UNIVERSITI PUTRA MALAYSIA

ASSESSMENT OF DEGENERATIVE CHANGES IN SUPERFICIAL DIGITAL FLEXOR TENDON IN CLINICAL NORMAL HORSES

SAMER K. TMUMEN

FPV 2005 7
ASSESSMENT OF DEGENERATIVE CHANGES IN SUPERFICIAL DIGITAL FLEXOR TENDON IN CLINICAL NORMAL HORSES

By

SAMER K. TMUMEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the Degree of Doctor of Philosophy

June 2005
DEDICATION

To my parents, Father K. Tmumen, my Mother Allah Yarhamha and my family members who encouraged me to pursue a profession I would enjoy for a lifetime.

To my wife Laila, Nouri Eteriki and my son Mohamed Samer, Taha Samer, Nagham Samer and Gufhran Samer
Abstract of the thesis submitted to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ASSESSMENT OF DEGENERATIVE CHANGES IN SUPERFICIAL DIGITAL FLEXOR TENDON IN CLINICALLY NORMAL HORSES

By

SAMER K. TMUMEN

June 2005

Chairman : Professor Rasedee Abdullah, PhD
Faculty : Veterinary Medicine

The equine tendon is a highly specialized cord that ensures optimal transmission of movements from muscles to bones. The tendon is elastic, capable of easily resuming its original shape after being stretched and resistant to stretching under physiological condition. Flexor tendons show a high incidence of partial central core rupture preceded by degeneration. Thus, injuries of superficial digital flexor tendon (SDFT) are common in athletic horses.

Equine tendons were isolated from the forelimbs of 45 normal thoroughbreds consisting of 13 young, 22 middle and 10 old aged horses. The sex distribution was not taken into account. The horses were euthanised and forelimb tendon samples obtained. Gross examination showed tendon discoulouration suggesting
presence of degeneration in the apparently normal tendon.

Tendon samples were obtained from the central core of the mid-metacarpal region of the forelimb SDFT. The fixed SDFT samples were processed and embedded in wax using a technique modified for the study and stained with haematoxylin and eosin (H&E) stain. All sections were examined under light, confocal laser microscopic and image analysis techniques.

When the degenerative changes in the horse forelimb SDFT were compared, the left SDFT showed more degenerative changes than the right. This reflects the local racing condition which is conducted in anti-clockwise manner. This study also showed that the degree of degenerative changes was higher (P<0.05) in old horses compared to young horse, but not higher than the middle aged horses.

Tendon thickness was compared using the ultrasonography and caliper methods. The mean values for the thickness of the forelimb SDFT obtained using the caliper method (23.3 ±1.7 mm) were at least 25% greater than those obtained using the ultrasound method (17.2 ± 2.1 mm) suggesting an over-estimation of the caliper method. Measurements using the caliper are obviously less accurate because it measures the thickness of the tendon as well as the thickness the skin and the underlying tissues. The width of the SDFT measured by ultrasonography is by transverse scans only.
The rate of healing of SDFT was compared in thoroughbreds and ponies. The SDFTs of five thoroughbreds and five ponies were injured surgically. The healing of each SDFT was monitored for six months. After six months, SDFT in ponies showed a complete healing, whereas in the thoroughbreds, granulation tissue was still clearly evident. The results showed that SDFT of ponies healed faster than that of thoroughbreds.

The tendon and muscle samples of thoroughbreds and ponies were analysed for lactic acid (LA). The tendon of thoroughbreds has a higher resting LA concentration (3.04±0.42 mmol/L) than the ponies (1.45±0.12 mmol/L) and increased to (7.45±0.71 mmol/L) and (3.42±0.89 mmol/L) in thoroughbreds and ponies. Similarly, the muscle of thoroughbreds had a higher resting LA concentration (13.63±1.33 mmol/L) than the ponies (1.82±0.09 mmol/L) and increased to 27±3.94 mmol/L and 18.91±5.35 mmol/L in thoroughbreds and ponies respectively after exercise. The increase of activity in muscle is reflected in a similar increase in the LA content of SDFT suggesting that the accumulation of LA in the tendon was the result of increased muscle LA production from increased activity. The accumulation of LA may render the tendon prone to injury.

