodes. Each node in this set represents a task .

●● is the set of hyperarcs. Each hyperarc in this set represents a data element .
The pins inside each hyperarc () consist of tasks that produce the data
and the tasks that consume this data. Hyperarc is an ordered pair
where and are disjointed non-empty subsets of . , which is the origin of
(), is a set of the producers of . Moreover, , which is the destination of

 (), is a set of the consumers of . The hyperarc’s flow is from
to . (For more information on the directed hypergraph and
its notations, refer to Gallo, Longo, Pallottino and Nguyen (1993))

Each node has a weight and each hyperarc has a cost. Each node has a row vector
 assigned to it as its weight. Each element of this vector

represents the execution time of the task on processor . Each hyperarc has a
cost assigned to it that shows the volume of the data element ().

Modelling

In this part, a sample application presented in Figure 1 is modelled using the proposed modelling
approach. Since this model needs information about the distributed architecture that the parallel
application is going to be executed on, a four-processor machine consisting of two types of
processor connecting by two types of communication medium is considered. Moreover, it is
considered that the execution speed of the type two processor is half that of the type one and the
communication delay of the type one medium is half that of the type two medium. The sample
structure of the considered architecture is shown in Figure 9. Clearly, when there are different
media connecting two processors, the maximum communication delay is assigned to the link.

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

538 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Figure 9. A schematic representation of a simple parallel machine

The preliminary sets are as below:

	
	
	
	

where, represents the communication delay of the type medium for 1KB of data and
.

The model for this sample application is a directed hypergraph where:

●●

●●
The presentation of this model for this application is shown in Figure 10.

Figure 10. A graphical representation of the sample parallel application modelled using the proposed
new modelling approach

On Modelling Parallel Programmes for Static Mapping

539Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

CONCLUSION

This review afforded a general study of the modelling schemes proposed in the literature
to enhance the understanding of unclear concepts by indicating the common principles and
characteristics, similarities and differences and limitation and gap analysis of the modelling
approaches. In order to help readers to make a wise selection between the models according
to what they need, they are classified and compared from different aspects. The comparison
framework is applied from theoretical and practical viewpoints that would recommend the
most suitable model(s) according to the provisions of the machine and application. To support
the conclusion drawn, four tables have been added as a summary of the evaluation. The main
result of this study is that there is no one general purpose modelling approach that can capture
all the principles and characteristics in modelling parallel applications. The study also identified
the limitations of each modelling approach.

Finally, a new modelling approach that will solve the previous drawbacks by tolerating
more types of application, allowing more metrics to measure and improving the accuracy of
the mapping is briefly introduced. Extensive investigating, studying and implementing of the
proposed model will be our future work.

ACKNOWLEDGEMENT

This research is fully funded by the Universiti Putra Malaysia under the Fundamental Research
Grant Scheme (FRGS), FRGS No: 08-02-14-1580FR.

REFERENCES
Ahmad, I., He, Y., & Liou, M. L. (2002). Video compression with parallel processing. Parallel Computing,

28(7), 1039–1078.

Ali, H., & El-Rewini, H. (1993). Task allocation in distributed systems: A split graph model. Journal of
Combinatorial Mathematics and Combinatorial Computing, 14(1993), 15–32.

Asaadi, H. R., Khaldi, D., & Chapman, B. (2016). A comparative survey of the HPC and big data
paradigms: Analysis and experiments. In Proceedings – IEEE International Conference on Cluster
Computing, ICCC (pp. 423–432). IEEE. https://doi.org/10.1109/CLUSTER.2016.21

Balci, M. A., & Akgüller, Ö. (2014a). Average weakly hyperedge domination number for a hypergraph
and actor-network application. International Journal of Modeling and Optimization, 4(5), 346.

Barbosa, J., Morais, C., Nobrega, R., & Monteiro, A. P. (2005). Static scheduling of dependent parallel
tasks on heterogeneous clusters. In Cluster Computing, 2005. IEEE International (pp. 1–8). IEEE.

Bishop, B., Kelliher, T. P., & Irwin, M. J. (1999). A detailed analysis of MediaBench. In Signal Processing
Systems, 1999. SiPS 99. 1999 IEEE Workshop (pp. 448–455). IEEE.

