FORMULATION OF FAT SUBSTITUTE USING PLANT-BASED FATS
SIMULATING THE PROPERTIES OF LARD

YANTY NOORZIANNA BINTI ABDUL MANAF

IPPH 2015 7
FORMULATION OF FAT SUBSTITUTE USING PLANT-BASED FATS SIMULATING THE PROPERTIES OF LARD

By

YANTY NOORZIANNA BINTI ABDUL MANAF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

FORMULATION OF FAT SUBSTITUTE USING PLANT-BASED FATS SIMULATING THE PROPERTIES OF LARD

By

YANTY NOORZIANNA BINTI ABDUL MANAF

October 2015

Chairman : Mohammed Nazrim Marikkar, PhD
Institute : Halal Products Research

Lard (LD) is a solid fat used as shortening in the manufacture of bread, cakes, cookies and other products due to its flavor and physical properties. However, the limitation of lard applications were concerned as the Muslims, Jews and vegetarians are not permissible to consume both pork and lard in any products. In addition, consumption of lard and other animal fats is not recommended since there is a growing negative perception about the implication of animal fats on human health. Therefore, lard alternative products are highly demanded from many Muslim majority countries to regularize food formulation according to the syariah compliance. If an alternative halal product is made available, it may serve as an import substitute as well as to satisfy the demand for alternative halal products. However, past studies on lard alternative fat substitute is very limited. Hence, a study was carried out to formulate lard alternative fat substitute by mixing various plant fats such as mee fat \([\text{Madhuca longifolia} (\text{MF})] \), palm stearin (PS), avocado fat (Avo), cocoa butter (CB), palm oil (PO) and soybean oil (SBO). At first, the binary (MF:PS), ternary (Avo:PS:CB) and quaternary (PO:PS:SBO:CB) (w/w) mixtures were formulated using the above mentioned fats at different ratios and their physico-chemical properties were compared to that of LD such as slip melting point (SMP), iodine value (IV), fatty acid (FA) composition using GC, triacylglycerol (TAG) composition using HPLC, thermal behavior using DSC and solid fat content (SFC) NMR. None of the plant based mixtures had a SMP and IV that were similar to that of lard. Even though there were diversity in fatty acids and triacylglycerol molecules, however, some of plant based mixtures showed similarity with some fatty acids and triacylglycerol molecules of LD. Binary (MF:PS) mixtures had higher saturated fatty acids (44.25-45.77\%) and UStSt triacylglycerol contents (38.21-44.76\%) compared to that of lard (37.38 and 26.60\%, respectively). Meanwhile, the saturated fatty acid and UStSt triacylglycerol contents of ternary (Avo:PS:CB) (36.65-38.01\% and 24.89-33.61\%, respectively) and quaternary (PO:PS:SBO:CB) (34.44-36.79\% and 22.47-24.86\%, respectively) mixtures were almost similar to lard (37.38 and 26.60\%, respectively). The cooling and heating profiles of plant based mixtures were differed from lard. However, the major melting peak of MF:PS (99:1), Avo:PS:CB (84:7:9) and all quaternary mixtures was found to be closest to that of lard at -3.59 °C. SFC profile compatibility of mixture was used as the main criteria to choose the best mixture under each set (binary, ternary and quaternary) as compared to that of lard. According to this,
the SFC of binary mixture of MF:PS (99:1), ternary mixture of Avo:PS:CB (84:7:9) and quaternary mixture of PO:PS:SBO:CB (38:5:52:5) were almost similar and the least difference to that of lard. In the next stage, these selected plant based mixtures and lard were subjected to shortening production. The formulated shortenings were compared to that of lard shortening in term of their hardness using a texture analyzer (TA), consistency using a cone penetrator, polymorphism using XRD and microstructure behavior using PLM. The hardness (26.19-28.35 g) and adhesiveness (82.46-137 g/s) of formulated plant based shortening were not significantly different (p>0.05) compared to that of lard shortening (26.67 g and 123.88 g/s, respectively). The formulated plant based shortenings and lard shortening were categorized as plastic fats based on their consistency value (319.20-326.26 g/cm²) and displayed a mixture of β’ and β-form polymorphs of which the β’-form was found to be predominant. However, the polymorphism characteristic was not affected by crystallization behavior where the number and size of crystals in the formulated plant based shortenings were dissimilar to those of lard shortening. In the final stage, the functional properties of formulated plant based shortenings and lard shortening were compared in the production of cookie dough and cookie. The dough made with formulated plant based shortenings and LD shortening had a better consistency with increase of mixing time. However, dough made with binary (337 BU) and quaternary (300 BU) mixture shortenings had a closer consistency value at 15 min of the mixing time and there were also no significant differences (p>0.05) with dough made with LD shortening (333 BU). The dough made with formulated plant based shortenings and lard shortening had a maximum cookie spread at 3 min while baking in the oven. In the meantime, there was no significant difference (p>0.05) in elasticity of dough made with binary mixture shortening (65 BU) with dough made with LD shortening (63 BU). However, there were no significant differences (p>0.05) among cookies of different types of shortenings with regard to cookie hardness (1008.12-1015.75 g), diameter (72.33-72.95 mm), thickness (9.32-9.52 mm) and cookie spread ratio (7.65-7.8 mm). With regard to color, ANOVA results showed that there were no significant differences (p>0.05) in L, a, and b values of cookies made with binary (70.43, 8.12 and 19.55, respectively) and quaternary (69.23, 7.27 and 20.96, respectively) mixture shortenings and lard shortening (69.27, 7.03 and 18.79, respectively).
FORMULASI LEMAK TUMBUHAN SEBAGAI PENGANTI BAGI MENYERUPAI CIRI-CIRI LEMAK BABI

