UTILIZATION OF MOLECULAR SYSTEMS FOR THE IDENTIFICATION AND TYPING OF CLINICALLY RELEVANT MULTIPLE DRUG RESISTANT STAPHYLOCOCCUS AUREUS

VASANTHAKUMARI NEELA

FPSK(P) 2005 4
UTILIZATION OF MOLECULAR SYSTEMS FOR THE IDENTIFICATION AND TYPING OF CLINICALLY RELEVANT MULTIPLE DRUG RESISTANT STAPHYLOCOCCUS AUREUS

By

VASANTHAKUMARI NEELA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2005
Dedicated to my husband, daughter, son and my parents
For their strength and courage.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

UTILIZATION OF MOLECULAR SYSTEMS FOR THE IDENTIFICATION AND TYPING OF CLINICALLY RELEVANT MULTIPLE DRUG RESISTANT STAPHYLOCOCCUS AUREUS

By

VASANTHA KUMARI NEELA

January 2005

Chairman: Associate Professor Mariana Nor Shamsudin, PhD

Faculty: Medicine and Health Sciences

Staphylococcus aureus is an important human nosocomial pathogen that can cause a variety of skin infections and toxin-mediated diseases including gastroenteritis, staphylococcal scalded-skin syndrome and toxic shock syndrome. Whilst the use of antibiotics can kill most strains of pathogenic microbes, the increase of multiple drug resistant S. aureus, especially among hospital patients have been a worrying trend. In order to treat patients infected with this organism at the earliest time possible and to prevent further nosocomial outbreaks, it is necessary to rapidly identify the multiple drug resistant S. aureus, so that the patient can be treated with the correct antibiotic on time and thus prevent further complications.

S. aureus besides being a nosocomial pathogen causing frequent nosocomial infections also causes community acquired outbreaks. The increased prevalence of S. aureus infections may be prevented if the epidemiology of S. aureus is studied, whereby the
spread of outbreak clones can be identified and treated with the appropriate drugs. Therefore, the aim of this study was to investigate suitable molecular systems for use in the rapid identification of \textit{S. aureus} and detection of multiple drug resistant \textit{S. aureus} and for typing of strain variations for epidemiological understanding of \textit{S. aureus} in Malaysia.

In this study, a total of eighty-nine clinical \textit{S. aureus} isolates obtained from five different hospitals in Malaysia and from one pathology laboratory were studied. All the isolates were confirmed for \textit{S. aureus} by the presence of species-specific Sa442 fragment (\textit{S. aureus} specific fragment). Sequencing of the Sa442 fragment from isolates obtained from the different geographical locations identified this fragment as an epidemiological marker as it showed a wide variation of 1-10 \% in the nucleotide sequences among the \textit{S. aureus} isolates studied.

For rapid identification of \textit{S. aureus} and detection of multiple drug resistant strains, two molecular assays were utilized. In the first assay, a multiplex PCR based strategy was used, whereby the genes responsible for methicillin (\textit{mecA}), mupirocin (\textit{iles2}), gentamycin (\textit{aac(6')-aph(2'')}), erythromycin(\textit{ermA}) resistance and species specific Sa442 fragment were amplified. Results of the assay indicated the amplification of antibiotic resistant genes and Sa442 fragment at the expected sizes of 533, 456, 174, 139 and 108bp respectively. All the amplified products were further confirmed by sequencing. The second assay was a membrane assay based on an optimized dot blot hybridization technique. In the dot blot assay, a set of oligonuclotide probes designed from the antibiotic resistance genes and the Sa442 fragment sequences were highly sensitive and
specific for the respective bacterial target genes. The membrane assay developed was able to detect multiple drug resistant *S. aureus* isolates in less than two hours after obtaining pure culture isolates. Detection is also possible in less than two hours from spiked urine and blood samples, as well as for direct nasal samples. The results obtained with both polymerase chain reaction (PCR) and membrane assay were found to be similar whereby, 58.8, 67.7, 97.7 and 1.1% of the isolates carried *mecA*, *aac(6')-aph(2'')*, *ermA* and *iles-2* genes respectively. The overall correlation between the antibiotic resistance (disc diffusion test) and presence of antibiotic resistant genes (PCR and membrane assay) were found to be 77.3% for methicillin, 73.7 % for gentamycin, 95.4% for erythromycin and 100% mupirocin.