Bouvry, P., de Kergommeaux, J. C., & Trystram, D. (1995). Efficient solutions for mapping parallel
programs. EURO-PAR’95 Parallel Processing (pp. 379–390). Springer.

Censor, Y., Gordon, D., & Gordon, R. (2001). Component averaging: An efficient iterative parallel
algorithm for large and sparse unstructured problems. Parallel Computing, 27(6), 777–808.

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

540 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Culler, D. E., Karp, R. M., Patterson, D., Sahay, A., Santos, E. E., Schauser, K. E., … & von Eicken,
T. (1996). LogP: A practical model of parallel computation. Commun. ACM, 39(11), 78–85. https://
doi.org/10.1145/240455.240477

De Giusti, L. C., Chichizola, F., Naiouf, M., & De Giusti, A. E. (2008). Robustness analysis for the
method of assignment MATEHa. Journal of Computer Science and Technology, 8(1), 1-7.

De Giusti, L. C., Chichizola, F., Naiouf, M., Ripoll, A., & De Giusti, A. E. (2007). A model for the
automatic mapping of tasks to processors in heterogeneous multi-cluster architectures. Journal of
Computer Science and Technology, 7(1), 39-44.

De Giusti, L. C., Naiouf, M., Chichizola, F., Luque Fadón, E., & De Giusti, A. E. (2009). Dynamic
scheduling in heterogeneous multiprocessor architectures. In XV Congreso Argentino de Ciencias de
la Computación (pp. 221-230).

De Giusti, L., Chichizola, F., Naiouf, M., & De Giusti, A. (2008). Mapping tasks to processors in
heterogeneous multiprocessor architectures: The MATEHa Algorithm. In Chilean Computer Science
Society, 2008. SCCC ’08. International Conference (pp. 85–91). https://doi.org/10.1109/SCCC.2008.11

De Giusti, L., Chichizola, F., Naiouf, M., De Giusti, A., & Luque, E. (2010). Automatic mapping tasks
to cores-evaluating amtha algorithm in multicore architectures. International Journal of Computer
Science Issues, 7(2), 1-6.

Deveci, M. (2015). Load-Balancing and task mapping for exascale systems. The Ohio State University.

Deveci, M., Kaya, K., Ucar, B., & Catalyurek, mit V. (2015). Hypergraph partitioning for multiple
communication cost metrics: Model and methods. Journal of Parallel and Distributed Computing,
77, 69–83. https://doi.org/10.1016/j.jpdc.2014.12.002

El-Rewini, H., Lewis, T. G., & Ali, H. H. (1994). Task scheduling in parallel and distributed systems.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Gallo, G., Longo, G., Pallottino, S., & Nguyen, S. (1993). Directed hypergraphs and applications. Discrete
Applied Mathematics, 42(2–3), 177–201.

Gil, D., Hernández, A., Rodriguez, O., Mauri, J., & Radeva, P. (2006). Statistical strategy for anisotropic
adventitia modelling in IVUS. Transactions on Medical Imaging, IEEE 25(6), 768–778.

Guirado, F., Roig, C., & Ripoll, A. (2013). Enhancing throughput for streaming applications running on
cluster systems. Journal of Parallel and Distributed Computing, 73(8), 1092–1105.

Hui, C. C., & Chanson, S. T. (1997). Allocating task interaction graphs to processors in heterogeneous
networks. IEEE Transactions on Parallel and Distributed Systems, 8(9), 908–925. https://doi.
org/10.1109/71.615437

Hwang, J. J., Chow, Y. C., Anger, F. D., & Lee, C. Y. (1989). Scheduling precedence graphs in systems
with interprocessor communication times. SIAM Journal on Computing, 18(2), 244–257.

Kalinov, A., & Klimov, S. (2005). Optimal mapping of a parallel application processes onto heterogeneous
platform. In 19th IEEE International Proceedings on Parallel and Distributed Processing Symposium,
2005 (pp. 123b–123b). IEEE. https://doi.org/10.1109/IPDPS.2005.310

Kang, Q., He, H., & Wei, J. (2013). An effective iterated greedy algorithm for reliability-oriented task
allocation in distributed computing systems. Journal of Parallel and Distributed Computing, 73(8),
1106–1115.

