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Induction motors are one of the extensively used machines in many industries due to 

their high reliability and simple structure. However, owing to the high stresses that 

happen during operation, induction motors are subjected to unavoidable failures. Among 

numerous inevitable burdens happening in different part of induction machines, rotor 

faults are considerable priority as they cause precipitate deterioration and, secondary 

failures that lead to an unexpected shutdown and result in time-consuming and 

expensive maintenance. Therefore, intelligent fault diagnosis of induction machines is 

an ongoing research topic because of the complexity of the issue as well as progress in 

signal processing. As a sensitive signal processing wavelet-based analysis is 
implemented and some difficulties like, lack of frequency localization, selection of best 

basis, and fault index are addressed in this study. 

 

Intelligent methods have concerted on sensing precise failure modes and recommending 

intelligent maintenance decisions based on the signatures collected through signal 

processing. Therefore, an advanced signal processing must be considered to derive the 

fault signature accomplish with a powerful decision-making technique. In this thesis, 

intelligent fault detection and severity classification of broken rotor bars in induction 

motor is carried out using the secondary data of stator current. The stator current was 

decomposed using wavelet packet decomposition. Then, the most precious faulty sub 

bands were identified after spectrum analysis. Next step to assist the most relevant 

feature extraction was the definition of mother wavelet function. In order to alleviate the 
time-variant characteristics of the wavelet packet transform coefficients, statistical 

parameters of wavelet packet coefficients are calculated. Some combinations of features 

extracted from wavelet packet signature analysis could design neural network trained, 

cross validated and tested input vector to not only elucidate the faultless from faulty 

condition, but also classify the number of broken rotor bars. 

 

As an effective signal processing, the time-scale characteristic of wavelet packet 

transform fused with the frequency resolution of Fast Fourier Transform named as 

wavelet packet signature analysis. This transformation technique is suitable for locating 
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certain frequency components of a signal superimposed to fundamental frequency and 

associated with broken rotor bars. Then, the practically identical mother wavelet, db44, 

was selected based on standard deviation of wavelet packet coefficients. To make an 

intelligent decision without the presence of expert, in this research simple multi-layer 

perceptron NN-based fault classifier is proposed for fault diagnosis which is 

inexpensive, reliable, and non-invasive by employing best combination of wavelet 
statistical parameter after a simple feature selection technique as the input vector. The 

fault detection and classification algorithm is carried out under the unknown dataset and 

the off-line testing results with 98.8% classification accuracy indicate good reliability of 

the proposed method in identifying broken rotor bars severity.  
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Motor aruhan adalah salah satu mesin yang digunakan secara meluas dalam pelbagai 

industri kerana kebolehpercayaan yang tinggi dan strukturnya yang mudah. Walau 

bagaimanapun, oleh kerana tekanan yang tinggi yang berlaku semasa operasi, motor 

induksi mudah terdedah kepada kegagalan yang tidak dapat dielakkan. Dalam banyak 

kegagalan yang sering berlaku di bahagian yang berbeza dari mesin induksi, kerosakan 

pada pemutar adalah jenis kerosakan yang paling kritikal kerana ia menyebabkan 

mendakan kemerosotan dan kegagalan kedua yang boleh membawa kepada penutupan 

yang tidak dijangka dan kesannya memakan masa yang panjang untuk pembaikan pada 
masa sama kos penyelenggaraan yang tinggi. Oleh itu, ‗intelligent fault‘ diagnosis mesin 

induksi adalah satu topik penyelidikan yang masih aktif kerana kerumitan kerosakan 

tersebut di samping kemajuan dalam pemprosesan isyarat. Isyarat sensitif berasaskan 

wavelet pemprosesan analisis dilaksanakan dan beberapa masalah seperti kekurangan 

kekerapan penyetempatan, pemilihan terbaik asas, dan indeks kesalahan ditangani dalam 

kajian ini. Kaedah Pintar telah bersepadu terhadap penderiaan mod kegagalan tepat dan 

mencadangkankeputusan penyelenggaraan pintar berdasarkan tandatangan yang 

dikumpulkan melalui pemprosesan isyarat. 