Oleh

YANTY NOORZIANNA BINTI ABDUL MANAF

Oktober 2015

Pengerusi : Mohammed Nazrim Marikkar, PhD
Institut : Penyelidikan Produk Halal

Persamaan profil SFC digunakan sebagai kriteria utama untuk memilih campuran yang paling baik untuk setiap set (binari, ternari dan kuaternari) dalam menentukan persamanya dengan lemak babi. Berdasarkan ciri-ciri ini, SFC campuran binari MF:PS (99:1), campuran ternari Avo:PS:CB (84:7:9) dan campuran kuaternari PO:PS:SBO:CB (38:5:52:5) menunjukkan persamaan yang paling ketara dengan lemak babi. Pada tahap seterusnya, campuran lemak tumbuhan yang telah dipilih dan lemak babi digunakan dalam penghasilan shortening. Shortening yang telah diformulasi akan dibandingkan dengan shortening lemak babi dari segi kekerasan menggunakan penganalisa tekstur (TA), konsistensi menggunakan penetrasi kon, polimorfik menggunakan XRD and sifat struktur mikro menggunakan PLM. Kekerasan (26.19-28.35 g) dan kelekatan (82.46-137 g/s) shortening berasaskan lemak tumbuhan tidak menunjukkan perbezaan (p>0.05) berbanding shortening lemak babi (26.67 g dan 123.88 g/s, masing-masing). Shortening berasaskan lemak tumbuhan dan shortening lemak babi dikanalisis sebagai lemak palstik berdasarkan nilai konsistensi (319.20-326.26 g/cm²) dan terdiri daripada campuran β’ and β- polimorfik di mana β’ merupakan polimorfik utama. Walau bagaimanapun, ciri-ciri polimorfik tidak mempengaruhi sifat pengkristalan di mana bilangan dan saiz kristal adalah berbeza di antara shortening berasaskan lemak tumbuhan dan shortening lemak babi. Pada tahap terakhir, perbandingan antara shortening berasaskan lemak tumbuhan dan shortening lemak babi digunakan dalam penghasilan doh dan biskut. Konsistensi shortening berasaskan lemak tumbuhan dan shortening lemak babi adalah lebih stabil apabila diadun lebih lama. Walau bagaimanapun, tiada perbezaan secara signifikan (p>0.05) terhadap konsistensi doh yang dihasilkan daripada shortening campuran binari (337 BU), kuaternari (300 BU) dan lemak babi (333 BU) pada 15 minit pengadunan. Pengembangan biskut adalah maksimum pada 3 min sewaktu dibakar di dalam oven bagi doh yang dihasilkan daripada shortening berasaskan lemak tumbuhan dan shortening lemak babi. Pada masa yang sama, kekenyalan doh yang dihasilkan daripada shortening campuran binari (65 BU) dan shortening lemak babi (63 BU) tidak menunjukkan perbezaan secara signifikan (p>0.05). Walau bagaimanapun, biskut yang diperbuat daripada shortening yang berbeza tidak menunjukkan perbezaan secara signifikan (p>0.05) terhadap kekerasan (1008.12-1015.75 g), diameter (72.33-72.95 mm), ketebalan (9.32-9.52 mm) dan nisbah pengembangan biskut (7.65-7.8 mm). Dari segi warna, nilai ANOVA menunjukkan tiada perbezaan secara signifikan (p>0.05) bagi nilai L, a, dan b bagi biskut yang dihasilkan daripada shortening campuran binari (70.43, 8.12 and 19.55, masing-masing), kuaternari (69.23, 7.27 and 20.96, masing-masing) dan lemak babi (69.27. 7.03 and 18.79, masing-masing).
ACKNOWLEDGEMENTS