On Modelling Parallel Programmes for Static Mapping

541Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Karypis, G., & Kumar, V. (2000). Multilevel k-way hypergraph partitioning. VLSI Design, 11(3), 285–300.

Karypis, G., Schloegel, K., & Kumar, V. (2003). ParMeTiS: Parallel graph partitioning and sparse
matrix ordering library–Version 3.1. University of Minnesota.

Kasahara, H., & Narita, S. (1985). Practical multiprocessor scheduling algorithms for efficient parallel
processing. Systems and Computers in Japan, 16(2), 11–19. https://doi.org/10.1002/scj.4690160202

Kitajima, J. P., Tron, C., & Plateau, B. (1993). Environments and tools for parallel scientific computing.
In J. J. Dongarra & B. Tourancheau (Eds.), Environments and tools for parallel Scientific computing
(pp. 213–228). Amsterdam, The Netherlands: Elsevier Science Publishers BV. Retrieved from http://
dl.acm.org/citation.cfm?id=165125.165280

Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing: Design and
analysis of algorithms. Redwood City, CA, USA: Benjamin-Cummings Publishing Co., Inc.

Kwok, Y. K., & Ahmad, I. (1996). Dynamic critical-path scheduling: An effective technique for allocating
task graphs to multiprocessors. Transactions on Parallel and Distributed Systems, IEEE7(5), 506–521.

Kwok, Y. K., & Ahmad, I. (1999). Benchmarking and comparison of the task graph scheduling
algorithms. Journal of Parallel and Distributed Computing, 59(3), 381–422. https://doi.org/http://
dx.doi.org/10.1006/jpdc.1999.1578

Lam, L., & Suen, C. Y. (1995). An evaluation of parallel thinning algorithms for character recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (9), 914–919.

Lastovetsky, A., & Manumachu, R. R. (2017). New Model-Based Methods and Algorithms for
Performance and Energy Optimization of Data Parallel Applications on Homogeneous Multicore
Clusters. IEEE Transactions on Parallel and Distributed Systems, 28(4), 1119–1133.

Leopold, C. (2001). Parallel and distributed computing: A survey of models, paradigms and approaches.
New York, NY, USA: John Wiley & Sons, Inc.

Lewis, T. G., & El-Rewini, H. (1992). Introduction to parallel computing. New York: Prentice-Hall.

Liu, X., Shi, H., Lu, Q., & Mao, Z. (2007). Visual task-driven based on task precedence graph for
collaborative design. In 11th International Conference on Computer Supported Cooperative Work in
Design, 2007. CSCWD 2007. (pp. 246–251). IEEE. https://doi.org/10.1109/CSCWD.2007.4281442

Long, D. L., & Clarke, L. A. (1989). Task interaction graphs for concurrency analysis. Proceedings of
the 11th International Conference on Software Engineering (pp. 44–52). New York, NY, USA: ACM.
https://doi.org/10.1145/74587.74592

Ohtaki, Y., Takahashi, D., Boku, T., & Sato, M. (2004). Parallel implementation of Strassen’s matrix
multiplication algorithm for heterogeneous clusters. In 18th International Proceedings on Parallel
and Distributed Processing Symposium, 2004. (p. 112). IEEE.

Phinjaroenphan, P., & Bevinakoppa, S. (2004). A novel algorithm for mapping parallel applications
in computational grid environments. In Proceedings of Seventh International Conference on High
Performance Computing and Grid in Asia Pacific Region, 2004. (pp. 347–350). IEEE. https://doi.
org/10.1109/HPCASIA.2004.1324056

Rico-Gallego, A. J., Lastovetsky, A., & Diaz-Martin, J. C. (2017). Model-Based estimation of the
communication cost of hybrid data-parallel applications on heterogeneous clusters. IEEE Transactions
on Parallel and Distributed Systems, 9219(99), 1–1. https://doi.org/10.1109/TPDS.2017.2715809

Sina Zangbari Koohi, Nor Asilah Wati Abdul Hamid, Mohamed Othman and Gafurjan Ibragimov

542 Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Roig, C., Ripoll, A., & Guirado, F. (2007). A new task graph model for mapping message passing
applications. Transactions on Parallel and Distributed Systems, IEEE 18(12), 1740–1753. https://
doi.org/10.1109/TPDS.2007.1117

