

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF SYBR GREEN 1 BASED REAL-TIME POLYMERASE CHAIN REACTION FOR DETECTION AND DIFFERENTIATION OF INFECTIOUS BURSAL DISEASE VIRUS

HAIRUL AINI BT. HAMZAH

FPV 2005 5

DEVELOPMENT OF SYBR GREEN 1 BASED REAL-TIME POLYMERASE CHAIN REACTION FOR DETECTION AND DIFFERENTIATION OF INFECTIOUS BURSAL DISEASE VIRUS

By

HAIRUL AINI BT. HAMZAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

March 2005

Dedicated to:

My beloved husband Zaizy bin Taib My son Mohd Athif Izzat My parents and family Whoever has provided me with care and compassion throughout my life

ii

Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT OF SYBR GREEN 1 BASED REAL-TIME POLYMERASE CHAIN REACTION FOR DETECTION AND DIFFERENTIATION OF INFECTIOUS BURSAL DISEASE VIRUS

By

HAIRUL AINI BT. HAMZAH

March 2005

Chairman: Associate Professor Abdul Rahman Omar, PhD

Faculty: Veterinary Medicine

The current available method to differentiate very virulent and vaccine strains of infectious bursal disease virus (IBDV) is by restriction fragment length polymorphism of VP2 gene. However, this method is time consuming, error-proned and less sensitive. The newly developed TaqMan real-time PCR is very sensitive but not suitable for routine test as it is expensive. Additionally, the application of the assay in detecting very virulent and vaccine strains of IBDV has not been reported. In this study the performances of SBYR Green 1 real-time, ELISA and conventional agarose detection methods in detecting nested PCR products were compared. It was found that the real-time PCR was at least 100 times more sensitive than ELISA detection method with a detection limit of 250 ρ g/µl. The developed assay detects both very virulent and vaccine strains of IBDV but not other RNA viruses such as Newcastle

disease virus and infectious bronchitis virus. However, the assay was unable to differentiate the different strains of IBDV. In the subsequent studies, strain-specific primer (match primer) combinations were used for the detection and differentiation of IBDV strains using two steps SYBR Green 1 based real-time PCR. The primers and PCR condition were optimized and validated using both very virulent and vaccine strains. By using the strainspecific primer combinations, specific amplification based on measurement of C_T and Tm were detected. In an optimized PCR condition, specific amplification associated with early amplification with C_T value between 19 to 28 and Tm between 86 to 88°C meanwhile nonspecific amplification from mismatch primer was associated with late amplification with C_T value > 29 and Tm < 82°C or no amplification (C_T value 0 and Tm < 82°C). These characteristic CT and Tm values were consistently detected following amplification with 4000 ng/ul of cDNA. Hence, the differentiation of IBDV strains was based on the detection of CT values whilst detection of Tm was for confirmation of the specific amplification. The detection of Tm value alone was not sufficient to differentiate IBDV strains. Even though the detection limit of the real-time PCR to detect IBDV strains was between 6.6 to 7.7 ng/µl, it is recommended that for testing of clinical samples, the cDNA concentrations be maintained between 4000 ng/µl to 66 ng/µl for PCR amplification, since amplification from insufficient primer-template concentration promote amplification of mismatch PCR product. In this study, it showed for the first time application of SYBR Green 1 based real-time PCR for the detection and differentiation of very virulent and vaccine strains of

IBDV. The assay was found to be sensitive, specific, less expensive and has less turn around time compared to the current available diagnostic methods.

V

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN TINDAK BALAS RANTAI POLIMERASE MASA-NYATA BERASASKAN SYBR GREEN 1 UNTUK PENGESANAN DAN PEMBEZAAN VIRUS PENYAKIT BURSA BERJANGKIT