Alhamdulillah thank you to Almighty God Allah for His mercies and blessings. I would like to express my most profound and sincere appreciation to my supervisor, Dr. Mohammed Nazrim Marikkar from the Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences for his guidance, advice, encouragement and understanding. His cooperation and support are always highly appreciated. My appreciation also goes to my co-supervisors Dr. Miskandar bin Mat Sahri and Prof. Dr. Shuhaimi bin Mustafa for their encouragement, opinion, comments and valuable moral support.

A special thanks to Dr. Ir. Filip Van Bockstaele and Prof. Dr. Koen Dewettinck from Department of Food Quality and Food Safety, Ghent University, Belgium for giving me the opportunity to use their lab. I would also like to thank my colleagues and staffs from Halal Research Products Institute UPM, The Malaysian Agricultural Research and Development Institute (MARDI), Malaysian Palm Oil Board (MPOB) and University of Ghent, Belgium for their help throughout the course of this project.

I would like to take this opportunity to express my warmest gratitude to my parents, husband, son, sister, brother in law and niece for their encouragement, support and love.
I certify that a Thesis Examination Committee has met on 21 October 2015 to conduct the final examination of Yanty Noorzianna binti Abdul Manaf on her thesis entitled "Formulation of Fat Substitute using Plant-Based Fats Simulating the Properties of Lard" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Janna Ong binti Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abdulkarim Sabo Mohammed, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Fereidoon Shahidi, PhD
Professor
Memorial University of Newfoundland
Canada
(External Examiner)

[Signature]

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 January 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohammed Nazrim Marikkar, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Shuhaimi bin Mustafa, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Miskandar bin Mat Sahri, PhD
Head
Food Technology and Nutrition Unit
Malaysian Palm Oil Board
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Yanty Noorzianna binti Abdul Manaf , (GS27505)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Mohammed Nazrim Marikkar, PhD

