EXPRESSION AND IDENTIFICATION OF C5a AND ITS RECEPTOR (C5aR) AS A DIAGNOSTIC MARKER FOR BENIGN MAMMARY TUMOUR

NOOR FARHANA BINTI BACHEK

FPV 2016 11
EXPRESSION AND IDENTIFICATION OF C5a AND ITS RECEPTOR (C5aR) AS A DIAGNOSTIC MARKER FOR BENIGN MAMMARY TUMOUR

By

NOOR FARHANA BINTI BACHEK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2016
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EXPRESSION AND IDENTIFICATION OF C5a AND ITS RECEPTOR (C5aR) AS A DIAGNOSTIC MARKER FOR BENIGN MAMMARY TUMOUR

By

NOOR FARHANA BINTI BACHEK

February 2016

Chair: Mohd Hezme Bin Mohd Noor, PhD

Faculty: Veterinary Medicine

Complement system is a part of innate and adaptive immune system that act as a ‘first line of defense’ against infections and immune complex diseases. There are three main pathways activate the complement system; classical pathway, alternative pathway and lectin pathway. Although these three pathways are activated by different triggers and stimuli, these step-wise activations eventually lead to the cleavage of the C5 molecule and generating C5a and C5b. C5a is a 74 amino acids sequence protein fragment derived from the cleavage of complement component by protease C5-convertase. C5a was first described as a classical anaphylatoxin and a highly inflammatory peptide and have been found in the serum of patient with inflammatory disorder such as cancer. However, the possible involvement between C5a anaphylatoxin and tumour progression is not yet well understood. In this study, we assessed the expression of C5a/C5aR in the EMT6 cells and measured the expression and up-regulation of C5a/C5aR in both mRNA and protein levels. We demonstrate that the expression of C5a/C5aR is up-regulated in EMT6 cells and can be potentially use as a screening biomarker for mammary cancer.

The first part of study was the determination of the expression of C5a/C5aR mouse mammary cancer cells by Immunofluorescence staining using compatible antibodies followed by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) of EMT6 cell. The study was further analyzed by treating the EMT6 cells using three types of treatment; EP54 (C5a agonist peptide),
PMX205 (C5a antagonist peptide) and control drug of tamoxifen. Thus, the magnitude of the C5a/C5aR expression of the treated EMT6 cell was measured by quantitative Real-Time Polymerase Chain Reaction (qPCR). The validation assessment of C5a/C5aR as a screening biomarker was determined using cell cytotoxicity assay of MTT and enzyme-linked immunosorbent assay (ELISA) using C5a antibodies.

The immunofluorescence staining of EMT6 cells indicate the presence of C5aR receptors located on the membrane of EMT6 cells. This finding is further justified the C5a receptor expression of EMT6 cells in mRNA level with detection of a single band using RT-PCR. The relative quantification of C5a/C5aR magnitude of treated EMT6 cell showed the reduction C5a/C5aR level in PMX205 as compared to EP54 with the fold change of 0.307±0.2885 and 0.625±1.2109, respectively. This findings showed similar pattern in validation assessment of C5a/C5aR where PMX205 reduced the level of C5a in MTT and ELISA as compared to EP54. Overall, the viability of EMT6 cells treated with PMX205 showed a greater cell inhibition as compared to EP54 throughout the time points. The value recorded for PMX205 on 24, 48 and 72 hours treatment were (0.1069±0.016), (0.1066±0.008) and (0.0543±0.001), respectively. As for EP54, the value recorded for 24, 48 and 72 hours treatment were (0.1137±0.03), (0.1164±0.04) and (0.0561±0.02), respectively. While on ELISA, the PMX205 exhibited a reduced C5a protein level (0.1713±0.08) in comparison to EP54 (0.2511±0.183).

In conclusion, these data suggest that there EMT6 cells indeed exhibit the C5a/C5aR expression and have the capacity to generate C5a due to magnitude and up-regulation of C5a concentration detected in both mRNA and protein levels. This study also exhibit the potential pharmacological blockage using C5a antagonist decreased the level of C5a in the mammary cancer and hence, C5a/C5aR has a potential utility as a screening biomarker for mammary cancer.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