 

Oleh itu, kemajuan pada pemprosesan isyarat perlu dipertimbangkan agar dapat 

mengenalpasti kesalahan-kesalahan dengan menggunakan teknik khas dan terbaik.Di 

dalam tesis ini, kesalahan pintar pengesanan dan klasifikasi tahap kerosakan bar pemutar 
di dalam motor induksi dijalankan menggunakan data sekunder pemegun semasa. 

Pemegun semasa diekstrak menggunakan paket ombak penguraian. Seterusnya sub band 

rosak telah dikenal pasti selepas melalui analisis spektrum. Langkah seterusnya untuk 

membantu pengekstrakan ciri yang paling relevan ialah definisi ombak ibu fungsi. 

Dalam usaha untuk mengurangkan ciri-ciri masa-varian paket ombak mengubah pekali, 

parameter statistik pekali paket ombak dikira. Diantara gabungan ciri yang diekstrak 

daripada ombak analisis tandatangan paket ialah kebolehan mereka bentuk neural 

rangkaian yang terlatih, pengesahan dan vektor input diuji untuk bukan sahaja 

menjelaskan tahap kritikal kerosakan daripada keadaan rosak, tetapi juga 
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mengklasifikasikan bilangan bar pemutar yang patah. 

 

Sebagai pemprosesan isyarat yang berkesan, ciri-ciri masa skala paket ubahan wavelet 

disatukan dengan dengan resolusi frekuensi Fourier Transform Fast dinamakan sebagai 

tandatangan paket ombak analisis. Teknik transformasi ini sesuai bagi mengesan 

komponen frekuensi tertentu isyarat yang ditekankan kepada frekuensi asas dan yang 
berkaitan dengan bar pemutar patah. Kemudian, ombak ibu, db44, telah dipilih 

berdasarkan sisihan piawai ombak pekali paket. Untuk membuat keputusan yang bijak 

tanpa kehadiran pakar , kesalahan pengelas berasaskan NN yang mudah adalah 

dicadangkan untuk diagnosis kerosakan yang dapat dilakukan dengan 

murah,kebolehpercayaan yang tinggi, dan tidak invasif dengan menggunakan kombinasi 

terbaik ombak parameter statistik selepas teknik pemilihan ciri semudah vektor input. 

Kesalahan pengesanan dan pengelasan algoritma yang dijalankan di bawah set data yang 

tidak diketahui dan di luar talian telah menghasilkan 98.8% ketepatan .Ini menunjukkan 

kebolehpercayaan yang tinggi bagi kaedah yang dicadangkan di dalam mengenalpasti 

tahap kerosakan pada bar patah pemutar.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The initiation of induction motors by Galileo Ferraris in 1885 and further improvement 

by Nikola Tesla in 1888 provided industrial process engineers with a simple and rugged 

mechanism for electromechanical conversion [1]. Induction motors are basic segments 

in commercially accessible equipment and industrial procedures because of being cost 

effective and their robust performance. Among distinctive sorts of electric engines, more 

than 60% of the electrical energy produced is because of induction motors contribution 

[2]. In Europe, it has been reported that 87% of 96.2% AC motors shipment are devoted 

to three-phase induction motors [2]. Electric motors have transformed the form of 

human living and shaped in the convenient lifestyle. In every item that we consume or 

utilize these days or in any facilities that we profit, there is an electric motor involved 

[3]. Therefore, electrical machine condition monitoring assumes a critical part in modern 

industries. 

An AC induction motor consists of two key parts: rotor and stator. The rotor core is 

affixed on a steel shaft to form a rotor congregation. The stator is mounted in the middle 

of  the frame and the rotor turns interior the stator. There is a slight air gap separating 

rotor from the stator. The name induction motor is used because there is no direct 

physical and electric connection between stator and rotor and electricity is induced in the 

rotor by magnetic induction rather than electric connection [4]. Nevertheless, induction 

machines are subjected to the unavoidable burdens in the practical applications. 

The rotor is subjected to different types of tensions that severely affect its normal 

condition and consequently create failures in it. In addition, localized rotor heating 

around the broken bars may progressively break the adjacent bars and the motor will be 

finally out of service. Rotor bar breakages rarely cause immediate failures. However, it 

can become quite a dangerous fault since no clear symptom is reflected over the 

machine behavior in the early stages. In the case with enough broken rotor bars, the 

motor possibly will not start as it could not develop sufficient accelerating torque [5]. 