The molecular epidemiology of local *S. aureus* was studied using randomly amplified polymerase chain reaction (RAPD) and repetitive element sequence based PCR (rep-PCR). Four out of the 20 arbitrary primers screened were highly efficient for use in molecular typing of *S. aureus* isolates. The rep-PCR typing primers designed from the staphylococcal repetitive sequences (STAR) were also markedly feasible for typing of *S. aureus* isolates. The RAPD study for molecular epidemiology showed wide variation in *S. aureus* isolates, as seen by genetic distance value based on Jaccard’s index ranged from 0.037 to 0.954545. Similarly, in rep-PCR study, a wide variation in genetic distance value based on Jaccard’s index ranged from 0.037037 to 0.894737. A wide variation in genetic distance was seen in the clonal diversity of local *S. aureus* isolates, where by, isolates were divided into four (4) clones namely Miri, Kuantan, Kota Bharu and Seremban, with Miri as the most predominant clone. In addition, RAPD was able to
distinguish between methicillin resistant *Staphylococcus aureus* (MRSA) and non-MRSA isolates, showing the spread of two MRSA clones in Malaysia. RAPD analysis produced two (2) molecular markers, at positions 500 bp with primer OPAE 14 and 750 bp with OPAE 15, whereas, rep-PCR produced three (3) molecular markers, positions 500 with rep primer 1, between 1500 and 2000 bp with rep 2, and slightly above 750 bp with rep primer 3, in most of the *S. aureus* isolates studied. From the five (5) markers obtained with RAPD and rep-PCR, the putative 500 bp rep marker was cloned in PCR 2.1 Topo vector and sequenced. The 500 bp rep marker was selected, as this marker was obtained through the amplification of *S. aureus* isolates with the primer designed from *S. aureus* genome and also because of the small size. The sequence obtained identified the rep-marker as a 489 bp fragment, showing 95% homology to a region in glyceraldehydes –3-phosphate dehydrogenase (GAP) operon in *S. aureus* genome, whose coding potential is unknown. The higher percentage (95%) similarity of the rep marker to *S. aureus* genome emphasized the importance of the rep marker in species-specific identification.

To investigate the potentiality of the rep marker in species-specific identification of *S. aureus* isolates, a PCR and a membrane assay were developed with primers and probe designed from the rep sequence. The PCR and membrane assay showed positive signal for all eighty-nine *S. aureus* isolates tested and no signal was seen for other Gram-positive and Gram-negative species tested, appreciating the specificity and the sensitivity of rep primers and probes in species-specific detection of *S. aureus* isolates. Sequencing of the rep marker from isolates obtained from different geographical locations, identified this marker (rep) as a potential diagnostic marker as it is highly conserved in *S. aureus*
genome showing 98-99% sequence similarity among the isolates. Besides for diagnosis, using two typing procedures (RAPD and rep-PCR) to study the clonal relatedness among the local *S. aureus* isolates which were developed with suitable RAPD and rep primers, they were able to correctly type *S. aureus* isolates according to the geographical location and also to differentiate between MRSA and non-MRSA. Although the RAPD primers are commercially available, the rep primers identified are still not published for use in typing *S. aureus*. The patterning of the novel rep primers and probe for typing and diagnosis of *S. aureus* will be extremely useful in the clinical diagnosis as the primers and probes innovated are highly specific and ubiquitous in all *S. aureus* isolates.

These novel achievements made in the study will be of great value in the modern diagnostic era as the molecular systems optimized could be readily applied in the clinical diagnosis due to the specificity and rapidity in the detection of multiple drug resistant *S. aureus*. The achievements of the current study is especially a significant contribution to the clinical diagnostics and infectious disease research because the utilization of the optimized system incorporated as diagnostic kit will enhance the sensitivity and rapidity of molecular based detection in combination with sub-typing ability. Therefore, the routine application of the molecular systems optimized and the primers and probes developed in this study for the rapid identification of multiple drug resistant *S. aureus* and to study the epidemiology of *S. aureus* will definitely contribute towards early diagnosis of *S. aureus* infection in clinical laboratories. The epidemiological investigation will aid in developing more effective strategies in preventing and controlling the further spread of multiple drug resistant *S. aureus* clones in Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGGUNAAN SISTEM MOLEKUL BAGI MENGENALPASTI DAN MENGKELASKAN STAPHYLOCCCUS AUREUS KLINIKAL YANG RINTANG PELBAGAI UBAT