Oleh

HAIRUL AINI BT. HAMZAH

Mac 2005

Pengerusi: Professor Madya Abdul Rahman Omar, PhD

Fakulti: Perubatan Veterinar

Kaedah semasa yang digunakan untuk membezakan strain sangat virulen dan vaksin virus penyakit bursal berjangkit (IBDV) adalah dengan fragmen pembatasan polimorfisme panjang terhadap gen VP2. Bagaimanapun, kaedah ini memakan masa, mudah berlaku kesilapan dan kurang sensitif. Pembangunan terbaru PCR masa nyata TaqMan adalah sensitif tetapi tidak sesuai sebagai ujian rutin kerana ujian tersebut mahal. Tambahan pula, aplikasi asai tersebut dalam mengesan strain sangat virulen dan vaksin IBDV tidak pernah dilaporkan. Dalam kajian ini perlaksanaan kaedah PCR masa nyata SYBR Green 1, ELISA dan konvensional agaros dalam mengesan produk nested PCR telah dibandingkan. PCR masa nyata didapati sekurangkurangnya 100 kali lebih sensitif daripada kaedah pengesanan ELISA

tersebut mengesan kedua-dua strain sangat virulen dan vaksin IBDV tetapi tidak virus lain seperti virus penyakit sampar, dan virus berjangkit bronkitis. Walau bagaimanapun, asai tersebut tidak boleh membezakan strain IBDV yang berbeza. Dalam kajian seterusnya, gabungan primer strain-khusus (primer sepadan) digunakan untuk mengesan dan membezakan strain IBDV menggunakan dua langkah PCR masa nyata berasaskan SYBR Green 1. Primer tersebut dan keadaan PCR telah dioptimumkan dan disahkan menggunakan kedua-dua strain sangat virulen dan vaksin IBDV. Dengan primer strain-khusus, amplikasi khusus menggunakan gabungan berdasarkan ukuran CT dan Tm telah dikesan. Dalam keadaan PCR yang optimum, amplifikasi khusus telah dikaitkan dengan amplifikasi awal dengan nilai C_T antara 19 hingga 28 dan nilai Tm di antara 86°C hingga 88°C manakala amplifikasi tidak khusus dari primer tidak sepadan dikaitkan dengan amplifikasi lewat dengan nilai CT > 29 dan Tm < 82°C atau tiada amplifikasi (nilai C_T 0 dan Tm < 82°C). Nilai ciri C_T dan Tm dikesan secara konsisten berikutan amplifikasi dengan 4000 ng/µl cDNA. Maka, pembezaan strain IBDV adalah berdasarkan pada pengesanan nilai CT manakala pengesanan nilai Tm adalah untuk pengesahan dari amplifikasi khusus. Pengesanan nilai Tm sahaja tidak mencukupi untuk membezakan strain IBDV. Walaupun had pengesanan PCR masa nyata untuk mengesan strain IBDV adalah antara 6.6 hingga 7.7 ng/µl, adalah disyorkan bahawa untuk menguji sampel klinikal, kepekatan cDNA dikekalkan antara 4000 ng/µl ke 66 ng/µl untuk amplifikasi PCR kerana amplifkasi daripada ketidakcukupan kepekatan primer-templat menggalakkan penghasilan produk PCR yang

vii

tidak sepadan. Dalam kajian ini, dibentangkan buat kali pertama aplikasi PCR masa nyata berasaskan SYBR Green 1 untuk pengesanan dan pembezaan strain sangat virulen dan vaksin IBDV. Asai tersebut didapati sangat sensitif, khusus, lebih ekonomi dan masa pusing balik yang lebih pendek berbanding dengan kaedah diagnostik yang boleh didapati sekarang.

ACKNOWLEDGEMENTS

In the name of ALLAH the Almighty, the most Benevolent and the most Merciful. Thanks, praise and glory to Allah S.W.T who has been my ever present protector and defender, and for HIS help and guidance throughout the duration of my study in UPM.

Here, I would like to convey my deepest appreciation to Associate Professor Dr. Abdul Rahman Omar, chairman of the supervisory committee for his endless advice, untiring assistance, support and encouragement that lead to the completion of this study. Moreover, my sincere thanks and appreciation to Professor Dr. Aini Ideris and Associate Professor Dr. Mohd Hair Bejo, members of the supervisory committee for their constructive suggestions and proper guidance throughout my study period.

I am thankful to the Ministry of Science, Technology and the Innovation for providing the National Science Scholarship (NSF). I am grateful to Mr. Au Sian Loong, from Research Instruments, for providing the technical support on real-time PCR approach. Special thanks to Kong Lih Ling, Tan Siew Wei, Wan Keng Fei and Balkis for their co-operation and sharing their knowledge. I also grateful to Biologics Laboratory staff, Mrs. Rodiah Husin and my friends, Shila, Haza, May Ling, Zul, Thapa and every body who has been involved throughout the course of my study.