Nonetheless, the presence of broken rotor bars precipitates deterioration in other 

components that can lead to an unexpected breakdown of the machine and result in time-

consuming and expensive maintenance. Therefore, detection of broken bar faults is a 

crucial issue. 

It is well known that fault detection in induction machine at an early stage may not only 

lessen maintenance time and minimize breakdowns but also prevent propagation of the 

fault or slow down its escalation to severe degrees. Therefore, a health monitoring or 

intelligent condition-based monitoring program which can diagnose such a failure of 

electrical machines has received extensive consideration for many years. Accordingly, a 

signal acquired from one of the prevalent condition monitoring techniques need to be 
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evaluated through an advanced signal processing method to generate fault-representative 

features for the purpose of decision making. Signal processing is a mathematical 

transformer used for fault detection and diagnostics, whose aim is to convert the raw 

complex signal to a more understandable signal which enhances the dominant features 

of fault signature for decision-making. The three major categories of the signature 

extraction techniques for the fault diagnosis are time domain, frequency domain and 

time-frequency domain techniques [6].  

Time domain-feature extraction techniques include statistical methods, time 

synchronous averaging methods and other methods. The most frequently used time 

domain statistical features are root-mean-square, skewness, kurtosis, crest factor and so 

forth. Time domain features are useful for machinery fault diagnosis, especially for 

short-duration feature detecting. However, clear symptoms of the fault still may not be 

directly visible in the time domain. Literally, each fault is associated with the presence 

of a explicit harmonic in the spectrum. The frequency domain is another signal 

processing tool which describes the frequency information of a signal and extracts the 

energy of a particular frequency component. Motor Current Signature Analysis (MCSA) 

was extensively used based on the monitoring of the sideband components at   
  , where    is the fundamental frequency and   is the slip [7][8]. When the 

waveforms examined are stationary or periodical, feature extraction using Fourier 

transform produces good results, but they are not suitable for non-stationary signals. 

In an effort to correct this insufficiency, as reported in Wavelet Toolbox 
TM

, Dennis 

Gabor adapted the Short-Time Fourier Transform (STFT). The difficulty with STFT is 

that the information obtained with limited precision is determined by the size of the 

window. This means the chosen time window with a particular size is same for all 

frequencies. Therefore, the time and frequency resolutions cannot increase 

simultaneously using STFT. Experimental diagnostic via spectral analysis is more 

complicated due to the subsequent reasons [9]: 

 the precise measurement of slip and fundamental frequency,

 the simultaneous presence of numerous transitory and other various kinds of

non-stationary characteristics such as noises, load torque fluctuations, voltage

oscillations, and abrupt changes, and

 discrimination of several faults frequency span for different categories of faults

may exist at the same time [10].

Hitherto, many non-stationary signal processing methods have been suggested in the 

literature to those published after the 1990s [11]. A straight forward solution for these 

difficulties is Discrete Wavelet Transform (DWT), because of zooming and adaptive 

windowing capability. Frequency resolution and time localization nature of time-scale 

analysis have been used to extract and describe a more precise behaviour of the stator 

current signal which is widely used for electrical machine diagnosis [10]. However, 

DWT iteratively decomposes the approximation signals of lower frequencies but does 
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not further work on the detail signals of higher frequencies. Therefore, due to the coarse 

decomposition of the high-frequency components in the signal, the resolution in the 

high-frequency region is quite poor. As a subtle multi-resolution analysis algorithm, 

Wavelet Packet Transform (WPT) can multi-decompose the signal into multi-levels and 

provide the different frequencies to obtain the localized impulse signals.  

1.2 Problem Statement 

According to the background, the specific issue is designing and developing a sensitive 

signal processing with a great concern of no-load condition. As a sensitive signal 

processing method, wavelet transform is a time-scale representation of a signal. 

Moreover, most time-varying machine operational conditions lead to non-stationary 

characteristics which contain rich information about machinery health condition. The 

way wavelet analysis localizes signal‘s information in the time–scale plane makes it 

especially more advisable in processing the non-stationary signals [12]. Therefore, 

conclusive fault features can be extracted from these signals for early identification of 

faults through the identification of time variant features superimposed at different scales. 

