RADIATION-INDUCED POLYMERIZATION OF ACRYLAMIDE AND METHACRYLAMIDE-BASED POLYMER GEL DOSIMETERS

ARIS DOYAN

FPSK(P) 2005 3
RADIATION-INDUCED POLYMERIZATION OF ACRYLAMIDE AND METHACRYLAMIDE-BASED POLYMER GEL DOSIMETERS

By

ARIS DOYAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

March 2005
In the Name of Allah, the Beneficient, the Merciful

Read in the name of your Lord who created, created man from clots of blood.

Read! your Lord is the most Bounteous who has taught the use of the pen,
has taught man what he did not know.

Al-Qur’an, 96:1-5
DEDICATION

This dissertation dedicates to my late father Happu Lintong, my mother Martha Nurgayah, my parent in law; H. Hambali and Hj. Ahilmi, my wife Susilawati PhD, my sons Muhammad Ikhsan, Ikhasul Amal, my late daughter Kurnia Ramadhani, my brother, my sister and to my all family.
RADIATION-INDUCED POLYMERIZATION OF ACRYLAMIDE AND METHACRYLAMIDE-BASED POLYMER GEL DOSIMETERS

By

ARIS DOYAN

March 2005

Chairman: Associate Professor Elias Saion, PhD
Faculty: Science

Radiation-induced polymerization of acrylamide and methacrylamide-based polymer gel dosimeters potentially used for the verification of complex dose distributions in 3D associated with conformal radiotherapy has been studied using nuclear magnetic resonance (NMR), Raman spectroscopy and impedance analyzer methods at room temperature. Three polymer gels of polyacrylamide (PAAmG), polymethacrylamide (PMAAmG) and poly(acrylamide-co-methacrylamide) (PAAm-co-MAAmG) were synthesized in oxygen free condition from acrylamide (AAm) and methacrylamide (MAAm) as monomers and N, N'-methylene-bis-acrylamide (BIS) as Cross-linker at various concentration from 2% to 6% and 6% gelatin. The comonomers (AAm, MAAm and BIS) were dissolved in an aqueous gelatin
of deionized water in appropriate proportion by weight. In the manufacture of PAAm-co-MAAmG, the BIS was fixed at 2% and allowing the monomers varied from 2% to 6%. The dosimeters, each placed in a closed vial, were irradiated at constant dose rate with single doses ranging from 1 to 20 Gy for PAAmG, from 1 to 30 Gy for PMAAmG and from 1 to 40 Gy for PAAm-co-MAAmG using 60Co teletherapy γ-ray source.

The dose sensitivity of polymerization was determined indirectly using inversion recovery pulse sequence method (IR) and spin-echo based on the Carr-Purcell sequence of NMR method, which measures the spin-lattice relaxation rate R_1 and the spin-spin relaxation rate R_2 of proton in the polymer matrix. Analysis of the change of the relaxation rate ΔR as a function of dose D has revealed that the dose response of polymerization is monoexponential function of the form $\Delta R = A \left(1 - e^{-D/D_0}\right)$. The dose sensitivity D_0 obtained for ΔR_1 is greater than that obtained for ΔR_2, indicating the polymerization that determined from the spin-spin relaxation rate R_2 method is more radiosensitive than that of the spin-lattice relaxation rate R_1 method. The dose sensitivity D_0 is proportional to the concentrations of monomer and cross-linker by factor k_A and k_B respectively. The value of k_B is greater than k_A, indicating that the dose resolution of polymerization is influenced by the cross-linker concentration, irrespective of the concentrations of monomer.
The dose sensitivity of polymerization has been determined directly using photon inelastic scattering of Raman spectroscopic technique by following the change of the Raman shift intensity at CH₂, CH₃ and C=O stretching peaks for polymer formations and at C=C stretching peak for monomer and cross-linker consumptions. Analysis of the change of Raman shift intensity as a function of dose D has revealed that the dose response of polymerization is also monoexponential function of the form \[\Delta l = A (1 - e^{-D/D_0}) \] and \[\Delta l = -A (1 - e^{-D/D_0}) \] for the polymer formation and the consumption of monomer and cross-linker respectively. Analysis of the dose sensitivity \(D_0 \) has confirmed that the dose sensitivity of polymerization by Raman method is in proportion with that of the NMR method. However, \(k_B \) value of NMR method is always greater than that of Raman method, indicating that the dose resolution of polymerization obtained from NMR method had overestimated the actual polymerization.