Oleh

Vasantha Kumari Neela

Januari 2005

Pengerusi : Profesor Madya Mariana Nor Shamsudin, PhD
Fakulti : Perubatan dan Sains Kesihatan

Staphylococcus aureus merupakan salah satu patogen yang kerap menyebabkan infeksi kulit dan penyakit lain termasuk gastroenteritis, sindrom kulit terbakar, dan sindrom kejutan toksik. Walaupun penggunaan antibiotik boleh membunuh kebanyakan bakteria patogenik, namun peningkatan rintangan terhadap S. aureus tetap berlaku terutama di kalangan pesakit hospital. Bagi merawat pesakit yang dijangkiti dengan organisma ini pada peringkat awal, amatlah penting bagi mengenalpasti kepelbagaian ubat yang rintang terhadap S. aureus, agar pesakit boleh dirawat dengan antibiotik yang betul, tepat pada masanya dan bagi menghala komplikasi seterusnya. S. aureus juga adalah patogen nosocomial yang menyebabkan wabak nosocomial yang kerap merebak kepada komuniti. Perkara ini boleh dicegah jika epidemiologi S. aureus dikaji, dari segi mengenalpasti perebakan klon dan dengan ini ubat yang sesuai boleh digunakan untuk rawatan. Oleh itu, tujuan kajian ini adalah untuk membentuk satu sistem molekul yang pantas bagi
mengenalpasti kerintangan kepelbagaian antibiotik terhadap *S. aureus* serta mengkaji epidemiologi *S. aureus* di Malaysia.

Di dalam kajian ini, sejumlah lapan puluh sembilan isolat klinikal *S. aureus* daripada lima hospital yang berbeza di Malaysia dan daripada satu makmal patologi digunakan. Semua isolat disaring bagi kehadiran spesis spesifik Sa442 yang mengesahkan ia adalah isolate *S. aureus*.

Bagi pengenalpastian kerintangan kepelbagaian antibiotik terhadap *S. aureus*, dua sistem molekul telah digunakan iaitu ‘multiplek PCR’, di mana gen yang bertanggungjawab untuk rintangan terhadap antibiotik *methicillin, gentamycin, mupirocin* dan *erythromycin* diamplifikasikan. Keputusan menunjukkan amplifikasi gen yang rintang terhadap antibiotik adalah seperti yang dijangkakan iaitu pada 533, 456, 174, 139 dan 108 bp. Semua produk gen yang diamplifikasikan disahkan dengan penentuan jujukan gen. Kemudian assai membran yang berdasarkan teknik hibrid “dot blot” digunakan untuk mengenalpasti kerintangan kepelbagaian antibiotik *S. aureus*. Set prob oligonukleotida dibentuk daripada antibiotik yang rintang dan jujukan fragmen Sa442 diuji di dalam assai membran. Sensitiviti dan kesperisikan prob yang dikaji menunjukkan prob yang dibentuk adalah sensitif dan spesifik kepada sasaran tertentu. Assai membran yang dibentuk didapat boleh mengesan kepelbagaian antibiotik rintang dalam masa kurang daripada dua jam tanpa memerlukan instrumen yang mahal. Hasil yang didapati dengan PCR dan assai membran didapat sama, di mana 58.8% daripada isolatnya mempunyai ketahanan terhadap methicillin, 67.7% terhadap gentamycin, 97.7% terhadap erythromycin dan
1.1% terhadap mupirocin. Korelasi keseluruhan di antara kerintangan antibiotik dan kehadiran gen-gen rintang antibiotik adalah 77.3% untuk methicillin, 73.7% untuk gentamycin, 95.4% untuk erythromycin, dan 100% untuk mupirocin.