TABLE OF CONTENTS

	Page
DEDICATION	· ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEGEMENTS	ix
APPROVAL	x
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVATIONS	xxi

CHAPTER

I	INTRODUCTION	1
11	LITERATURE REVIEW	7
	Infectious Bursal Disease Virus	7
	Incidence and Distribution of IBDV	8
	IBDV Genome and Virion Structure	9
	Viral Proteins	10
	Antigenic and Virulence Variation	12
	Genetic Determinants of IBDV Virulence	13
	Diagnosis of IBD	14
	Isolation and Identification of IBDV	15
	Serology test	17
	Molecular Diagnostic Test	18
	Reverse Transcriptase Polymerase Chain Reaction	18
	Primers	19
	Real-time PCR	21
	Chemistry of Real-time PCR	22
	TaqMan or Hybridization Probes	22
	Molecular Beacons	23
	SYBR Green 1	24
	Application of Real-time PCR	25
	Quantifications	25
	Mutation/allele Detection	27
	Detection and Differentiation	28

	PERFORMANCE OF SYBR GREEN 1 BASED NESTED	
	REAL-TIME POLYMEASE CHAIN REACTION IN DETECTING	
	INFECTIOUS BURSAL DISEASE VIRUS	31
	Introduction	31
	Materials and Methods	34
	Viruses	34
	Preparation of Virus Stocks	34
	Extraction of RNA	36
	Primer Used	37
	Optimization of PCR Reaction	38
	cDNA Synthesis	38
	Determination of RNA and cDNA Concentration and Purity	39
	RT-nested PCR ELISA Detection	39
	First Round PCR	39
	Second Round PCR	40
	Detection of Amplified Products by Colorimetric	
	ELISA Method	40
	Detection of Amplified Products by Real-time PCR	41
	Melting Curve Analysis	42
	Agarose Gel Electrophoresis	42
	Evaluation of the Performance of the PCR Detection	
	Methods	42
	Results	44
	Primers Used	44
	RT Nested PCR ELISA	44
	RT Nested SYBR Green 1 Real-time PCR	52
	Discussion	61

IV	DEVELOPMENT OF NOVEL SYBR GREEN 1 BASED	
	REAL-TIME POLYMERASE CHAIN REACTION FOR	
	RAPID DIFFERENTIATION OF INFECTIOUS BURSAL	
	DISEASE VIRUS	66
	Introduction	66
	Materials and Methods	68
	Viruses	68
	Primer Design	68
	RNA Extraction	72
	Reverse Transcriptase	72
	Determination of RNA and cDNA Concentration and Purity	73
	SYBR Green 1 Based Real-time PCR	73
	Melting Curve Analysis	74
	Standard Curve	74
	Agarose Gel Electrophoresis	74
	Purification of PCR Products	75
	DNA Sequencing	76
	Sequence Assembly and Analysis	76

	Results	78
	Primers	78
	Optimization of the Real-time PCR	79
	Development of the Real-time PCR to detect Very Virulent and	
	Vaccine Strains of IBDV	86
	Very Virulent Strain of IBDV	86
	Attenuated Vaccine Strain of IBDV	92
	Agarose Gel Electrophoresis	97
	Evaluation of the Real-time PCR	102
	Sequence Analysis of the PCR Amplified Products	112
	Discussion	119
v	GENERAL DISCUSSION AND CONCLUSION	126
	Future Prospect and Recommendations	130
	Conclusion	132
BIB	BLIOGRAPHY	133
API	PENDICES	161
BIC	DDATA OF THE AUTHOR	168
PUI	BLICATIONS	169

LIST OF TABLES

Table		Page
3.1	Viruses used in evaluating the performance of the different detection methods	35
3.2	Primer used in RT-nested PCR ELISA and SYBR Green 1 real-time PCR	37
3.3	Threshold cycle (C_T) and melting temperature (Tm) values of amplification of different isolates of IBDV and other RNA viruses	56
3.4	Threshold cycle (C_T) and melting temperature (Tm) values of real-time PCR assay in detecting serially diluted IBDV UPM94/273	59
3.5	Intra-assay variation of C_T and Tm values of real-time PCR in detecting both very virulent and vaccine strains of IBDV	60
4.1	Infectious bursal disease viruses used in the study	68
4.2	Primers used for amplification of different strains of IBDV	70
4.3	Primer combinations and their relationship to template (IBDV isolates) used in real-time PCR	71
4.4	Threshold cycle (C_T) and melting temperature (Tm) values of amplification of serially diluted cDNA of vvIBDV UPM94/273 using match and mismatch primer combinations	91
4.5	Threshold cycle (C_T) and melting temperature (Tm) values of amplification of serially diluted cDNA of vaccine IBDV D78 using match and mismatch primer combinations	96
4.6	Detection of signatory threshold cycle (C_T) values of very virulent and vaccine strains IBDV using different primer combinations	107
4.7	Detection of signatory melting temperature (Tm)	