The dielectric study of PAAmG, PMAAmG and PAAm-co-MAAmG has showed that the dielectric properties relationship with dose is a quasi-dc response in series with the conductance \(G \). The dielectric constant \(\varepsilon'(\omega) \) and dielectric loss \(\varepsilon''(\omega) \) of polymer gels increases with dose and concentration of BIS. The increase of \(\varepsilon'(\omega) \) value with dose is due to an increase polymer formations with increasing dose and BIS consumption. The dielectric loss \(\varepsilon''(\omega) \) also increases with dose and concentration of BIS as more polymers are formed and free ions are created with increasing dose and BIS consumption.
Furthermore, the conductivity study of PAAmG, PMAAmG and PAAm-co-MAAmG revealed that an increase of ac and dc components of conductivity with increasing dose. The power law type of ac conductivity increases with dose and BIS concentration and the frequency exponent s obtained decreases with increasing dose in the range of (0.798 - 0.776), (0.792 - 0.756) and (0.785 - 0.746) for PAAmG, PMAAmG and PAAm-co-MAAmG respectively. This has been attributed to hopping of ions trapped in the localized sites of the polymer gel matrix. The flat response of dc conductivity increases with dose. The dose sensitivity D_0 obtained from the Arrhenius relationship, increases with increasing BIS concentration in the range of (12.72 - 13.35)Gy, (18.21 - 20.12)Gy and (22.47 - 27.70)Gy for PAAmG, PMAAmG and PAAm-co-MAAmG respectively, attributed to the increase of free ionic carriers in the polymer gels with increasing dose.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah Doktor Falsafah

PEMPOLIMARAN DOSIMETER POLIMER GEL BERASASKAN AKRILAMIDA DAN METAKRILAMIDA OLEH ARUHAN SINARAN

Oleh

ARIS DOYAN

March 2005

Pengerusi: Profesor Madya Elias Saion, PhD

Fakulti: Sains

Pempolimaran oleh aruhan sinaran terhadap dosimeter polimer gel berasaskan akrilamida dan meta-akrilamida yang berpotensi digunakan dalam menentusahkan taburan dos komplek dalam 3D yang dikaitkan dengan pengesahan radioterapi telah diselidiki dengan menggunakan kaedah resonans magnet nuklear (NMR), spektroskopi Raman dan analisis impedans pada suhu bilik. Tiga jenis polimer gel bebas oksigen telah disentisis iaitu terdiri daripada poliakrilamida (PAAmG), polимeta-akrilamida (PMAAmG) dan poliakrilamida-co-meta-akrilamida (PAAm-co-MAAmG) daripada akrilamida dan meta-akrilamida sebagai monomer dan N, N'-metalin-bis- akrilamida (BIS) sebagai petautsilang pada komposisi berubah daripada 2% hingga 6% dan 6% gelatin. Komonomer (AAm, MAAm dan BIS) dilarutkan dalam gelatin berair nyahion pada kadar tertentu
mengikut berat. Dalam penyediaan PAAm-co-MAAmG, komposisi BIS ditetapkan pada 2% dan komposisi monomer berubah daripada 2% hingga 6%. Semua dosimeter yang setiap satu diisikan dalam vail tertutup, disinarkan dengan sinar γ pada kadar dos malar tetapi berbeza dos tunggal dalam julat 1 - 20 Gy untuk PAAmG, 1 - 30 Gy untuk PMAAmG dan 1 - 40 Gy untuk PAAm-co-MAAmG dengan menggunakan sumber ⁶⁰Co daripada jenis teleterapi.