However, because wavelet transform is a time-scale domain technique, it does not 

provide frequency information on characteristic feature components. Consequently, one 

of the important point which needs to be affirmed in wavelet packet-based techniques is 

the fact that frequency order is not the same as the node order due to down sampling 

[13] [14]. Moreover, in order to choose the most appropriate subset instead of 

investigating all wavelet packet coefficients, care must be taken to manage the 

computational complexity, especially in practical circumstances. The next important 

point is to determine which mother wavelet has more distinctive wavelet coefficients for 

different conditions in fault identification as an ill-selected base may return false 

diagnosis result. 

The next challenge is extracting the most appropriate feature indices which play an 

essential role in accomplishment of the performance of intelligent condition monitoring. 

In contrast to many researches in which only one feature extracted , this research mainly 

focuses on finding perfectly permissible features for broken rotor bar fault detection , in 

order to examine the arbitrary working conditions with focus on no-load case [15]. 

Different topologies of neural networks have been exploited to solve complex problems 

in various areas of almost all sophisticated fault classification tools. However, a tradeoff 

exists so that increasing the complexity the fault detection capability is also increased 

together with computational cost [16]. Therefore, one more step is taken toward an 

intelligent fault-severity classification with small set of data, by utilizing generalized, 

simple, small-sized and efficient multi-layer perceptron neural network.  

1.3 Aim and Objectives 

The aim of this study is focused on the application of an effectiveness signal processing 

through linking the strong points of both the time-scale and frequency domain 

techniques, a unified Wavelet Packet Signature Analysis (WPSA) technique that 

pinpoints the fault signature in special frequency bands with suitable sensitivity and a 

great concern of no load cases. Moreover, the necessity of sufficient and efficient 
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maintenance policies according to the literature review on intelligent decision-making 

algorithms for BRBs fault classification and severity identification in induction motor 

could be essential. Therefore, the following objectives were pursued in this research 

work. 

i. To define the exact localized fault frequency sub-bands based on WPSA

associated with the most appropriate mother wavelet through investigating the

ability of different types of wavelet functions for BRB detection.

ii. To develop statistical features extracted from wavelet packet coefficients of

stator current signal (WPC-SCS) for BRB fault detection with a great concern

of no load condition.

iii. To classify fault-severity of BRBs in arbitrary working conditions using simple

multi-layer perceptron neural network (MLP-NN).

1.4 Thesis Scope 

This thesis provides a comprehensive study on broken rotor bar detection and severity 

classification in assorted load in squirrel-cage induction machines. In the first step, the 

wavelet packet transform was applied to the stator current signal which has been 

acquired by previous research [17]. In order to enhance the effectiveness of defect 

feature extraction, FFT combines with WPT which can be called as WPSA in the current 

study. WPSA can accurately differentiate between healthy and faulty machines in more 

concentrated fault-related depths and nodes. Next step to assist the most relevant feature 

extraction was the definition of mother wavelet function. Finally, in order to examine the 

effect of load variations and fault severity on the fault signatures, the statistical 

parameters of wavelet packet coefficients along with the slip speed formed the input 

vector to the classifier. On the one hand, detection of fault-oriented sub bands and 

classification of fault severity on the other hand make the proposed algorithm clearly 

different with the base research in 2011 [17] with same database. 

1.5 Research Contributions  

The main contributions of this work are as follows: 

1. In the signal processing step, exact localized fault frequency sub bands is

determined based on the combination of WPD and FFT named as WPSA under

arbitrary load conditions.

2. In the feature extraction step, wavelet statistical parameter of transformed stator

current is applied after an advanced signal processing technique as an input

vector to NN.

In the classification step, a straightforward, small-sized, low-cost multi-layer perceptron 

neural network (MLP-NN) is used in order to have an intelligent, reliable, and non-
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invasive classifier. 

1.6 Thesis Organization 

The dissertation is organized as follow: In Chapter 2, the required background 

knowledge for the rest of the thesis is introduced briefly. The mechanical structure of an 

AC induction motor is described in particular also; the induction motor‘s performance 

which causes broken rotor fault has been discussed. To deal with this serious 

malfunction and the diagnosis of fault in an early stage, data processing along with the 

related difficulties and artificial intelligent decision-making will be highlighted as main 

subsections of intelligent condition-base monitoring, which have been used for induction 

motors fault detection and severity classification. 