Signature: __
Name of Member of Supervisory Committee: Shuhaimi bin Mustafa, PhD

Signature: __
Name of Member of Supervisory Committee: Miskandar bin Mat Sahri, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Lard</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Physico-chemical properties of lard</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Vegetable fats and oils</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Mee (Madhuca longifolia) fat</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Avocado fat</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Palm oil</td>
<td>8</td>
</tr>
<tr>
<td>2.3.4 Palm stearin</td>
<td>8</td>
</tr>
<tr>
<td>2.3.5 Cocoa butter</td>
<td>9</td>
</tr>
<tr>
<td>2.3.6 Soybean oil</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Fats and oils mixing/blending to formulate shortenings</td>
<td>10</td>
</tr>
<tr>
<td>2.5 Shortening</td>
<td>11</td>
</tr>
<tr>
<td>2.6 Types of shortening</td>
<td>11</td>
</tr>
<tr>
<td>2.6.1 Plasticized semisolid shortening</td>
<td>11</td>
</tr>
<tr>
<td>2.6.2 Fluid shortening</td>
<td>12</td>
</tr>
<tr>
<td>2.6.3 Powdered and flaky shortening</td>
<td>12</td>
</tr>
<tr>
<td>2.7 Application of shortenings in cookies</td>
<td>12</td>
</tr>
<tr>
<td>2.8 Analyses of fats and oils</td>
<td>13</td>
</tr>
<tr>
<td>2.8.1 Fatty acid (FA) composition</td>
<td>13</td>
</tr>
<tr>
<td>2.8.2 Triacylglycerol (TAG) composition</td>
<td>14</td>
</tr>
<tr>
<td>2.8.3 Solid fat content (SFC)</td>
<td>14</td>
</tr>
<tr>
<td>2.8.4 Thermal behavior by differential scanning calorimetry</td>
<td>14</td>
</tr>
<tr>
<td>2.8.5 Polymorphism</td>
<td>15</td>
</tr>
<tr>
<td>2.8.6 Microstructure</td>
<td>16</td>
</tr>
<tr>
<td>2.8.7 Consistency and Hardness</td>
<td>16</td>
</tr>
<tr>
<td>3 COMPARISON OF PHYSICO-CHEMICAL COMPOSITION AND THERMAL ANALYSIS OF</td>
<td>17</td>
</tr>
<tr>
<td>PLANT BASED FATS AND LARD</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Materials</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Methods</td>
<td>18</td>
</tr>
</tbody>
</table>

x
3.3.1 Fat extraction 18
3.3.2 Determination of slip melting point (SMP) 18
3.3.3 Determination of iodine value (IV) 18
3.3.4 Determination of FA composition 18
3.3.5 Determination of TAG composition 19
3.3.6 Thermal analysis by DSC 19
2.3.7 Determination of SFC 19
2.3.8 Statistical analysis 20
3.4 Results and Discussion 20
3.4.1 SMP and IV 20
3.4.2 FA composition 20
3.4.3 TAG composition 21
3.4.4 Thermal characteristics 23
3.4.5 Solidification behavior 25
3.5 Conclusion 26

4 COMPARISON OF THE COMPOSITION AND THERMAL PROPERTIES OF LARD AND VARIOUS MIXTURE OF SELECTED PLANT FATS 27
4.1 Introduction 27
4.2 Materials 28
4.3 Methods 28
4.3.1 Preparation of plant based fat mixtures 28
4.3.2 Experimental design and fat blend optimization 28
4.4 Results and Discussion 29
4.4.1 SMP and IV 29
4.4.2 FA composition 32
4.4.3 TAG composition 35
4.4.4 Thermal characteristics 40
4.4.5 Solidification behavior 46
4.5 Conclusion 51

5 COMPARISON OF FUNCTIONAL PROPERTIES OF FORMULATED PLANT BASED SHORTENINGS AS A LARD SHORTENING SUBSTITUTE 53
5.1 Introduction 53
5.2 Materials 53
5.3 Methods 54
5.3.1 Mixtures preparation 54
5.3.2 Preparation of shortening 54
5.3.3 Hardness, compression force and adhesiveness 54
5.3.4 Consistency evaluation 54
5.3.5 Determination of microstructure 55
5.3.6 Crystal polymorphism 55
5.4 Results and Discussion 55
5.4.1 Hardness of shortenings 55
5.4.2 Consistency of shortenings 56
5.4.3 Crystal morphology 57
5.4.4 Polymorphism 58
5.5 Conclusion 60
6 COMPARISON OF LARD SHORTENING AND FORMULATED PLANT BASED SHORTENINGS ON COOKIE DOUGH PROPERTIES AND COOKIES QUALITY