Dos sensitif pada pempolimeran telah ditentukan secara tak terus dengan menggunakan kaedah NMR berasaskan metoda pulsa inversi rekoveri dan spin-gema menurut turutan Carr-Purcell yang dapat mengukur kadar santeian spin-kekisi \(R_1\) dan kadar santeian spin-spin \(R_2\) bagi proton dalam matrik polimer. Analisis perubahan terhadap kadar santeian \(\Delta R\) sebagai fungsi dos \(D\) menunjukkan bahawa tindak balas dos pada pempolimeran adalah menurut fungsi monoeksponen dalam bentuk \(\Delta R = A (1 - e^{-D/D_0})\). Dos sensitif \(D_0\) didapati untuk \(\Delta R_1\) lebih besar daripada untuk \(\Delta R_2\), menunjukkan bahawa pempolimeran diukur dengan kaedah kadar santeian spin-spin \(R_2\) lebih sensitif terhadap sinaran daripada kaedah kadar santeian spin-kekisi \(R_1\). Dos sensitif \(D_0\) didapati juga berubah terus dengan komposisi monomer dan petautsilang masing-masing dengan faktor \(k_A\) and \(k_B\). Nilai \(k_B\) lebih besar nilai \(k_A\), menunjukkan bahawa resolusi dos pada pempolimeran ditentukan oleh komposisi petautsilang tanpa bergantung kepada komposisi monomer.
Dos sensitif pada pempolimeran juga telah ditentukan juga dengan kaedah terus menggunakan penyerakan foton tak kenyal menurut teknik keamatan anjakan Raman pada puncak-puncak regangan CH$_2$, CH$_3$ and C=O bagi pembentukan dan pada puncak regangan C=C bagi penggunaan monomer and petautsilang. Analisis perubahan keamatan anjakan Raman sebagai fungsi dos D menunjukkan bahawa tindak balas dos pada pempolimeran juga mempunyai fungsi monoeksponen dalam bentuk $\Delta I = A \left(1 - e^{-D/D_0}\right)$ dan $\Delta I = -A \left(1 - e^{-D/D_0}\right)$ masing-masing untuk pembentukan polimer dan penggunaan monomer dan petautsilang. Analisis dos sensitif D_0 telah mengesahkan dos sensitif pada pempolimeran dengan kaedah Raman adalah setara dengan kaedah NMR. Bagaimanapun, nilai k_B kaedah NMR lebih besar daripada nilai kaedah Raman, menunjukkan resolusi dose pada pempolimeran kaedah NMR melebihi jangkaan daripada pempolimeran sebenar.

Pengajian dielektrik PAAmG, PMAAmG dan PAAm-co-MAAmG telah menunjukkan bahawa hubungan sifat dielektrik dengan dos adalah sambutan quasi-dc secara siri dengan konduktans G. Nilai pemalar dielektrik $\varepsilon'(\omega)$ dan lesapan dielektrik $\varepsilon''(\omega)$ bertambah dengan dos dan komposisi BIS. Penambahan nilai $\varepsilon'(\omega)$ dengan dos adalah kerana lebih banyak polimer terbentuk semasa penambahan dos dan BIS. Lesapan dielektrik $\varepsilon''(\omega)$ juga
bertambah dengan dos dan B1S kerana lebih banyak polimer dan ion bebas terbentuk semasa penambahan dos dan B1S.

Lanjutan daripada pengajian kekonduksian PAAmG, PMAAmG dan PAAm-co-MAAmG menunjukkan bahawa komponen kekonduksian arus ulanganik (a.u) dan arus terus (a.t) bertambah dengan dos. Komponen kekonduksian a.u mematuhi sambutan hukum kuasa yang bertambah dengan dos dan nilai eksponen frekuens s yang diperolehi berkurangan dengan pertambahan dos dalam julat (0.798 - 0.776), (0.792 - 0.756) and (0.785 - 0.746) bagi masing-masing PAAmG, PMAAmG dan PAAm-co-MAAmG. Ini disebabkan oleh ion hop tertahan pada kedudukan setempat dalam matrik polimer. Sambutan kekonduksian a.t yang mendatar bertambah dengan dos. Dos sensitif D_0 yang diperolehi daripada perkaitan jenis Arrhenius didapati bertambah dengan bertambah komposisi B1S dalam julat (12.72 - 13.35)Gy, (18.21 - 20.12)Gy and (22.47 - 27.70)Gy masing-masing bagi PAAmG, PMAAmG dan PAAm-co-MAAmG disebabkan oleh penambahan pembawa cas bebas dalam polimer gel dengan penambahan dos.
ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to Associate Prof. Dr. H. Elias Saion, Chairman of the Supervisory Committee and to the other members of the Committee, namely Prof. Dr. Abdul Halim Shaari, Associate Prof. Dr. H. Wan Mohd. Daud Wan Yusoff, Associate Prof. Dr. H. Mohammad Zaki Ab. Rahman and Dr. Kamaruzzaman Hj. Dahlan for their extremely valued guidance, meticulous discussions, positive criticism and continuous encouragement throughout my studies.