This study suggested that tendon degeneration showed a greater intensity in the left than the right SDFT. While thoroughbreds had a greater resting tendon and
muscle LA concentration than ponies. This may be related to the fact that thoroughbreds have a greater muscle mass and higher physical activity than ponies. Plasma creatine kinase (CK) and plasma aspartate aminotransferase (AST) concentrated in horses are not good indicators of the increase in muscle activity.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENILAIAN PERUBAHAN NYAHJANA PADA TENDON FLEKSOR DIGIT SUPERFISIAL KUDA NORMAL KLINIKALK

Oleh

SAMER K. TMUMEN

Jun 2005

Pengerusi: Profesor Rasedee Abdullah, PhD
Fakulti: Perubatan Veterinar

Tendon ekuin telah diperolehi daripada kaki depan 45 ekor kuda torugbred terdiri daripada 13 muda, 22 pertengahan umur, dan 10 kuda tua. Taburan jantinanya tidak diambil kira. Kuda dikorbankan dan sample tendon kaki vii
depan diambil. Pemeriksaan kasar menunjukkan tendon bertukar warna menunjukkan wujudnya degenerasi dalam tendon yang nampaknya normal.

Sampel tendon diperolehi daripada teras pusat pada kawasan metakarpus tengah pada kaki depan SDFT. Sampel SDFT yang ditetapkan, diproses dan dibenamkan dalam lilin dengan menggunakan teknik yang telah diubahsuai untuk kajian ini kemudian diwarnakan dengan pewarna hematoksilin dan eosin (H&E). Kesemua irisan telah diperiksa melalui mikroskop cahaya dan konfokal dan teknik analisis imej.

Apabila perubahan degenerasi pada SDFT kaki depan kuda dibandingkan, SDFT kiri menunjukkan lebih banyak perubahan degenerasi daripada kanan. Ini mencerminkan keadaan perlumbaan kuda tempatan di mana ianya dijalankan secara lawan arah jam. Kajian ini juga menunjukkan yang tahap perubahan degenerasi adalah lebih tinggi (P<0.05) pada kuda tua berbanding kuda muda, tetapi tidak lebih tinggi berbanding kuda separuh umur.

Sukatan ketebalan tendon telah dibandingkan dengan menggunakan kaedah ultrasonografi dan kaliper. Nilai min untuk ketebalan SDFT kaki depan yang diperolehi melalui kaedah kaliper (23.3 ± 1.7 mm) adalah sekurang-kurangnya 25% lebih tinggi daripada yang diperolehi melalui kaedah ultrasonografi (17.2 ± 2.1 mm) menyarankan yang kaedah kaliper membawa kepada terlebih anggaran berlebihan. Sukatan menggunakan kaliper jelas kurang tepat berbanding
ultrasonografi sebab kaliper menyukat ketebalan tendon termasuk kulit dan tisu di bawahnya sekali. Kelebaran SDFT seperti diukur menggunakan ultrasonografi hanya untuk imbasan transverse saja.

Sampel tendon dan otot kuda torugbred dan padi telah dianalisiskan untuk kandungan asid laktiknya. Otot kuda torugbred mempunyai kepekatan asid laktik rihat (13.63 ± 1.33 mmol/L) yang lebih tinggi daripada kuda padi (1.82 ± 0.09 mmol/L) dan meningkat kepada 27.06 ± 3.94 mmol/L dan 18.91 ± 5.35 mmol/L masing-masing dalam kuda torugbred dan kuda padi selepas latihan. Peningkatan asid laktik dalam otot mencerminkan sebagai peningkatan pada masa sama kandungan asid laktik SDFT, menyarankan yang pengumpulan asid laktik dalam tendon merupakan hasil daripada peningkatan asid latik otot kerana peningkatan aktiviti. Pengumpulan asid laktik mungkin menyebabkan tendon lebih mudah cedera.

ix
Kajian ini meyarakankan bahawa degenerasi tendon menunjukkan inensity yang libih pada SDFT kiri daripada SDFT kanan. Kuda torugbred mempunyai kepekatan asid laktik rihat yang lebin tinggi daripada kuda padi. Ini mungkin berhubungkait degan hakikat bahawa kuda torugbred mempunyai kepadatan otot dan aktiviti fizikal yang lebin tinggi daripada kuda padi. Kepekatan creatine kinase (CK) dan aspartate aminotransferase (AST) bukanlah petunjuk yang baik untuk peningkatan aktiviti otot pada kuda.
ACKNOWLEDGMENTS

I am grateful to my supervisory committee chairman, Professor Dr. Rasedee Abdullah for his valuable advice and guidance throughout this study. My sincere thanks to Professor Dr. Mohd Zamri Saad, for his assistance in preparation of this thesis, Dr. Mohd Zuki Abu Baker for his guidance in ultrasonography, and Dr Nadzri Salim for his assistance in the statistical analysis. My deepest appreciation goes to Dr. Bashir Ahmed for providing the facility to conduct the experiments.