6.1 Introduction 61
6.2 Materials 61
6.3 Methods 62
 6.3.1 Cookie dough making 62
 6.3.2 Evaluation of consistency and elasticity of cookie dough 62
 6.3.3 Evaluation of dough hardness 62
 6.3.4 Evaluation of dough setting time 62
 6.3.5 Cookie preparation 63
 6.3.6 Evaluation of cookie width, thickness and spread ratio 63
 6.3.7 Evaluation of cookie surface color 63
 6.3.8 Evaluation of cookie hardness 63
6.4 Results and Discussion 63
 6.4.1 Cookie dough properties 63
 6.4.2 Cookie properties 64
6.5 Conclusion 69

7 GENERAL DISCUSSION 70

8 CONCLUSION AND RECOMMENDATIONS FOR FUTURE 73

REFERENCES 74
APPENDICES 94
BIO DATA OF STUDENT 99
LIST OF PUBLICATIONS 100
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
</tr>
<tr>
<td>14</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mee (Madhuca longifolia) fruits</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Mee (Madhuca longifolia) seeds</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>The crystalline form of fats (alpha, beta-prime and beta) influence its</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>melting point and texture</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cooling thermograms of plant based fats and LD</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Heating thermograms of plant based fats and LD</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>SFC of plant based fats and LD</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>DSC cooling thermograms of LD (A), binary mixtures of MF:PS</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(B=99.5:0.5; C=99:1; D=98:2), MF (E) and PS (F)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DSC heating thermograms of LD (A), binary mixtures of MF:PS</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(B=99.5:0.5; C=99:1; D=98:2), MF (E) and PS (F)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DSC cooling thermograms of LD (A), ternary mixtures of Avo:PS:CB</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(B=88:7:5; C=86:7:7; D=84:7:9), Avo (E), CB (F) and PS (G)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DSC heating thermograms of LD (A), ternary mixtures of Avo:PS:CB</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>(B=88:7:5; C=86:7:7; D=84:7:9), Avo (E), CB (F) and PS (G)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DSC cooling thermograms of LD (A), quaternary mixtures of PO:PS:SBO:CB</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>*(B=38:5:52:5; C=36:5:54:5; D=34:5:56:5), PO (E), PS (F), SBO (G) and CB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(H)*</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DSC melting thermograms of LD (A), quaternary mixtures of PO:PS:SBO:CB</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>*(B=38:5:52:5; C=36:5:54:5; D=34:5:56:5) PO (E), PS (F), SBO (G) and CB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(H)*</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SFC profiles of LD, MF, PS and MF:PS mixtures</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>SFC profiles of LD, Avo, PS, CB and Avo:PS:CB mixtures</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>SFC profiles of LD, PO, PS, SBO, CB and PO:PS:SBO:CB mixtures</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>Crystal distribution of a) LD, b) binary mixture, c) ternary mixture and</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>d) quaternary mixture shortenings at magnification of 10x10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Diffractogram of shortenings LD and formulated plant-based shortenings</td>
<td>59</td>
</tr>
<tr>
<td>18</td>
<td>Effect of different types of shortening on cookie diameter while baking</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