I would like to express my words of thanks to the government of Malaysia for supporting my research by IRPA Grant (No. 09-02-04-0275-EA001).

I am grateful to the government of Indonesia for providing partial travel allowance, and granting me deputation to complete this study.

I would also like to acknowledge the assistance provided to me by the staff of the Department of Physics, namely Mr. Mohammad Zain, Mr. Razak, Mr. Ruslim, Mr. Rahmat and all lecturers.

Thanks are expressed to the Malaysian Institute for Nuclear Technology Research (MINT) for allowing me to irradiate my research samples. I extend my words to the SDDL staff, namely Mr. Taiman Kadni, MSc, Mr. Hasan Hisam and Mrs. Noorhayati.
It will be awful for me if I forget to express my sincere thanks to my friends and co-research fellows of our research group, namely, Mr. Ajis Lepit, Walter Charles, Hamzah Harun, Yusuf Husein, Iskandar, Mrs. Azian and Azlina.

Finally, I would like to thank my mother, my in-laws, my wife, my sons Muhammad Ikhsan, Ikhlasul Amal, my late daughter Kurnia Ramadhani, and also to all my family for their patience, inspiration and understanding. I pray for my late father who during his life extremely encouraged me to keep on paving me on the path of progress, and my current achievement is the result of his prayers.

All praises due to Allah, Lord of the universe. Only by His grace and mercy this thesis can be completed.
I certify that an Examination Committee met on 16th March 2005 to conduct the final examination of Aris Doyan on his Doctor of Philosophy thesis entitled "Radiation-Induced Polymerization of Acrylamide and Methacrylamide-Based Polymer Gel Dosimeters" in accordance with Universiti Pertanian Malaysia (Higher Quantity) Act 1980 and Universiti Pertanian Malaysia (Higher Quantity) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azmi Zakaria, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Wan Mahmood Mat Yunus, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zainul Abidin Hasan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Abd Aziz Tajuddin, PhD
Professor
School of Physics
Universiti Sains Malaysia
(External Examiner)

GULAM RUSLI RAHMAT ALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 MAY 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Elias Saion, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Wan Daud Wan Yusoff, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Zaki Abd Rahman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Kamaruzzaman Hj. Dahlan, PhD
MINTS Bangi
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 JUN 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other quantity at UPM or other institutions.

ARIS DOYAN

Date: 2 May 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxviii</td>
</tr>
</tbody>
</table>

CHAPTER

I **INTRODUCTION** 1

II **LITERATURE REVIEW** 9

- History of Polymer Gel Dosimetry 9
- Fricke Gel Dosimetry 9
- Disadvantages of Fricke Gels 10
- Polymer Gel Dosimetry 12
- Phenomenon of Polymerization in Polymer Gels 14
- NMR Measurements and MRI Imaging of Polymer Gels 21
- Raman Spectroscopy Measurements of Polymer Gels 31
- Other Measurements of Polymers Gels 44
 - X-ray CT imaging 44
 - Optical Imaging 46
 - Ultrasonic Evaluation 47
- Applications of Polymer Gels 49
 - Intensity-Modulated Radiation Therapy (IMRT) 50
 - Brachytherapy 50
 - Stereotactic Radiosurgery and Radiotherapy 52
 - Carbon ion radiotherapy 52
 - Boron neutron capture therapy 53