The gaps in the field of BRB fault detection and classification will be fulfilled by 

manipulated methodology in Chapter 3 to extract a reliable method that allows a better 

separation of anomaly cases from the normal operating condition modes of the motor 

and severity assessment. In Chapter 4, the findings of the research will be presented 

highlighting the role of broken rotor bar detection based on application of wavelet 

packet decomposition integrated with Fast Fourier transform to track the most 

appropriate depth and nodes. These results can be used to optimize the scheduling and 

clustering, and support the maintenance decision making, by implementing a simple 

cost-effective multi-layer perceptron neural network. Finally, the conclusion of the 

thesis and possible areas for future research will be presented in Chapter5.  
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APPENDICES 

A. Wavelet Packet Signature Analysis MATLAB Command Line 

clear all;close all;clc; 

%% Simple sinusoids signal 

f=50; 

t=0:(1/2000):(1-(1/2000)); 

y=10*sin(2*pi*f*t); 

%% Wavelet Packet Transform 

Level=5; 

wpt=wpdec(y,Level+1,'db44');%wavelet packet tree 

for node = 0:2^Level; 

        data = wprcoef(wpt,[Level node]);%wavelet packet 

Reconstructed coefficients 

        FFT; 

     MAX= max(AMPLITUDEmat(:,2)); 

     [m n]=find( AMPLITUDEmat(:,2)==MAX); 

     MaxFund(node+1,1)= AMPLITUDEmat(m,1); 

     MaxFund(node+1,2)= AMPLITUDEmat(m,2); 

End 

MAX2= max(MaxFund(:,2)); 

[p q]=find(MaxFund(:,2)==MAX2); 

clear node 

node=p-1; 

%% Plot 
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f=figure; 

subplot(1,3,1) 

plot(y); 

title('Original Signal') 

%% Wavelet Packet Transform 

wpt = wpdec(y,Level+1,'db44'); 

data = wprcoef(wpt, [Level node]); 

subplot(1,3,2) 

plot(data); 

title('Reconstructed Signal') 

FFT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

samptime  = (1/2000);  

N2 = length(data); 

[FFTData, amp, ang, freq, NFFT] = fft_signal(data,samptime); 

x = NFFT/2+1; 

amp=amp'; 

for j = 0:1; 

for i = 1:x; 

        AMPLITUDEmat(i,1) = freq(i,1); 

        AMPLITUDEmat(i,j+1) = amp(i,1); 

End 

End 

for k=1:x 

    plotAm(k,1)=AMPLITUDEmat(k,1); 

    plotAm(k,2)=AMPLITUDEmat(k,2); 
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End 

 

subplot(1,3,3) 

 

plot (plotAm(:,1),plotAm(:,2)); 

 

title('FFT') 

 

xlabel('Frequency (Hz)') 

 

ylabel('Amplitued (A)') 

 

 

clear AMPLITUDEmat FFTD at a MAXMAX2 Max Fund N2 NFFT... 

 

amp ang f data freq i j k m n p plot Amq samptimet wpt 

x 

 

fft_signal%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [FFTData, amp, ang, freq, NFFT]=fft_signal(data,samptime) 

 

    options.sampFreq = 1/samptime; 

 

    N = 2^(nextpow2(length(data)));  

 

    N2 = length(data); 

 

    FFTData = fft(data,N); 

 

    amp = abs(FFTData) * 2/N2; 

 

    ang = angle(FFTData); 

 

    NumUniquePts = ceil((N+1)/2); 

 

    amp = amp(1:NumUniquePts); 

 

    freq=(0:NumUniquePts-1)' / (NumUniquePts)*(options.sampFreq/2) ; 

 

    NFFT=N; 

 

End 

 

 

B. Mother Wavelet MATLAB Command Line 

 

close all; 

 

clear all; 
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clc; 

 

%% Load Data 

 

% Stator current signal for different loads,as an example NoLoad   condition 

 

 

load Hnoload1 %Healthy No Load condition, it is also  

tested for F1NoLoad, F2NoLoad, F3NoLoad 

 

y = Hnoload1; 

 

load MotherwaveletPacket 

 

Level= 5; %(5,1)[31.25-62.5]  

 

Depth= 1; 

 

%Wavelet packet calculation based on different mother wavelet  

 

for motherorder = 1:82;   