My deepest thanks to Professor Dato Dr. Sheikh Omar Abdul Rahman for his good explanation and helpful. Associate Prof. Dr. Mohd Hair Bejo for his kindness and helpful, also like to express my gratitude and appreciation to the following people who have been of a great help in my study: Mrs. Sairah Binti Abdul Karim. Dr. Sabri, Mohd Yusoff. Mr. Salehuddin Abd Rahman, Mr. Zain, and Mrs. Noraniza Mohd. Adzahan of the UPM Equine Center; Mr. Mohamed Halmi Othman and Mr. Abdullah Misron of the Haematololgy and Clinical Biochemistry Laboratory; Mr. Mohd Noh, Mr. Jamil Abdul Samad of Histopathology Laboratory; Mrs Fareda, Ms. Azilah Abul Jalil, Mr. Ho Oi Kuan of the Imaging Unit, Institute of Bioscience.

All members of the Faculty of Veterinary Medicine for sharing their technical skills and their ever available assistances.
Last but not least is my gratitude to the ministry of education in Libya for providing the opportunity and scholarship to pursue the degree. This study is dedicated to my wife Laila N. Eteriki and my juniors Mohamed Samer, Taha Samer, Nagham Samer and Gofhran Samer for being understanding and supportive throughout my study.
I certify that an Examination Committee met on 17th June 2005 to conduct the final examination of Samer K. Tmumen on his Doctor of Philosophy thesis entitle "Assessment of Degenerative Changes in Superficial Digital Flexor Tendon in Clinically Normal Horses" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Tengku Azmi Tengku Ibrahim, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Dato' Sheikh Omar Abdul Rahman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Dato' Abdul Salam Abdullah, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Takashi Umemura, PhD
Professor
Hokkaido University
Japan
(External Examiner)

GULAM RUSUL/RAHMAT ALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 Jul 2005

xiii
The thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.
The members of the Supervisory Committee are as following:

Rasedee Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd. Zamri Saad, PhD
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

Mohd Zuki Abu Baker, PhD
Lecturer
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

Nadzri Salim, MPVM
Lecturer
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 AUG 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citation, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SAMER K. TMUMEN

Date: 20/7/2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>xxvi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2 Anatomy</td>
<td>6</td>
</tr>
<tr>
<td>3 Structure of Tendon</td>
<td>6</td>
</tr>
<tr>
<td>4 Collagen fibers</td>
<td>9</td>
</tr>
<tr>
<td>5 Blood supply to the tendon</td>
<td>11</td>
</tr>
<tr>
<td>6 Tendon function</td>
<td>12</td>
</tr>
<tr>
<td>7 Physiological loading of tendon</td>
<td>13</td>
</tr>
<tr>
<td>8 Tendon injuries</td>
<td>14</td>
</tr>
<tr>
<td>9 Degenerative change of tendon</td>
<td>15</td>
</tr>
<tr>
<td>Equine Tendinitis</td>
<td>18</td>
</tr>
<tr>
<td>10 Definition</td>
<td>18</td>
</tr>
<tr>
<td>11 Etiology of Tendinitis</td>
<td>18</td>
</tr>
<tr>
<td>12 Pathogenesis of Equine Tendinitis</td>
<td>18</td>
</tr>
<tr>
<td>13 Clinical Signs</td>
<td>21</td>
</tr>
<tr>
<td>14 Diagnosis of Tendinitis</td>
<td>21</td>
</tr>
<tr>
<td>15 Treatment of Tendinitis</td>
<td>22</td>
</tr>
<tr>
<td>Equine Lameness</td>
<td>24</td>
</tr>
<tr>
<td>Lameness</td>
<td>24</td>
</tr>
</tbody>
</table>
DEGENERATIVE CHANGES OF THE SUPERFICIAL DIGITAL FLEXOR TENDON IN CLINICALLY NORMAL HORSE

Introduction

Material and Methods

Horses

Tissue sampling

Gross Pathological examination

Sampling processing

Water content

Tissue fixing

Tissue sectioning and staining

Modification of fixation and processing of tendon

Microscopic examination

Image Analysis

Determination of degenerative area in the tendon

Scanning Electron Microscopy (SEM) Techniques

Confocal Microscopy

Statistical Analysis

Results

Water content

Gross Pathology

Tendon morphological characteristic

Light Microscopy

Electron Microscopy (SEM)