°C Degree celcius
a Redness
ANOVA Analysis of variance
AOAC Association of analytical communities
AOCS American Oil Chemists’ Society
Avo Avocado fat
b Yellowness
C12:0 Lauric acid
C14:0 Myristic acid
C16:0 Palmitic acid
C16:1 Palmitoleic acid
C18:0 Stearic acid
C18:1 Oleic acid
C18:2 Linoleic acid
C18:3 Linolenic acid
C20:0 Arachidic acid
CB Cocoa butter
CBE Cocoa butter equivalents
CBS Cocoa butter substitute
CHD Coronary heart disease
cm Centimeter
DSC Differential scanning calorimetry
DSC Differential scanning calorimeter
FAME Fatty acid methyl ester
FAO Food and Agricultural Organization
g Gram
GLC Gas liquid chromatography
g/s Gram per second
g/cm² Gram per centimeter square
HPLC High performance liquid chromatography
IV Iodine value
L Lightness
LD Lard
LLL Trilinoleoyl glycerol
LLLn Dilinoleoyl-3-linoleneoyl glycerol
MF Mee (Madhuca longifolia) fat
mL/min Milliliter per minute
MLCT Medium-and long-chain TAGs
mm Millimeter
MPOB Malaysian Palm Oil Board
MUFA Monounsaturated fatty acid
OLL 1-oleoyl- dilinoleoyl glycerol
OOL Dioleoyl-3-linoleoyl glycerol
OOO Trioleoyl glycerol
PDAGS Stearin fraction of palm-based diacylglycerol
PLL 1-palmitoyl-dilinoleoyl glycerol
PLM Polarized light microscopy
PMF Palm mid fraction
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNMR</td>
<td>Pulse nuclear magnetic resonance</td>
</tr>
<tr>
<td>PO</td>
<td>Palm oil</td>
</tr>
<tr>
<td>POL</td>
<td>Palmitoyl-oleoyl-linoleoyl glycerol</td>
</tr>
<tr>
<td>POO</td>
<td>1-palmitoyl-dioleoyl glycerol</td>
</tr>
<tr>
<td>PORAM</td>
<td>Palm Oil Refiners Association of Malaysia</td>
</tr>
<tr>
<td>PPL</td>
<td>Dipalmitoyl-3-linoleoyl glycerol</td>
</tr>
<tr>
<td>PPO</td>
<td>Dipalmitoyl-3-oleoyl glycerol</td>
</tr>
<tr>
<td>PPP</td>
<td>Tripalmitoyl glycerol</td>
</tr>
<tr>
<td>PPS</td>
<td>Dipalmitoyl-3-stearoyl glycerol</td>
</tr>
<tr>
<td>PS</td>
<td>Palm stearin</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>RID</td>
<td>Refractive index detector</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>SBO</td>
<td>Soybean oil</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SFC</td>
<td>Solid fat content</td>
</tr>
<tr>
<td>SHSs</td>
<td>Sunflower hard stearins</td>
</tr>
<tr>
<td>SMP</td>
<td>Slip melting point</td>
</tr>
<tr>
<td>SOO</td>
<td>1-stearoyl-dioleoyl glycerol</td>
</tr>
<tr>
<td>SOS</td>
<td>1,3-distearoyl glycerol</td>
</tr>
<tr>
<td>SPO</td>
<td>Stearoyl-palmitoyl-oleoyl glycerol</td>
</tr>
<tr>
<td>SSS</td>
<td>Tristearoyl glycerol</td>
</tr>
<tr>
<td>StStSt</td>
<td>Trisaturated</td>
</tr>
<tr>
<td>TAG</td>
<td>Triacylglycerol</td>
</tr>
<tr>
<td>USA</td>
<td>United State of America</td>
</tr>
<tr>
<td>USFA</td>
<td>Unsaturated fatty acid</td>
</tr>
<tr>
<td>UStSt</td>
<td>Disaturated</td>
</tr>
<tr>
<td>UUUSt</td>
<td>Diunsaturated</td>
</tr>
<tr>
<td>UUUU</td>
<td>Triunsaturated</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight per weight</td>
</tr>
<tr>
<td>WAXD</td>
<td>Wide angle X-ray diffraction</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>β'</td>
<td>Beta prime</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Animal fats are widely used as food ingredient for a long time. Apart from being used as a medium of deep frying and meat flavors, animal fats were also used as shortening in bakery products due to their availability and lower cost. Lard (LD) and tallow are well known animal fat with similar characteristics in terms of high saturated fatty acids (SFA). LD has been used in food applications in many countries in Europe (Antonietta et al., 2004), America (deMan et al., 1991) and in Asia such as China, Taiwan, Thailand, Cambodia and Vietnam (Omar et al., 2010; Hsu and Yu, 2002; Morell and Enig, 2000). The main reason for this trend relates to its flavor and superior performance characteristics during food processing.