 

  wpt=wpdec(y,Level,MotherwaveletPacket{1,motherorder}); % WPD of signal y with 

level and mother wavelet 

 

  cfs = wpcoef(wpt,[Level Depth]); 

 

  StD=std(cfs);% Standard Deviation of WPD coefficients 

 

  MW(motherorder,1) = MotherwaveletPacket(1,motherorder); 

 

  MW{motherorder,2} = num2str(StD);  

 

End 

 

 

S1 = char(MW{:,2}); 

 

clear ft Frequency Sampling y mother order 

 

 

C. Feature Extraction MATLAB Command Line 

 

clear all;close all;clc; 

 

%% Stator current signal for different loads,as an example NoLoad   condition 

 

load F1NoLoad;% 1BRB of No Load condition, it is also  

tested for HNoLoad, F2NoLoad, F3NoLoad 
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for i=1:20; 

 

   y   = F1NoLoad(:,i); 

 

   wpt = wpdec(y,11,'db44'); 

 

   cfs = wpcoef(wpt,[9 21]); %wavelet packet coefficients 

 

   X   = cfs; 

 

%% Wavelet statistical parameters 

 

RMS = rms(X);% Root-mean-squares 

 

RSSQ = rssq(X);% Root-sum-of-squares  

 

KURTOSIS = kurtosis(X); 

 

SKEWNESS = skewness(X); 

 

Mean = mean(X);         

 

PtoP = peak2peak(X); 

 

PtoRMS = peak2rms(X);% CrestFactor 

 

LogDectect = exp(mean(log(abs(X))));   

 

PAPR = ((max(X))^2)/((rms(X))^2);% peak-to-average power ratio(dB) 

 

ShapeFactor = rms(X)/mean(X);  

 

ImpulseFactor = max(abs(X))/mean(X); 

 

Energy = sum(X.^2); 

 

StD = std(X); %Standard Deviation 

 

Moment = moment(X,6); %sixth order centrl moment 

 

ResultTime(i,1)  = RMS; 

 

ResultTime(i,2)  = RSSQ; 

 

ResultTime(i,3)  = KURTOSIS; 

 

ResultTime(i,4)  = SKEWNESS; 

 

ResultTime(i,5)  = Mean; 

 



© C
OPYRIG

HT U
PM

75 

 

ResultTime(i,6)  = PtoP; 

 

ResultTime(i,7)  = PtoRMS; 

 

ResultTime(i,8)  = LogDectect; 

 

ResultTime(i,9)  = PAPR; 

 

ResultTime(i,10) = ShapeFactor; 

 

ResultTime(i,11) = ImpulseFactor; 

 

ResultTime(i,12) = Energy; 

 

ResultTime(i,13) = StD; 

 

ResultTime(i,14) = Moment; 

 

i=i+1 

 

Ed 

 

 

clear RMS RSSQ KURTOSIS SKEWNESS Mean... 

 

PtoP PtoRMS PAPR ShapeFactor ImpulseFactor... 

 

Root X Margin Factor LogDectect Energy StD Moment 

 

 

D. MultiLayer Perceptron NN-based Classifier MATLAB Command Line 

 

 clear all;close all;clc; 

 

%% Load Data 

 

load NN_Input; %is defined based on the best combination of features in various loads  

 

Inputs = NN_Input';  

 

load fault_type;   

 

%% Define training set 

 

in=[]; 

 

for i=1:15 

 

     temp=[Inputs(i,:);Inputs(20+i,:);Inputs(40+i,:);Inputs(60+i,:)]'; 
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     in=[in temp]; 

End 

%% Define targets 

A =[0.1 0.1 0.1 0.9]'; 

B =[0.1 0.1 0.9 0.1]'; 

C =[0.1 0.9 0.1 0.1]'; 

D =[0.9 0.1 0.1 0.1]'; 

temp = [repmat(A,1,1) repmat(B,1,1) repmat(C,1,1) repmat(D,1,1)]; 

Target=repmat(temp,[1 15]); 

%% Create a Fitting Network 

hiddenLayerSize = 13; 

TF={'tansig','purelin'}; 

trainFcn='trainlm';   %Levenberg-Marquardt backpropagation. 

net.performFcn = 'msereg';  %'msereg' improve generalization  

net = feedforwardnet(hiddenLayerSize,trainFcn);    