xvi

	using different primer combinations	107
4.8	Threshold cycle (C_T) and melting temperature (Tm) values of amplification of negative control samples	111
4.9	Intra-assay variation of C_T and Tm values of real-time PCR using match primer combination in detecting very virulent and vaccine strains of IBDV	111

LIST OF FIGURES

Figure		Page
3.1	Detection of expected amplified PCR product of IBDV isolate UPM94/273 after first round of amplification using outer primers	45
3.2	Detection of expected amplified PCR product of IBDV isolate UPM94/273 after second round (using inner primers) of amplification	46
3.3	Detection of expected RT nested PCR products from different IBDV isolates using inner primer	48
3.4	Specificity of RT-nested PCR ELISA in the detection of different IBDV isolates	50
3.5	Detection limit of RT-nested PCR ELISA in detecting IBDV strain UPM94/273	51
3.6	Specificity of real-time PCR in detecting very virulent and vaccine strains of IBDV	54
3.7	Melting temperature profiles of IBDV isolates	55
3.8	Detection limit of SYBR Green 1 real-time PCR in the detection of IBDV UPM94/273	57
3.9	Melting curve profiles of serially diluted cDNA of IBDV isolate UPM94/273	58
4.1	Nucleotide sequences and the deduced amino acids translation of primers IVIR and RCLA	81
4.2	Nucleotide sequence comparisons of the primers with 24 published sequences of very virulent and attenuated vaccines strains of IBDV	82
4.3	Optimization of temperature used at step 5 in real-time PCR prior to fluorescence reading	84
4.4	Influence of number of cycles in real-time PCR assay using template from vaccine strain D78 and mismatch primer combinations	85

xviii

4.5	The performance of the real-time in detecting very virulent strain UPM94/273	88
4.5A	Amplification curve of serially diluted very virulent strain, UPM94/273 with match primer combination	88
4.5B	Melting cure profile of serially diluted cDNA of very virulent strain, UPM94/273 with match primer combination	88
4.5C	Amplification curve of serially diluted very virulent strain, UPM94/273 with mismatch primer combination	89
4.5D	Melting cure profile of serially diluted cDNA of very virulent strain, UPM94/273 with mismatch primer combination	89
4.5E	Standard curve of serially diluted cDNA of very virulent strain, UPM94/273	90
4.6	The performance of the real-time in detecting vaccine strain D78	93
4.6A	Amplification curve of serially diluted vaccine strain, D78 with match primer combination	93
4.6B	Melting cure profile of serially diluted cDNA of vaccine strain, D78 with match primer combination	93
4.6C	Amplification curve of serially diluted vaccine strain, D78 with mismatch primer combination	94
4.6D	Melting cure profile of serially diluted cDNA of vaccine strain, D78 with mismatch primer combination	94
4.6E	Standard curve of serially diluted cDNA of vaccine strain, D78	95
4.7	Agarose gel electrophoresis showing the specificity and detection limit of the PCR assay for cDNA from very virulent strain UPM94/273	98
4.7A	Agarose gel electrophoresis profile of serially diluted very virulent strain, UPM94/273 with match primer comination	98
4.7B	Agarose gel electrophoresis profile of serially diluted very virulent strain, UPM94/273 with mismatch primer comination	98