Confocal Microscopy

Image analysis

Light Microscopy

Extent of SDFT degeneration in different age groups

Extent of total SDFT degeneration in all horses

Image analysis

Extent of SDFT degeneration in different age groups

Extent of total SDFT degeneration in all horses

Comparison between light microscopy and image analysis in the estimation of SDFT degeneration
IV ULTRASONOGRAPHIC MEASUREMENTS OF THE THICKNESS OF EQUINE SUPERFICIAL DIGITAL FLEXOR TENDON AND EVALUATION OF THE HEALING PROCESS OF SURGICALLY-INDUCED TENDON INJURY

Introduction 65

Materials and Methods 71

Horses

Animal preparation

Caliper measurement of SDFT width

Ultrasonographic examination of the SDFT

Surgical procedure to induce tendon injury

Ultrasonography examination of injured site

Post-operative care

Statistical Analysis

Results 77

Ultrasonographic characteristics of normal SDFT

Assessment of SDFT thickness

Ultrasonographic examination of the surgical site

Ultrasonographic of the healing process in surgery-induced

Tendon injury

Discussion 92

Conclusion 96

V LEVEL OF LACTIC ACID, CREATINE KINASE AND ASPARTATE AMINOTRANSFERASE IN THE SUPERFICIAL DIGITAL FLEXOR TENDON IN CLINICALLY NORMAL THOROUGHBREDS AND PONIES

Introduction 97

Material and Methods 101

Horses

Training Program

Blood Samples

Tendon biopsy

Muscle biopsy

Biochemical analysis

Post-operative management

Statistical analysis 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>105</td>
</tr>
<tr>
<td>Plasma lactate activity in thoroughbreds and ponies</td>
<td>105</td>
</tr>
<tr>
<td>Plasma CK activity in Thoroughbred and ponies in exercise</td>
<td>106</td>
</tr>
<tr>
<td>Plasma AST activities in Thoroughbred and ponies in Exercise</td>
<td>107</td>
</tr>
<tr>
<td>Lactic acid concentration in SDFT of horses</td>
<td>109</td>
</tr>
<tr>
<td>Lactic acid evaluation of muscle of horses</td>
<td>110</td>
</tr>
<tr>
<td>Discussion</td>
<td>111</td>
</tr>
<tr>
<td>Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>VI GENERAL DISCUSSION AND CONCLUSION</td>
<td>117</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>124</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>125</td>
</tr>
<tr>
<td>BIODATA OF THE AUTHOR</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Tables</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Total number and group of horses used in the study</td>
</tr>
<tr>
<td>2</td>
<td>The extent of SDFT degeneration by light microscopy and image analysis</td>
</tr>
<tr>
<td>3</td>
<td>Statistical composition of tendon degeneration as determinated by light microscopy and image analysis</td>
</tr>
<tr>
<td>4</td>
<td>The SDFT thickness determined by the caliper measurement and ultrasonography</td>
</tr>
<tr>
<td>5</td>
<td>Concentrations of plasma lactic acid in the exercised thoroughbreds and ponies</td>
</tr>
<tr>
<td>6</td>
<td>Concentrations of plasma creatine kinase in the exercised thoroughbreds and ponies</td>
</tr>
<tr>
<td>7</td>
<td>Concentrations of plasma Aspartate aminotransferase in exercise thoroughbreds and ponies</td>
</tr>
<tr>
<td>8</td>
<td>Concentrations of lactic acid in the SDFT of exercised thoroughbreds and ponies</td>
</tr>
<tr>
<td>9</td>
<td>Concentrations of lactic acid in the gluteal muscle of exercised thoroughbreds and ponies</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plates</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transverse section of clinically normal equine SDFT Showing reddish discoloration (arrow) in the central core</td>
</tr>
<tr>
<td>2</td>
<td>Transverse section of normal equine SDFT Showing homogenous structures with straw-like colouration (arrows)</td>
</tr>
<tr>
<td>3</td>
<td>Abnormal structure of SDFT of transverse section with calcified materials (arrows) at the periphery.</td>
</tr>
<tr>
<td>4</td>
<td>The SDFT of the left forelimb showing the adherence of SDFT to the other collagenous structures, DDFT and inferior chick ligament forming a single structure.</td>
</tr>
<tr>
<td>5</td>
<td>Longitudinal section of SDFT (1) adhering to the DDFT (2) and Inferior check ligament ICL (3) as one structure. The facia and paratenon were also adhesive (arrows)</td>
</tr>
<tr>
<td>6</td>
<td>The SDFT (1), DDFT (2) and ICL (3) of the supporting forelimb showing the adhesive structures (arrows)</td>
</tr>
<tr>
<td>7</td>
<td>The SDFT (1) and DDFT (2) showing the thickened structures (arrows).</td>
</tr>
<tr>
<td>8</td>
<td>SDFT (1) and DDFT (2) showing thickened structures and atrophy (arrows).</td>
</tr>
<tr>
<td>9</td>
<td>Histological section of normal SDFT showing the arrangement of fibre bundles (arrows) carrying with tenocytes in-between the fibres (X100) (H&E).</td>
</tr>
<tr>
<td>10</td>
<td>Histological section of the normal SDFT showing homogeneous structure (arrow), absence of tenocytes and destruction of collagen bundles (x40) (H&E).</td>
</tr>
<tr>
<td>11</td>
<td>Cross-section area of the normal SDFT showing internal tendon structures showing small and large bundles under scanning electron microscopy (arrows).</td>
</tr>
<tr>
<td>12</td>
<td>Longitudinal section of the normal SDFT showing irregularly arranged bundle of fibres under scanning electron microscopy</td>
</tr>
<tr>
<td>13</td>
<td>Transverse section of SDFT showing the internal blood supply of the tendon (arrows) x200 under scanning electron microscopy.</td>
</tr>
</tbody>
</table>
14 Cross-section of normal SDFT showing the wave pattern which appears as zig.zag conformation (arrow A) the cracks are artifacts (arrow B) x300 under scanning electron microscopy

