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Plants identification has become a significant and incentive research area. It is 

estimated that about half of the world's plant species are still not identified. Making a 

detailed knowledge of the identity and geographical distribution of plants is required 

for an effective agricultural biodiversity. Most of the existing plant identification 

methods are based on both the global shape features and the intact plant leaves. 

However, for the non-intact leaves such as the deformed, partial and overlapped 

leaves that largely exist in practice, the global shape features are not efficient and 

these methods are not applicable.The dried leave parts and noise can degrade 

identification results and affect the quality of the extracted features which lead to 

poor classification results. Furthermore, feature extraction methods based on global 

features such as shape, color and texture do not lead to accurate identification since 

they cannot adapt to changing environment. In the real world, leaf images can be 

simply affected by light, position, and size. To overcome this problem, in recent 

years, researchers obtained some achievements with combination of invariant local 

features such as Scale Invariant Feature Transform (SIFT) with global feature of leaf 

images. Beside that, classic bag of visual words algorithm (BoVW) is based on k-

means clustering and every SIFT feature belongs to one cluster and it leads to 

decreasing classification results. Moreover with simple concatenating features, 

classification results are not optimal. It is crucial to integrate these heterogeneous  

features to create more accurate and robust classification results than using each 

individual type of features. 

This study first starts with some preprocessing phases for images with dried and 

damaged parts in leaves, that applies on images while finding leaf as region of 

interest (ROI) with Otsu's method. For next, instead of k-means clustring, Fuzzy c-

means clustering is combined with Spatial Pyramid Matching image representation 

to improve the accuracy of classification results. The Fuzzy c-means clustering 

improved the accuracy of classification task to 40.53%. In the next phase, the local 

SIFT descriptor is augmented with two global descriptors. One descriptor contains 
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texture and color called Multi-Textron Histogram (MTH) and improved 

classification results by second level of discrimination for leaves with similar color 

and shape. Second one is gist from global features of leaf images. gist descriptor  is 

based on spatial layout of colors, orientation and principal texture. The combination 

of gist, MTH and SIFT features increased the performance of image identification 

and showed 49% accuracy. Moreover, instead of concatenating feature vectors  

together and send to classifier, sparse coding and dictionary learning methods are 

used and instead of considering all features as one view (visual feature), K-SVD 

algorithm that is one of the famous algorithms for sparse representation is optimized 

and developed to multi-view model.The experimental results prove that the proposed 

methods has improved accuracy by 53.77% compared to concatenating features and 

classic K-SVD dictionary learning model as well.  
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Pengenalpastian tumbuh-tumbuhan adalah satu bidang kajian yang penting dan 

menggalakkan. Di anggarkan sekurang-kurangnya separuh daripada tumbuh-tumbuhan 

masih belum dikenalpasti. Keperluan pengetahuan yang terperinci berkenaan 

pengenalpastian dan pembahagian geografi saksama bagi tumbuhan adalah diperlukan 

untuk biodiversiti pertanian yang efektif. Kebanyakan kaedah sedia ada dalam 

pengenalpastian tumbuh-tumbuhan adalah berasaskan kepada ciri bentuk yang global 

dan daun tumbuhan yang utuh. Walaubagaimanapun, untuk daun yang rosak, bertindan 

dan separa yang banyak tumbuh di dunia, kaedah pembahagian geografi saksama adalah 

tidak cekap dan tidak boleh dilaksanakan Bahagian-bahagian yang rosak dan bunyi 

latar belakang hingar boleh merendahkan hasil ciri yang diekstrak dan menjejaskan 

kualiti ciri pengembangan juga mengakibatkan hasil pengkelasan yang salah. Selain 

itu, kaedah pengesktrakan ciri yang berasaskan ciri global seperti bentuk, warna dan 

tekstur tidak menunjukkan pengenalpastian yang tepat. Ini disebabkan kaedah tersebut 

tidak boleh menyesuaikan diri dengan perubahan persekitaran. Dalam dunia sebenar, 

imej daun ini mudah terjejas dengan kehadiran cahaya, kedudukan dan size daun 

tersebut. Untuk menyelesaikan masalah ini, para penyelidik baru ini telah mencapai 

kejayaan dengan menggabungkan ciri asal yang tidak berubah  sebagai contoh Scale 

Invariant Feature Transform(SIFT) dengan imej daun yang bercirikan global. Selain itu, 

bag of visual words (BoVW) yang adalah berdasarkan pada kelompok k-means dan 

setiap ciri SIFT tergolong dalam satu pusat pengelompokan membawa  kepada 

pengurangan hasil pengkelasan. Tambahan pula, dengan mudah, ciri hasil 

pengkelasan tidak optimum. Hal ini penting untuk menggabungkan ciri berbeza 

untuk menghasilkan pengkelasan yang lebih tepat dan jitu daripada hanya 

menggunakan ciri setiap individu. 