Although the use of LD is already popular in the food culture of certain ethnic groups, the consumption of LD is prohibited for some communities based on religious believes. Particularly, Islamic and Orthodox Jewish religions command the prohibition of consumption of both pork and LD in any products (Regenstein et al., 2003; Montiel-Sosa et al., 2000; Rashood et al., 1996). Therefore, LD adulteration in food products is a concern for Muslim and Jewish people. Most of the manufacturers want to reduce production costs and to increase the amount of raw material because of high demand for some products which could be the main reason for adulteration. However, the fraudulent food claim, could lead to a loss of thousands even billions toward food industries, if they do not implement the right halal practices as being told by the advisory or authoritative bodies. In addition, if there is any contamination or non-halal substance detected in the product, it may be difficult to rebuild the trust and confidence among consumers. In this context, detection and estimation of LD adulteration in fats and oils has become an important aspect in food quality control due to growing public concern in many parts of the world. Therefore, the development of instrumental and analytical methods for halal authentication and detection was reported by several research groups (Rohman et al., 2011; Juliana et al., 2011; Mansor et al., 2011; Marina et al., 2010; Marikkar et al., 2005; Che Man et al., 2005).

In addition to religious prohibition, medical reports of unfavorable health effects of LD also prompted the general public to be more vigilant about pork and LD contamination in food products (Rashood et al., 1996). According to previous studies, pork fat or LD could contribute to heart disease, obesity, hypertension and colon cancer (Wang et al., 2013; Chicco et al., 2008; Sinkeldam et al., 1990; Rogers et al., 1986). Owing to this, there has been a growing trend to formulate fat substitutes for the replacement of LD in many products (Rodrigues-Capena et al., 2011; Degado-Pado et al., 2011; Ospina-E et al., 2010; Choi et al., 2010; Serivini et al., 2003; Muguerza et al., 2003). However, there is still much potential to further research and innovation, especially for formulating halal alternative fats for LD using locally available plant lipids.
If modifications to fats and oils from plant sources could be done to mimic the physical properties of LD, it would be worthwhile. Blending is the simplest way to modify the physical properties of fats where it could be a mixture of different oils and fats (Siddique et al., 2010; Miskandar et al., 2005). Blending is also generally preferred to other modification techniques because it is less costly and the desired consistency can be reached by choosing the right mixture ratios (Nusantoro et al., 2013). The fat substitute simulating the properties of LD could be done by mixing several fats and oils where the raw material should come from halal sources. Thus, plant lipids could be selected as the potential sources as they are usually not prohibited under halal laws.

In this study, fats and oils from plant sources such as oil palm (PO and PS), cocoa (CB), avocado (Avo), mee seed \textit{Madhuca longifolia} (MF) and soybean (SBO) have been chosen for blending. PS and CB are categorized as hard fats. PO, Avo, and MF are categorized as semisolid fats while SBO is categorized as liquid oil. In order to obtain the simulating characteristics of LD, mixing of fats and oils from different plant sources can be achieved in the form of binary [mee fat:palm stearin (MF:PS)], ternary [avocado fat:palm stearin:cocoa butter (Avo:PS:CB)] and quaternary [palm oil:palm stearin:soybean oil:cocoa butter (PO:PS:SBO:CB)] mixtures at different ratios. The comparisons of physical properties of LD and the formulated plant based fat mixtures could be done by evaluating them with respect to slip melting point (SMP), iodine value (IV), solid fat content (SFC) and thermal properties. Besides these, the fatty acid (FA) and triacylglycerol (TAG) compositional analyses would also be carried out as they are key to understand the physical behavior of the formulated plant based fat substitutes. The selection of the most suitable mixture from each fat category namely binary, ternary and quaternary mixtures would be the preliminary step of the investigation. The selected plant based mixtures shall be processed into shortenings in the next step to cross-check their compatibility to LD shortening in terms of their physical characteristics, crystal behavior and polymorphism. In the final stage, the formulated plant based shortenings and LD shortening can be applied on to the preparation of cookies to find out their functional properties in actual product formulation.