15 Scanning electron microscopic image of SDFT showing degenerative area characterized as a black zone with smooth homogenous surface. x95 (arrow).

16 Scanning electron microscopic image of the equine SDFT showing degenerative area characterized as a black homogenous area. x160

17 Normal SDFT engorged with blood supply (arrow) under confocal microscopy 10μ, H&E.

18 Confocal macrograph of extensive homogeneous area of degeneration changes of SDFT under confocal microscope 10μ H&E(arrows).

19 SDFT showing an excessive area of degenerative change (arrows) under image analysis technique (x100 H&E).

20 Degenerative changes in SDFT shown by image analysis (arrows) (x100) (H&E).

21 Normal SDFT showing a blood vessel (arrows) under image analysis techniques x100μm

22 A section of SDFT showing degenerative change represented by extensive homogenous area (arrows)

23 Degenerative change in Plate 22 after shadowing with red colouration (arrows).

24 The caliper used for the measurement of SDFT thickness

25 The ultrasound machine (TOSHIBA just vision 200) used in the study.

26 The forelimb of the horse showing the surgical site and the exposed SDFT

27 Longitudinal (A) and transverse (B) scans of the normal SDFT at mid-metacarpal region using 8.0MHz transducer. The longitudinal scan of SDFT shows a multiple, regularly arrange parallel echoes, while transverse scan shows an homogenous echogenicity scattered throughout the tendon parenchyma.
28. Longitudinal (A) and transverse scan (B) of normal SDFT using an 8MHz transducer showing the thickness of the tendon and the boundary demarcating the tendon. Note that the tendon structures are similar for SDFT, DDFt and ICL

29.A. Transverse scans of the pony of the left SDFT week 1 post-surgery, showing disruption in the fiber pattern and inflammatory changes was presented (arrow).

29.B. Transverse scans of the thoroughbred of the left SDFT week 1 post-surgery, showing a decrease in echogenicity. Note that the pattern of SDFT was ruptured due to injury. (arrow).

30.A. Transverse scans of pony of left SDFT week 2 and 3 post-surgery, showing hypoechogenic area and disruption of tendon fiber (arrow).

30.B. Transverse scans of thoroughbred SDFT in week 2 and 3 post-surgery, showing a typical echogenic spots in the region (arrow).

31.A. Transverse scans of pony SDFT in week 4 and 5 post-surgery, showing decrease of echogenicity in the area (arrow).

31.B. Transverse scans of thoroughbred SDFT in week 4 and 5 post-surgery, showing the fiber pattern was disrupted and poor healing process (arrows)

32.A. Transverse scans pony SDFT in week 6 post-surgery, showing the granulation tissue was beginning to fill the gap in tendon (arrow).

32.B. Transverse scans of thoroughbred SDFT in week 6 post-surgery, showing poor formation of granulation tissue (arrow).

33.A. Transverse scans of pony SDFT in week 7 and 8 post-surgery, showing decrease in homogeneity of the injured area of tendon. (arrow).

33.B. Transverse scans of thoroughbred SDFT in week 7 and 8 post-surgery, showing a slight regeneration of tendon fiber (arrows).

34.A. Transverse scans of pony of the left SDFT in week 9 and 10 post-surgery, showing formation of granulation tissue. The tendon was healing rapidly (arrows).