Epidemiologi molekul *S. aureus* tempatan dikaji dengan menggunakan dua kaedah rawak iaitu teknik amplifikasi rantai reaksi polimerase (RAPD) dengan empat primer OPAE 06, 10, 14 dan 15 dan teknik elemen jujukan berulang yang berasaskan teknik PCR (rep-PCR) dengan primer yang didapati daripada jujukan berulang staphylococcal (STAR). Kajian RAPD bagi epidemiologi molekul menunjukkan variasi yang meluas bagi isolate *Staphylococcus aureus*, seperti yang dilihat dari nilai jarak genetik berdasarkan Indeks Jaccard dalam kadar di antara 0.037 ke 0.954545. Seperti juga dalam kajian rep-PCR, variasi meluas dalam nilai jarak genetik berdasarkan Indeks Jaccard dengan kadar dari 0.037037 ke 0.894737. Variasi meluas dalam jarak genetik dilihat dalam kepelbagaian klonal bagi isolate *S. aureus* tempatan di mana isolate dibahagikan kepada empat (4) klon iaitu Miri, Kuantan, Kota Bharu dan Seremban, dengan Miri sebagai klon yang paling dominan. Tambahan pula, RAPD dapat membezakan antara isolat *S. aureus* yang rintang terhadap methicillin (MRSA) dan isolat bukan MRSA, menunjukkan penyebaran dua klon MRSA di Malaysia. RAPD menghasilkan dua penanda molekul pada posisi 500 dengan primer OPAE 14 dan 750 bp dengan primer OPAE 15, melalui teknik rep-PCR pula tiga penanda molekul dihasilkan pada posisi 500 dengan primer rep 1, antara 1500 dan 2000 bp dengan primer rep 2, kurang sedikit daripada 750 bp dengan primer rep 3, pada kebanyakan isolates *S. aureus* yang dikaji. Daripada lima penanda molekul yang digunakan penanda 500 bp rep di klonkan ke dalam Topo 2.1 vektor dan di jujukan.
Jujukan penanda 500bp menunjukkan 95% homologi pada bahagian operon glyseraldehid-3-fosfat dihidrogenase (GAP) dalam *S. aureus* genome. Peratusan yang tinggi (95%) yang mana sama dengan penunjuk rep pada genome *S. aureus* menunjukkan kepentingan penunjuk rep untuk digunakan sebagai pengenalpastian spesifik spesis.

Bagi membuktikan penunjuk rep boleh digunakan dalam pengenalpastian spesifik spesis isolat *S. aureus*, PCR dan assai membrane dicipta dengan penggunaan primer dan prob yang dibina daripada jujukan rep. Hasilnya, kedua-dua teknik menunjukkan signal yang positif kepada semua lapan puluh sembilan isolate *S. aureus* yang digunakan dan tidak pada spesis gram positif dan gram negatif yang lain. Jujukan penunjuk rep daripada isolate yang diperolehi daripada lokasi geografi yang berbeza, menunjukkan penunjuk ini (rep) berpotensi sebagai penunjuk diagnostik disebabkan ia didapati sama dikalangan isolat *S. aureus* (98%-99%). Selain daripada diagnostik, dua kaedah pengkelas (RAPD and rep-PCR) bagi mengkaji perkaitan antara klon-klon diantara isolate *S. aureus* dikenalpasti, yang mana pengkelas isolat *S. aureus* berdasarkan lokasi geografi dan perbezaan antara MRSA dan bukan MRSA dapat dilakukan dengan tepat. Walaupun primer RAPD boleh didapati secara komersil, primer rep yang dikenalpasti masih belum diterbitkan bagi pengkelas *S. aureus*. Pencorakan bagi primer rep dan probe baru untuk pengelas dan diagnosis *S. aureus* akan menjadi sangat berguna dalam diagnosis klinikal kerana primer dan probe yang direka adalah sangat spesifik dan didapati dalam semua isolate *S. aureus*.
Kajian ini membolehkan diagnostik baru iaitu dengan menggunakan kaedah molekular diaplisisakan dalam diagnosis klinikal disebabkan kespesifikkan dan kepantasan dalam mengesan kerintangan kepelbagaian antibiotik \textit{S. aureus}. Pencapaian kajian ini boleh menyumbang dalam diagnostik klinikal dan kajian penyakit kerana penggunaan sistem ini dalam bentuk ‘kit’ diagnostik akan meningkatkan sensitiviti dan kepantasan pengesanan molekular yang bergabung dengan kemampuan pengkelasannya. Oleh itu, penggunaan kerap sistem molekul ini dalam mempercepatkan pengenalpastian kerintangan kepelbagaian antibiotik \textit{S. aureus} dan bagi mengkaji epidemiologi bakteria dapat menyumbang kepada diagnosis awal jangkitan \textit{S. aureus} dalam makmal klinikal. Siasatan epidemiologi boleh menyumbang dalam penghasilan strategi yang lebih efektif dalam pencegahan dan pengawalan perebakan klon \textit{S. aureus} rintang kepelbagaian antibiotik di Malaysia.
ACKNOWLEDGEMENTS