\subsection*{1.1 Problem statements}

\begin{enumerate}
\item Whether it is possible to formulate fat substitutes for lard using binary, ternary and quaternary mixtures of selected plant fats
\item Whether the formulated plant-based fat substitutes for lard could really work as a fat ingredient in the preparation of good quality cookies
\end{enumerate}

\subsection*{1.2 Hypothesis}

It may be possible to formulate fat substitutes to simulate the properties of lard using binary, ternary and quaternary mixtures of selected plant fats.
1.3 Research objective

Hence, the overall objectives of this study were to formulate plant based fat substitutes in simulating the properties of LD as halal alternatives. The specific objectives of this research are:

i. To formulate binary, ternary and quaternary mixtures of selected plant fats

ii. To compare the composition and physico-chemical properties of the formulated mixtures with those of LD

iii. To compare the functional properties of LD shortening with those of the formulated plant based shortenings

iv. To compare the cookie dough properties and cookie quality prepared from LD shortening with those using formulated plant based shortenings
REFERENCES

medium- and long-chain triacylglycerols (MLCT)-enriched bakery shortening. *Food and Bioprocess Technology* 4: 587–596.

Gittlesen, T., Svensson, I., Aldercreutz, P., Mattiason, B. and Nilsson, J. 1995. High oleic acid rapeseed oil as starting material for the production of confectionary

Ramadan, M.F., Sharanabasappa, G., Parmjyothi, S., Seshagiri, M. and Moersel, J.T. 2006. Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit seeds of butter cup tree (*Madhca longifolia*). *European Food Research and Technology* 222: 710–718.

BIODATA OF STUDENT

Yanty Noorzianna binti Abdul Manaf was born on the 20th of August 1978 in Penang, Malaysia. She attended Sekolah Kebangsaan Simpor as her and primary school and obtained her secondary education in Sekolah Menengah Sultan Abdul Halim. In 1996, she attended Chermai Jaya Matriculation Centre in Kota Samarahan, Sarawak. In 1993, she enrolled as an undergraduate student in Universiti Putra Malaysia and graduated three years later with Bachelor Science in Biotechnology. She obtained her Master Science Degree (Food Biotechnology), also from UPM, on her research entitled “Characterisation of Oils and Fats from Seeds of Several Malaysian Fruits and Their Enzymatic Interesterification”. In 2010, she joined Halal Products Research Institute, UPM as a Graduate research assistant pursuing her degree of Doctor of Philosophy.
LIST OF PUBLICATIONS

Publications

Proceedings/Conferences

Research Awards Obtained

Yanty, N.A.M., Marikkar, J.M.N. and Ghazali, H.M. Mee fat from Madhuca longifolia seeds as raw material for halal alternative fats. Research, Innovation and Invention, July 20-22, 2010, UPM, Malaysia. –Silver medal

Yanty, N.A.M., Marikkar, J.M.N., Nor Nadiha, M.Z. and Che Man, Y.B. Identity characteristics of lard for its detection in sunflower oil. Research, Innovation and Invention, July 19-21, 2011, UPM, Malaysia. –Bronze medal

UNIVERSITI PUTRA MALAYSIA
STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT
ACADEMIC SESSION : ______________________

TITLE OF THESIS / PROJECT REPORT :
FORMULATION OF FAT SUBSTITUTE USING PLANT-BASED FATS SIMULATING THE
PROPERTIES OF LARD

NAME OF STUDENT : YANTY NOORZIANNA BINTI ABDUL MANAF

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (✓)
☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).
☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).
☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from __________ until __________
(date) (date)

Approved by:

(Signature of Student)
New IC No/ Passport No.:
Date :

(Signature of Chairman of Supervisory Committee)
Name:
Date :

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]