Roig, C., Ripoll, A., Senar, M. A., Guirado, F., & Luque, E. (2000). Modelling message-passing programs
for static mapping. In Proceedings of 8th Euromicro Workshop Parallel and Distributed Processing,
2000. (pp. 229–236). IEEE. https://doi.org/10.1109/EMPDP.2000.823416

Roig, C., Ripoll, A., Senar, M. A., Guirado, F., & Luque, E. (2002). A new model for static mapping
of parallel applications with task and data parallelism. In Proceedings of International Parallel and
Distributed Processing Symposium., IPDPS 2002, Abstracts and CD-ROM (p. 8). IEEE. https://doi.
org/10.1109/IPDPS.2002.1015586

Sadayappan, P., Ercal, F., & Ramanujam, J. (1990). Cluster partitioning approaches to mapping
parallel programs onto a hypercube. Parallel Computing, 13(1), 1–16. https://doi.org/http://dx.doi.
org/10.1016/0167-8191(90)90115-P

Sanyal, S., & Das, S. K. (2005). MaTCH : Mapping data-parallel tasks on a heterogeneous computing
platform using the cross-entropy heuristic. In 19th IEEE International Proceedings on Parallel and
Distributed Processing Symposium, 2005 (p. 64b–64b). IEEE. https://doi.org/10.1109/IPDPS.2005.274

Sarkar, V. (1989). Partitioning and Scheduling parallel programs for multiprocessors. Cambridge, MA,
USA: MIT Press.

Schlag, S., Henne, V., Heuer, T., Meyerhenke, H., Sanders, P., & Schulz, C. (2015). k-way hypergraph
partitioning via n-level recursive bisection. In 2016 Proceedings of the Eighteenth Workshop on
Algorithm Engineering and Experiments (ALENEX) (pp. 53-67). Society for Industrial and Applied
Mathematics.

Shahid, M., Raza, Z., & Sajid, M. (2015). Level based batch scheduling strategy with idle slot reduction
under DAG constraints for computational grid. Journal of Systems and Software, 108, 110–133.

Tekinerdogan, B., & Arkin, E. (2012). Architecture framework for modeling the deployment of parallel
applications on parallel computing platforms. In 3rd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 2015 (pp. 185-192). IEEE.

Topcuoglu, H., Hariri, S., & Wu, M. (2002). Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3), 260–274.

Trifunovic, A., & Knottenbelt, W. J. (2004). A parallel algorithm for multilevel k-way hypergraph
partitioning. In Third International Workshop on Parallel and Distributed Computing, 2004. Third
International Symposium on/Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Networks, 2004. (pp. 114–121). IEEE.

Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer and System sciences,
10(3), 384–393. https://doi.org/10.1016/S0022-0000(75)80008-0

Upadhyaya, G., & Rajan, H. (2015). Effectively mapping linguistic abstractions for message-passing
concurrency to threads on the java virtual machine. Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(pp. 840–859). New York, NY, USA: ACM. https://doi.org/10.1145/2814270.2814289

Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the ACM, 33(8),
103–111. https://doi.org/10.1145/79173.79181

On Modelling Parallel Programmes for Static Mapping

543Pertanika J. Sci. & Technol. 26 (2): 523 - 544 (2018)

Xie, G., Zeng, G., Xiao, X., Li, R., & Li, K. (2017). Energy-efficient scheduling algorithms for real-time
parallel applications on heterogeneous distributed embedded systems. IEEE Transactions on Parallel
and Distributed Systems, 28(12), 3426-3442.

Xie, T., & Qin, X. (2005). A new allocation scheme for parallel applications with deadline and security
constraints on clusters. In IEEE International on Cluster Computing, 2005 (pp. 1-10). IEEE.

Yang, B., Guang, L., Säntti, T., & Plosila, J. (2013). Mapping multiple applications with unbounded
and bounded number of cores on many-core networks-on-chip. Microprocessors and Microsystems,
37(4), 460–471.

Yang, T., & Gerasoulis, A. (1994). DSC: Scheduling parallel tasks on an unbounded number of
processors. IEEE Transactions on Parallel and Distributed Systems, 5(9), 951–967. https://doi.
org/10.1109/71.308533