CVO = cvpartition(fault_type,'Leaveout');%Create cross validation partition for data 

err = zeros(CVO.NumTestSets,1); 

cp = classperf(fault_type);%Evaluate performance of classifier 

single_error = zeros(1,CVO.NumTestSets); 

numNN = 10;%Multiple Neural Network 

nets = cell(1,numNN); 

for i = 1:numNN 

    disp(['Training ' num2str(i) '/' num2str(numNN)]) 

for j = 1:CVO.NumTestSets 
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%% Train the Network 

     trIdx = CVO.training(j); % training Index 

     trIdx = trIdx'; 

     trainInputs = in(:,trIdx); 

     trainTargets = Target(:,trIdx); 

     nets{i} = train (net, trainInputs,trainTargets); 

%% Test the Network 

     teIdx = CVO.test(j); % test Index 

     teIdx = teIdx'; 

     testInputs = in(:,teIdx); 

%% Classification 

     class = classify(in(:,teIdx)',in(:,trIdx)',fault_type(trIdx,:)); 

     classperf(cp,class,teIdx);%To modify properties 

     err(j) = sum(~strcmp(class,fault_type(teIdx,:))); 

     single_error(1,j) = cp.ErrorRate; 

     single_correct(1,j)= cp.CorrectRate; 

end 

end 

get(cp); 

cp.ErrorRate; 

cp.CorrectRate; 

mean_error = mean(single_error); 

mean_correct = mean(single_correct); 

STD_correct = sqrt(var(single_correct)); 
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%% TEST and Evaluate the Network with TEST DATA 

 

%Load Test Data 

 

in_ts=[]; 

 

perfs = zeros(1,numNN); 

 

y2Total = 0; 

 

for i=1:5 

 

     temp_ts=[Inputs(15+i,:);Inputs(35+i,:);Inputs(55+i,:);Inputs(75+i,:)]'; 

     in_ts=[in_ts temp_ts]; 

 

End 

 

 

targets=repmat(temp,[1 5]); 

 

for i=1:numNN  

 

  neti = nets{i}; 

 

  Tsoutputs = neti(in_ts); 

 

  perfs(i) = mse(neti,targets,Tsoutputs); 

 

  y2Total = y2Total + Tsoutputs; 

 

  PlotResults(targets(:),Tsoutputs(:),'Test Data'); 

 

  saveas(subplot(2,2,4),'Test Data.png') 

 

End 

 

 

y2AverageOutput = y2Total / numNN; 

 

perfAveragedOutputs = mse(nets{1},targets,y2AverageOutput); 

 

Mean_iter=[cp.ErrorRate cp.CorrectRate mean_error mean_correct STD_error 

perfAveragedOutputs]; 

 

save Mean_iter; 

 

 

result=[targets; y2AverageOutput]'; 

 

save result 
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%% Test Correct class 

testCor = 100 * length(find(targets.*y2AverageOutput > 0)) / length(targets); 

fprintf('TestCorrect class = %.1f %%\n',testCor/4) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

PlotResults 

function PlotResults(t,y,name) 

    figure; 

    % t and y 

    subplot(2,2,1); 

    plot(y,'k'); 

  hold on; 

    plot(t,'r:'); 

    legend('Outputs','Targets'); 

    title(name); 

    % Correlation Plot 

    subplot(2,2,2); 

    plot(t,y,'ko'); 

    hold on; 

    xmin=min(min(t),min(y)); 

    xmax=max(max(t),max(y)); 

    plot([xmin xmax],[xmin xmax],'b','LineWidth',2); 

    R=corr(t',y'); 

    %title(['R = ' num2str(R)]); 

    % e 

    subplot(2,2,3); 
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    e=t-y; 

 

    plot(e,'b'); 

 

    legend('Error'); 

 

    MSE=mean(e.^2); 

 

    RMSE=sqrt(MSE); 

 

    title(['MSE = ' num2str(MSE) ', RMSE = ' num2str(RMSE)]); 

 

     

    subplot(2,2,4); 

 

    histfit(e,50); 

 

    eMean=mean(e); 

 

    eStd=std(e); 

 

    title(['\mu = ' num2str(eMean) ', \sigma = ' num2str(eStd)]); 

 

     

End 
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