xvii
III THEORETICAL

Interaction of Ionizing Radiation with Matter 54
 Ionizing Radiations 54
Gamma Ray Interactions 55
 Photoelectric Effect 58
 Rayleigh Scattering 59
 Compton Scattering 59
 Pair Production 60
Absorbed Dose 61
Radiation Effects 62
 Ionization and Excitation 62
 Radiolysis 65
 Recombination 65
 Polymerization 66
 Cross-linking 67
 Chain Scission 67
 Role of Radical Scavengers and Oxygen 68
Nuclear Magnetic Resonance (NMR) 69
 Nuclei Spin and Magnetic Dipole Moment 69
 Resonance 73
 Magnetization and Relaxation 74
Raman Scattering 77
 Inelastic Scattering of Light 77
 Polarizability of Molecules 78
 Raman Spectroscopy 80
 Intensity of Raman Line 81
Interaction of Electric Field in Dielectric Materials 82
 Polarization of Dielectric Dipole 82
 Capacitance and Conductance 85
 Dielectric Constant and Dielectric Loss 87
 Electrical Conductivity in Dielectrics 91
 Modelling of Dielectric Relaxation 96

IV GELS SYNTHESIS, IRRADIATION AND CHARACTERIZATIONS 102

Preparation of Polymer Gels 102
 Chemical Material Weighting 102
 Chemical mixing 104
 Irradiation of Polymer Gels 106
Characterizations of Polymer Gels 109
 NMR Measurements 109
 Raman Scattering Measurements 112
 Dielectric and Conductivity Measurements 114
V NMR RELAXATION STUDIES OF POLYMER GELS

Introduction

Polyacrylamide Gel (PAAmG)
 Change of R_1 with AAm
 Change of R_1 with BIS
 Change of R_2 with AAm
 Change of R_2 with BIS

Polymethacrylamide Gel (PMAAmG)
 Change of R_1 with MAAm
 Change of R_1 with BIS
 Change of R_2 with MAAm
 Change of R_2 with BIS

Polyacrylamide-co-methacrylamide Gels (PAAm-co-MAAmG)
 Change of R_1 with AAm
 Change of R_1 with MAAm
 Change of R_2 with AAm
 Change of R_2 with MAAm

Summary

VI RAMAN SCATTERING STUDIES OF POLYMER GELS

Introduction

Polyacrylamide Gels (PAAmG)
 Change of Intensity of CH$_2$ stretching at 3040 cm$^{-1}$ with AAm
 Change of Intensity of CH$_2$ stretching at 3040 cm$^{-1}$ with BIS
 Change of Intensity at 1678 cm$^{-1}$ C=O stretching with AAm
 Change of Intensity of C=O stretching at 1678 cm$^{-1}$ with BIS
 Change of Intensity of C=C stretching at 1633 cm$^{-1}$ for AAm consumption
 Change of Intensity of C=C stretching at 1628 cm$^{-1}$ for BIS consumption

Polymethacrylamide Gels (PMAAmG)
 Change of Intensity of CH$_3$ stretching mode at 2880 cm$^{-1}$ with MAAm
 Change of Intensity of CH$_3$ stretching mode at 2880 cm$^{-1}$ with BIS
 Change of Intensity of C=O stretching mode at 1985 cm$^{-1}$ with MAAm
Change of Intensity of C=O stretching mode at 1985 cm\(^{-1}\) with BIS
Change of Intensity of C=C stretching at 2357 cm\(^{-1}\) for MAAm consumption
Change of Intensity of C=C stretching at 1968 cm\(^{-1}\) for BIS consumption

Poly(acrylamide-co-methacrylamide) Gels (PAAm-co-MAAm)
Change of Intensity of CH\(_2\) stretching at 3040 cm\(^{-1}\) with AAm
Change of Intensity of CH\(_2\) stretching at 3040 cm\(^{-1}\) with MAAm
Change of Intensity of C=O stretching at 1985 cm\(^{-1}\) with AAm
Change of Intensity of C=O stretching at 1985 cm\(^{-1}\) with MAAm
Change of Intensity of C=C stretching at 1633 cm\(^{-1}\) for AAm consumption
Change of Intensity of C=C stretching at 2365 cm\(^{-1}\) for MAAm consumption