Kajian ini bermula dengan fasa pra pemprosesan untuk imej dedaun yang telah kering 

dan rosak disamping mencari dedaun region-of-interestdengan menggunakan kaedah 

Otsu. pengelompokan Fuzzy c-means digunakan berbanding pengelompokan k-

means untuk digabungkan bersama perwakilan imej spatial pyramid matching untuk 

menambah baik ketepatan hasil klasifikasi. Pengelompokan Fuzzy c-means 
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menambah baik ketepatan tugasan kelasifikasi sebanyak 40.53%. Dalam fasa 

seterusnya, penghurai setempat SIFT telah diperkukuhkan dengan dua penghurai global. 

Salah satunya mengandungi tekstur dan warna yang ditakrifkan sebagai Histogram 

berbilang Textron ataupun Multi-Textron Histogram (MTH). Ia akan menambahbaik 

hasil klasifikasi oleh aras kedua diskriminasi bagin dedaun yang mempunyai bentuk dan 

warna yang sama. Penghurai yang kedua pula adalah gist, diperoleh daripada ciri global 

imej dedaun tersebut. Ciri gist adalah berasaskan kepada ruang susun atur warna dan 

orientasinya dan tekstur utama.  Ruang yang dikenalpasti dilukis secara jujukan ke arah 

tekstur utama. Gabungan ciri gist, MTH dan SIFT telah meningkatkan prestasi 

pengecaman imej dan menunjukkan peratusan kejituan sebanyak 49%. Sebalik daripada 

penggunaan penggabungan ciri vektor bersama dan menghantarkannya kepada 

pengklasifikasi, kod  jarang dan kaedah pembelajaran kamus telah digunakan. Selain 

daripada mempertimbangkan semua ciri sebagai satu gambaran, kami telah 

mengoptimumkan algoritma K-SVD. yang mana ia merupakan salah satu algorithma 

terkenal untuk perwakilan jarang dan digunakan untuk membangunkan model berbilang 

paparan. Keputusan eksperimen membuktikan kaedah yang dicadangkan ada 

penambahbaikan dalam kejituan sebanyak 53.77% berbanding dengan penggabungan 

ciri dan model pembelajaran kamus K-SVD yang klasik.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Plant identification has become a major research area in the field of botany in recent 

years. Plant identification refers to the comparison of an unknown plant with a set of 

known species to decide the specific specie or genus to which it belongs. A detailed 

knowledge of the identity and geographical distribution of plants is needed for 

successful agricultural biodiversity. The identification of medicinal plants has also 

assumed much importance today.  

Traditionally, botany experts trained plants taxonomists in identifying species and 

their relationships in order to assign taxonomic labels (Berg et al., 2007). Taxonomy 

is the science of naming, describing, and classifying organisms according to their 

similarities and difference (Swain, 2012). However, the limitations in terms of 

skilled experts, financial issues, and training time are considerable in conducting the 

various processes associated with this field, and an expert on a particular specie or 

family may not be familiar with others. These are the main reasons for the 

automation of the specie identification process, and this has been aided by the 

continuous technological improvements in computers and digital cameras.  

1.2 Motivation   

To establish records and maintaining biodiversity in agriculture, a comprehensive 

knowledge of the identity and geographical distribution of plants is needed. Speed up 

the collection and integration of botanical raw observation data is a crucial step 

towards sustainable development of agriculture and biodiversity conservation. Plant 

species identification is a complex and complicated process which is difficult even 

for professionals like botanists, farmers, or wood exploiters. Therefore, a taxonomic 

gap exists in plant species identification, and one promising solution to tackle it is 

through content-based visual identification of the plants.  

Content-based image classification is an important task in the field of image indexing 

and retrieval and has helped to overcome the limitation of the text-based methods. 