4.8	Agarose gel electrophoresis showing the specificity and detection limit of the PCR assay for cDNA from vaccine strain D78	100
4.8A	Agarose gel electrophoresis profile of serially diluted vaccine strain, D78with match primer combination	100
4.8B	Agarose gel electrophoresis profile of serially diluted vaccine strain, D78 with mismatch primer combination	100
4.9	The performance of real-time in detecting specific amplification of vvIBDV (UPM97/61 and UPM94/273) and attenuated vaccine (D78, LZD, TAD and IBD VAC) strains	103
4.9A	Amplification and melting curve profile of IBDV very virulent strain, UPM97/61	103
4.9B	Amplification and melting curve profile of IBDV very virulent strain, UPM94/273	103
4.9C	Amplification and melting curve profile of IBDV vaccine strain, D78	104
4.9D	Amplification and melting curve profile of IBDV vaccine strain, LZD	104
4.9E	Amplification and melting curve profile of IBDV vaccine strain, TAD	105
4.9F	Amplification and melting curve profile of IBDV vaccine strain, IBDVAC	105
4.10	Agarose gel electrophoresis showing the specificity of the real-time PCR assay in detecting vaccine strains; TAD, LZD and IBDVAC using both match and mismatch primer combinations	109
4.11	The specificity of real-time PCR using IF & IVIR and IF & RCLA primer combinations on control uninfected tissue samples	110
4.12	Nucleotide sequences (316 bp) of UPM94/273, UPM97/61, D78, LZD, TAD and IBD VAC used in this study	113

LIST OF ABBREVIATIONS

AC-ELISA	Antigen-capture Enzyme-linked Immunosorbant Assay
AGPT	Agar Gel Diffusion Precipitin Test
BLAST	Basic Local Alignment Search Tool
bp	Base pair
cDNA	Complementary Deoxyribonucleic Acid
°C	Degree Celcius
CAM	Chorioallantoic Membrane
C _T	Threshold Cycle
CV	Coefficient Variation
DNA	Deoxyribonucleic Acid
ddH₂O	Double Distilled Water
ddNTP	Dideoxynucleotide Triphosphate
dNTP	Deoxynucleotide Triphosphate
ds	Double Stranded
DTT	Dithrothreitol
dH₂O	Distilled Water
DIG	Digoxigenin
DMSO	Dimethysulphoxide
EDTA	Ethylenediaminetetraacetic Acid Disodium Salt
ELISA	Enzyme-linked Immunosorbant Assay
F	Fluorescence
FRET	Fluorescence Resonance Energy Transfer

HCI	Hydrochloric Acid
IBD	Infectious Bursal Disease
IBDV	Infectious Bursal Disease Virus
IBV	Infectious Bronchitis Virus
Kb	Kilobase
KCI	Kalium Chloride
kDA	Kilodalton
Mg	Magnesium
Mg ₂ Cl	Magnesium Chloride
min	Minute
mins	Minutes
ml	Mililiter
mM	Milimolar
NCBI	National Center Biotechnology Information
hà	Microgram
μM	Micromolar
ng	Nanogram
NDV	Newcastle Disease Virus
OD	Optical Density
OD ₄₀₅	Optical Density at 405nm wavelength
PBS	Phosphate Buffer Saline
PCR	Polymerase Chain Reaction
ρg	Picogram
pmole	Picomole

.

PTC	Peltier Thermal Cycler		
qcPCR	Competitive Quantitative PCR		
R ²	Regression Coefficient		
RBC	Red Blood Cell		
RE	Restriction Endonuclease		
RFLP	Restriction Fragment Length Polymorphism		
RNA	Ribonucleic Acid		
RT-PCR	Reverse Transcriptase Polymerase Chain Reaction		
RT	Reverse Transcriptase		
SD	Standard Deviation		
Secs	Seconds		
SPF	Specific-Pathogen-Free		
SS	Single Stranded		
т	Temperature		
TAE	Tris-Acetate-EDTA		
Taq	Thermus aquaticus		
Tm	Melting Teperature		
TAE	Tris-Acetate-EDTA Buffer		
Tris	2-amino-2(hydroxymethy)-1,3 propandiol		
ul	Microlitre		
UPM	Universiti Putra Malaysia		
USA	United State of America		
UV	Ultraviolet		
w/v	Weight/Volume		

xxiii

v/v	Volume/Volum Very virulent	
vv		

Amino Acid	Single/Three Letter Amino Acid Code		
Alanine	А	Ala	
Arginine	R	Arg	
Asparagine	Ν	Asn	
Aspartic Acid	D	Asp	
Glutamine Acid	Q	Gln	
Glutamic Acid	E	Glu	
Glycine	G	Gly	
Isoleucine	1	lle	
Leucine	L	Leu	
Lycine	К	Lys	
Methionine	М	Met	
Phenylalanine	F	Phe	
Proline	P	Pro	
Serine	S	Ser	
Threonine	Т	Thr	
Tryptophan	W	Тгр	
Valine	V	Val	

xxiv