It is with pleasure, that I express my deepest thanks to my supervisor Associate Professor Dr. Mariana Nor Shamsudin for her supervision, guidance, patience and invaluable hospitality throughout the period of study. I am also grateful to my co-supervisors Professor Dr. Son Radu, Associate Professor Dr. Rozita Rosli and Associate Professor Dr. Raha Abdul Rahim for their sound advice during the research.

I would like to thank Professor Sazaly Abu Bakar from University Malaya Medical Center for providing *Staphylococcus aureus* isolates (MRSA).

Heartful thanks are extended to Encik Zainan and Encik Rahman for their technical assistance and support. My gratitude extends to all my lab mates for their friendship, encouragement, useful discussion and much appreciated help.

I would like to acknowledge the Ministry of Science, Technology and the Environment, Malaysia for supporting this research through the IRPA grant.

Finally, I am deeply grateful to my understanding husband Dr. P. Raja, Pappitha Raja and Vishnu Raja for their cooperation and support in making this thesis a reality.
I certify that an Examination Committee has met on 17th January 2005 to conduct the final examination of Vasantha Kumari Neela on her Doctor of Philosophy thesis entitled “Utilization of Molecular Systems for the Identification and Typing of Clinically Relevant Multiple Drug Resistant Staphylococcus aureus” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Elizabeth George, Ph.D.
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Raja Noor Zaliha Abdul Rahman, Ph.D.
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Saleha Abdul Aziz, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Thong Kwai Lin, Ph.D.
Professor
Faculty of Science
Universiti Malaya
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 FEB 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mariana Nor Shamsudin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Raha Abdul Rahim, PhD
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Son Radu, PhD
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 MAR 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

VASANTHA KUMARI NEELA

Date: 18/02/05
TABLE OF CONTENTS

DEDICATION

ABSTRACT

ABSTRAK

ACKNOWLEDGEMENTS

APPROVAL

DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF SEQUENCES

LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

2 LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>9</td>
</tr>
<tr>
<td>Current issue on Staphylococcus aureus</td>
<td>10</td>
</tr>
<tr>
<td>Laboratory diagnosis</td>
<td>13</td>
</tr>
<tr>
<td>Antibiotic resistance in Staphylococcus aureus</td>
<td>16</td>
</tr>
<tr>
<td>Methicillin sensitive Staphylococcus aureus (MSSA)</td>
<td>18</td>
</tr>
<tr>
<td>Methicillin resistant Staphylococcus aureus (MRSA)</td>
<td>18</td>
</tr>
<tr>
<td>Erythromycin resistance</td>
<td>22</td>
</tr>
<tr>
<td>Aminoglycosides resistance (eg. Gentamycin)</td>
<td>23</td>
</tr>
<tr>
<td>Mupirocin resistance</td>
<td>24</td>
</tr>
<tr>
<td>Molecular typing of Staphylococcus aureus</td>
<td>25</td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
<td>29</td>
</tr>
<tr>
<td>Randomly amplified polymerase chain reaction</td>
<td>30</td>
</tr>
<tr>
<td>Repetitive enteric polymerase chain reaction</td>
<td>32</td>
</tr>
<tr>
<td>Multiplex polymerase chain reaction (MPCR)</td>
<td>33</td>
</tr>
<tr>
<td>Dot blot hybridization</td>
<td>35</td>
</tr>
<tr>
<td>DNA sequencing</td>
<td>37</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS

3.1 Bacterial isolates
3.1.1 Bacterial sources
3.1.2 Bacteriological confirmatory tests
 Gram staining
 Catalase activity
 Oxidase Activity
 Coagulase test
3.1.2.1 Preparation of bacterial stock culture
3.1.3 Antimicrobial susceptibility testing
3.1.4 Total DNA extraction
 Quantitation of DNA
 Agarose gel electrophoresis of DNA
3.1.5 Rapid DNA template preparation by boiling method
3.1.6 DNA preparation from spiked samples
 Bacterial DNA extraction from spiked blood sample
 Bacterial DNA template preparation from nasal and spiked urine samples
3.2 Study I: To rapidly identify Staphylococcus aureus isolates based on Sa442 fragment
3.2.1 Amplification of Staphylococcus aureus species-specific fragment (Sa442)
 Optimization with PCR parameters
 Optimization with PCR cycling conditions
 Optimization of the PCR assay with template obtained from boiling method
 Optimized PCR protocol to achieve the best result
3.2.1.1 Sensitivity of the PCR assay using Sa442 (Staphylococcus aureus species-specific fragment) primers
3.2.1.2 Specificity of PCR assay using Sa442 (Staphylococcus aureus species-specific fragment) primers
3.2.2 DNA sequencing
3.2.3 Development of a probe based on Sa442 fragment sequence for the identification of Staphylococcus aureus
 3.2.3.1 Designing of oligonucleotide probes
 Preparation of biotin labeled probes
 Preparation of HRP labeled probes
 Development of a membrane assay using dot blot technique
3.2.3.2 Membrane assay using biotin labeled probe
 Sample preparation
Blotting the samples on the membrane 59
Immobilization 59
Hybridization 60
Chemiluminescent Detection 60
Optimization of membrane assay using biotin labeled probe 62

3.2.3.2.1 Sensitivity of the membrane assay using biotin labeled Sa442 probe 63
3.2.3.2.2 Specificity of the membrane assay and detection of Sa442 fragment 64
3.2.3.3 Membrane assay using HRP labeled probe 64
Optimization of membrane assay using HRP labeled probe 65

3.2.3.3.1 Sensitivity of the membrane assay using HRP Sa442 probe 65
Optimization of the genomic DNA to hybridize with probe 66
Optimization of the probe to hybridize with genomic DNA 66

3.3 Study II: To detect antibiotic resistant genes in *Staphylococcus aureus* 67

3.3.1 Development of a multiplex PCR (MPCR) assay 67
Amplification of *mecA*, *aac(6')-aph(2'*)*, *ermA* genes by PCR 68
Optimization of multiplex PCR assay 69

3.3.2 DNA sequencing of antibiotic resistant genes 71

3.3.3 Development of a membrane assay based on dot blot technique for the detection of antibiotic resistance genes in *Staphylococcus aureus* 72

3.3.3.1 Sensitivity of the membrane assay using biotin labeled *mecA*, *ErmA* and *aac(6')-aph(2'*) probes 73

3.4 Study III: To determine the clonal relationship among *Staphylococcus aureus* isolates and identification of a potential diagnostic marker 75

3.4.1 Molecular fingerprinting of *Staphylococcus aureus* 75
3.4.1.1 Randomly amplified polymorphic DNA fingerprinting 75
RAPD analysis 76

3.4.1.2 Repetitive element sequence based PCR DNA fingerprinting 77

3.4.2 Fragment size and RAPD and rep-PCR band scoring 78

3.4.2.1 Identification of a potential diagnostic marker from the rep-PCR fingerprint 79
4 RESULTS

4.1 Bacterial isolates

4.1.1 Bacterial sources

4.1.2 Bacteriological characterization tests

4.1.3 Antibiotic susceptibility test

4.1.4 Total genomic DNA extraction

4.1.5 Rapid DNA template preparation by boiling method

4.1.6 DNA preparation from spiked samples

4.2 Study I: To rapidly identify Staphylococcus aureus isolates based on Sa442 fragment

4.2.1 Detection of Staphylococcus aureus species-specific (Sa442) fragment by PCR

4.2.1.1 Sensitivity of the PCR assay using Sa442 (Staphylococcus aureus species-specific fragment) primers

4.2.1.2 Specificity of PCR assay using Sa442 (Staphylococcus aureus species-specific fragment) primers

4.2.2 DNA sequencing of Sa442 fragment
4.2.3 Development of a probe based on Sa442 fragment sequence for the identification of *Staphylococcus aureus*