All content-based image systems require an appropriate representation of the input 

data image. A feature is defined as an interesting part of an image and represents the 

image. Features can be represented globally or locally in which the former uses the 

whole image while the latter focuses on the selection of several regions or blocks of 

the image to characterize them. 
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1.3 Problem Statement 

The content-based visual identification system utilizes leaf images for tree species 

identification. The damaged leaves parts and image noise can degrade identification 

results and diminish the quality of the extracted features and lead to poor 

classification results. This is even more crucial when the leaves are segmented from 

the background. Such noises have a major impact on the exploited features in the 

identification process (Arora et al., 2012).  

In addition, Most of the existing plant identification methods are based on both the 

global shape features and the intact plant leaves. However, for the non-intact leaves 

such as the deformed, partial and overlapped leaves that largely exist in practice, the 

global shape features are not efficient and these methods are not applicable. 

Furthermore, all leaves in one species are not identically shaped, leaves belonging to 

the same species in different geographical locations or in different seasons have 

various colors, and leaf colors of different species may have similarities. These 

issues create significant difficulties in image identification. In fact, the wide 

variations in leaf sizes, textures, colors, shapes, positions, and light reflections in the 

same plant species need extracted features to have enough discriminatory power to 

distinguish the plant species.  

Another problem arises when local features are used for plant species identification.  

In the bag of visual words models that use k-means clustering on local features such 

as SIFT, the generated visual words are ambiguous,  since in hard clustering (k-

means algorithm) every SIFT feature in an image is assigned a single code word and 

belongs to one cluster (philbin et al.,  2008). A visual word can be considered as 

representative of several similar image patches which leads to the loss of information 

in the classification task. Further, the spatial pyramid matching method is used to 

match local features. 

Different visual features are heterogeneous and carry different characteristics, 

therefore their individual importance in the classification is ignored by the simple 

fusion. The simple concatenation of high-dimensional and heterogeneous visual 

features in a long vector leads to low accuracy of classification results. It is crucial to 

integrate these heterogeneous features to create more accurate and robust 

classification results than using each individual type of features. (Sun et al., 2014, 

Liu et al., 2007).   
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1.4 Research Objective 

1)  To introduce a method that enhance leaf images by using an hybrid 

morphological operations and dominant color descriptor (DCD). 

2)  To propose a combination of SIFT descriptor as a local feature, Multi-

texton histogram descriptor, and gist descriptor to achieve greater 

precision and recall. MTH  and gist descriptors provide a second level of 

discrimination for leaves with similar shapes and colors. 

3)  To improve the accuracy of classification by modifying Spatial Pyramid 

Matching image representation with Fuzzy c-means clustering. 

4)  To  propose a new multi-view dictionary learning for sparse 

representation of feature vectors by K-SVD algorithm for reduced-

dimensional and optimum representation of heterogeneous visual features 

using a through eliminating redundancies and the analysis of high 

frequency patterns between feature vectors  to achieve a higher 

classification rate. 

1.5 Scope 

Plant identification tasks can be done by flower, stem, leaf, or other organs of plants. 

This work proposes an automatic supervised classification models that is restricted to 

leaf visual content from Pl@ntLeaves dataset containing 6630 leaf scans, 2726 leaf 

pictures with a white uniform background (referred to as scan-like pictures), and 

2216 leaf pictures in natural conditions (taken on the tree). The most important 

reason for choosing this dataset of images is because they have a wide diversity of 

image rotation, scale, noise, and luminance. These diversities in plant leaf contain 

leaf, upper side, and lower side, two images from one leaf, leaf with branch and 

leafage. 

1.6 Structure of Thesis Organization 

This thesis is organized into seven chapters. In this chapter we introduce the 

background and motivation of plant identification techniques and classification of 

plant leaf images. The problem statement, objectives, and contributions are explained 

in this chapter. Also the plant image database used is introduced in this chapter. 

Chapter two reviews the literature on plant identification while chapter three explains 

the methodology used in this research. Chapter four presents preprocessing methods 

for the plant identification task. Chapters five and six provide a description of the 

features used with a new descriptor and a proposed multi view K-SVD dictionary 

learning for plant identification, respectively. These two chapters also provide a 

comparison and discussion with other works. Finally, chapter seven presents an 

overall summary and the conclusion of the thesis and introduces recommendations 

for future research ideas. 
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