Summary

VII DIELECTRIC AND CONDUCTIVITY STUDIES OF POLYMER GELS

Introduction
Dielectric Studies
 Dielectric Permittivity of Polyacrylamide Gel (PAAmG)
 Dielectric Permittivity Response Model of PAAmG
 Dielectric Permittivity of Polymethacrylamide Gel (PMAAmG)
 Dielectric Permittivity Response Model of PMAAmG
 Dielectric Permittivity of Poly(acrylamide-co-methacrylamide) Gel (PAAm-co-MAAm)
 Dielectric Permittivity Response Model of PAAm-co-MAAmG
Conductivity Studies
 Conductivity of Polyacrylamide Gel (PAAmG)
 Conductivity of Polymethacrylamide Gel (PMAAmG)
 Conductivity of Poly(Acrylamide-co-Methacrylamide)Gel
Summary
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relaxation rates and chemical concentrations measured of polymer gel dosimeter</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Vibrational band assignments for acrylamide (AAm) BIS-acrylamide and Polyacrylamide</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Raman intensity measurements of polymer gel dosimeter of different concentrations</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Average energy, E, required per ion-pair production in various gases</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical concentration of the first series of polyacrylamide and polymethacrylamide gel dosimeters</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical concentration of the second series of polyacrylamide and polymethacrylamide gel dosimeters</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>Chemical concentration of the first series of poly(acrylamide-co-methacrylamide) gel dosimeters</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>Chemical concentration of the second series of poly(acrylamide-co-methacrylamide) gel dosimeters</td>
<td>104</td>
</tr>
<tr>
<td>7.1</td>
<td>Theoretical fitting obtained from equivalent circuit and experiment data of PAAmG at various BIS (2%, 4%, 6%) and 2% to 6% AAm and for doses of 0, 5, 10, 15, 20 Gy</td>
<td>287</td>
</tr>
<tr>
<td>7.2</td>
<td>Theoretical fitting obtained from equivalent circuit and experiment data of PMAAmG at various BIS (2%, 4%, 6%) and 2% to 6% MAAm and for doses of 0, 5, 10, 20, 30 Gy</td>
<td>304</td>
</tr>
<tr>
<td>7.3</td>
<td>Theoretical fitting obtained from equivalent circuit and experiment data of PAAm-co-MAAmG at various AAm and MAAm (2%, 4%, 6%) and 2% BIS and for doses of 0, 10, 20, 30, 40 Gy</td>
<td>319</td>
</tr>
</tbody>
</table>
7.4 The frequency exponent s of PAAmG at various BIS 2%, 4%, 6% BIS and for AAm from 2%, 6% AAm at different doses

7.5 The frequency exponent s of PMAAmG at various BIS 2%, 4%, 6% BIS and for MAAm from 2%, 6% MAAm at different doses

7.6 The frequency exponent s of PAAm-co-MAAmG at various MAAm 2%, 4%, 6% MAAm and for AAm from 2%, 6% AAm at different doses

7.7 Dose sensitivity of polymer gel dosimeter
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representations of the different monomers used in the polymer gel dosimeter formulations</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Links created by combination of acrylamide monomer and BIS cross-linker: (i) singlet, (ii) free radical linear chain, (iii) loop and (iv) doublet. Open circles indicate reactive sites. Closed circles denote ends. (b) Progression in polymer structure as a function of initial cross-linker concentration. (i) A 'gel' solely composed of monomer (acrylamide). Long, linear chains are formed with no cross-links. (ii) Gel composed of low initial BIS fraction. The predominant gel formation is an ordered, cross-linked network. (iii) Gel composed of high initial BIS fraction. Gels begin to form a larger number of knots. (iv) A gel composed solely of cross-linker (BIS). The predominant structures are knots, loops and doublets which together form beads.</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of (a) acrylamide, (b) methacrylamide,(c) (N,N') methylene-BIS-acrylamide, (d) polyacrylamide (e) polymethacrylamide, (f) poly (acrylamide-co-methacrylamide)</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>(T_2) at 64 MHz as a function of the absorbed radiation dose for different initial monomer concentrations (2, 3 and 4%) and fixed gelatin concentration (5%)</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>(T_2) at 64 MHz as a function of the absorbed radiation dose for different gelatin concentrations (3, 5 and 7%) and fixed monomer concentration (3% AAm and 3% BIS)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Spin-spin relaxation rate plotted against absorbed dose</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Variation in FT-Raman spectra of polymerized PAG samples with absorbed radiation dose</td>
<td>33</td>
</tr>
</tbody>
</table>