4.2.3.1 Designing of oligonucleotide probe
Development of a membrane assay using dot blot

4.2.3.2 Membrane assay using biotin labeled probe
Optimization of membrane assay using biotin labeled probe

4.2.3.2.1 Sensitivity of the biotin labeled Sa442 probe
4.2.3.2.2 Specificity and Detection of Sa442 fragment

4.2.3.3 Membrane assay using HRP labeled probe
Optimization of membrane assay using HRP labeled probe

4.2.3.3.1 Sensitivity of membrane assay using HRP Sa442 probe

4.3 Study II: To detect antibiotic resistant genes in *Staphylococcus aureus*

4.3.1 Development of a multiplex PCR (MPCR) detection of clinically relevant antibiotic resistant genes in *Staphylococcus aureus*
Amplification of *mecA, aac(6\')-aph(2\')*, *ermA* genes by PCR
Optimization of multiplex PCR assay

4.3.2 DNA sequencing of antibiotic resistant genes (*mecA, iles2, aac(6\')-aph(2\')*) and *ermA*
Sequences analysis of *iles 2* gene (high level mupirocin resistance)
Sequence analysis of *mecA* gene (Methicillin resistance)
Sequence analysis of *aac(6\')-aph(2\')* gene (Gentamycin resistance)
Sequence analysis of *ermA* gene (Erythromycin resistance)

4.3.3 Membrane based assay: detection of antibiotic resistance genes using dot blot technique

4.3.3.1 Sensitivity of the biotin labeled *mecA, ermA* and *aac(6\')-aph(2\')* probes
Correlation between antibiotic resistance and presence of antibiotic resistant genes

4.4 Study III: Genotyping of *Staphylococcus aureus* using RAPD and Rep-PCR

4.4.1 RAPD finger printing
4.4.2 RAPD and rep-PCR banding profile
Computer analysis of RAPD and rep-PCR fingerprints
Genetic distance obtained by RAPD-PCR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Staphylococcus aureus isolates used in this study</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Bacterial species other than Staphylococcus aureus used in this study</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>The mutated oligonucleotide sequences of Sa442 fragment</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Primers used in the multiplex PCR assay</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>The oligonucleotide probes used in this study</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>The mutated oligonucleotide sequences of ermA, aac(6')-aph(2'”) and mecA gene</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>Primers used in rep-PCR</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>The mutated oligonucleotide sequences of rep fragment</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>The antibiotic susceptibility profile obtained with disc diffusion test</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>Comparison between antibiotic resistance by disk diffusion test, PCR and membrane assay</td>
<td>144</td>
</tr>
<tr>
<td>11</td>
<td>The antibiotic susceptibility pattern for each isolate</td>
<td>186</td>
</tr>
<tr>
<td>12</td>
<td>The percentage of isolates for each pattern</td>
<td>186</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Golden yellowish, creamy and opaque colonies of Staphylococcus aureus in the blood agar plate</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>The sensitivity of S. aureus isolate to different antibiotics is shown by clear inhibition zone around the discs</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>Genomic DNA extracted from S. aureus isolates</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>Genomic DNA extracted from blood spiked with S. aureus isolates</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>Optimization of the Sa442 amplification</td>
<td>95</td>
</tr>
<tr>
<td>12</td>
<td>Optimization of the Sa442 amplification</td>
<td>96</td>
</tr>
<tr>
<td>13</td>
<td>Optimization with PCR cycling conditions</td>
<td>96</td>
</tr>
<tr>
<td>14</td>
<td>Optimization of the PCR assay with template from boiling method</td>
<td>97</td>
</tr>
<tr>
<td>15</td>
<td>The detection of Sa442 fragment by PCR</td>
<td>98</td>
</tr>
<tr>
<td>16</td>
<td>The detection of Sa442 fragment by PCR</td>
<td>98</td>
</tr>
<tr>
<td>17</td>
<td>The detection of Sa442 fragment by PCR</td>
<td>99</td>
</tr>
<tr>
<td>18</td>
<td>The detection of Sa442 fragment by PCR</td>
<td>99</td>
</tr>
<tr>
<td>19</td>
<td>The detection of Sa442 fragment by PCR</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>The detection of Sa442 fragment by PCR</td>
<td>100</td>
</tr>
</tbody>
</table>