EKSPRESI DAN IDENTIFIKASI KOMPLIMEN C5A DAN RESEPTOR C5A (C5aR) SEBAGAI PENANDA DIAGNOSTIK BAGI TUMOR PAYUDARA BENIGNA

Oleh

NOOR FARHANA BINTI BACHEK

Februari 2016

Pengerusi: Mohd Hezmee Bin Mohd Noor, PhD

Fakulti: Perubatan Veterinar

Sistem komplimen adalah sebahagian daripada sistem pertahanan inat dan penyusaian yang bertindak sebagai barisan pertama pertahanan terhadap jangkitan dan penyakit imun kompleks. Terdapat tiga laluan utama pengaktifan sistem komplemen, laluan klasikal, laluan alternatif dan laluan lektin. Walaupun ketiga laluan ini diaktifkan dengan pencetus dan rangsangan yang berbeza, langkah pengaktifan ini menjurus kepada pembahagian molekul C5 and penghasilan C5a dan C5b. C5a adalah serpihan 74 asid amino rantaian protein terbitan daripada pembahagian komponen komplemen oleh protease C5-konvertase. C5a telah pertama kali digambarkan sebagai anafilatoksin klasikal dan peptida tinggi radangan dan telah dijumpai di dalam serum pesakit yang mempunyai gangguan radangan seperti kanser. Walaubagaimanapun, kemungkinan penglibatan antara anafilatoksin C5a dan perkembangan tumor masih belum difahami dengan jelas. Dalam kajian ini, kami menaksir ekspresi C5a/C5aR dalam sel EMT6 dan mengukur ekspresi dan peningkatan regulasi C5a/C5aR di dalam kedua-dua tahap mRNA dan protein. Kami membuktikan bahawa peningkatan regulasi ekspresi C5a/C5ar dalam sel EMT6 dan kedapatan ini berpotensi digunakan sebagai penanda bio saringan bagi kanser payudara.

Bahagian pertama kajian ini adalah penentuan ekspresi C5a/C5aR sel kanser payudara tikus melalui pewarnaan Imunopendarflour menggunakan antibodi serasi diikuti dengan Transkriptase Berbalik Reaksi Rantai Polimerase (RT-PCR) sel EMT6. Kajian ini dianalisis secara lanjut dengan merawat sel EMT6 dengan menggunakan tiga jenis rawatan; EP54 (peptida agonis C5a), PMX205 (peptida antagonis C5a) dan tamoxifen. Oleh demikian, magnitud ekspresi C5a/C5aR sel EMT6 telah diukur dengan kuantitatif Waktu Nyata Reaksi Rantai Polimerase (qPCR). Penaksiran pengesahan C5a/C5aR sebagai saringan penanda bio ditentukan dengan
Pewarnaan Imunopendarflour sel EMT6 menunjukkan kewujudan reseptor C5aR yang terletak di membran sel EMT6. Ini memberi justifikasi lanjutan tentang ekspresi C5a sel EMT6 di tahap mRNA dengan pengesanan jalur tunggal menggunakan RT-PCR. Kuantifikasi relatif magnitud C5a/C5aR sel EMT6 terawat menunjukkan penurunan aras C5a/C5aR dalam PMX205 berbanding EP54 dengan perubahan kali ganda masing – masing 0.307±0.2885 dan 0.625±1.2109. Penemuan ini menunjukkan pola yang sama dalam penaksiran pengesahan C5a/C5aR dimana PMX205 mengurangkan aras C5a dalam MTT dan ELISA berbanding EP54. Secara keseluruhan, kebolehdaya sel EMT6 yang dirawat dengan PMX205 menunjukkan penurunan tahap C5a/C5aR terawat dengan PMX205 penurunan tahap C5a/C5aR terawat dengan PMX205 (0.1069±0.016), (0.1066±0.008), dan (0.0543±0.001). Bagi EP54, nilai yang dicatatkan pada 24, 48 and 72 jam rawatan masing adalah (0.1137±0.03), (0.1164±0.04) dan (0.0561±0.02). Manakala pada ELISA, PMX205 memperlihatkan penurunan tahap protein C5a (0.1713±0.08) berbanding dengan EP54 (0.2511±0.183).

Secara kesimpulannya, data ini mencadangkan bahawa sel EMT6 sememangnya mempamerkan ekspresi C5a/C5aR dan mempunyai kebolehan untuk menjana C5a berdasarkan magnitud and peningkatan regulasi kepekatan C5a yang dikesan dalam kedua – dua tahap mRNA dan protein. Kajian ini juga mempamerkan potensi sekatan farmakologikal menggunakan antagonis C5a dalam penurunan tahap C5a dalam kanser payudara dan dengan demikian, C5a/C5aR mempunyai utiliti yang berpotensi sebagai penanda bio saringan untuk kanser payudara. pemahaman mekanisma ketoksikan dadah.
ACKNOWLEDGEMENTS

“In the name of Allah, Most Gracious, Most Merciful”

I would like to express my appreciation to my supervisor, Dr. Mohd Hezmee Bin Mohd Noor for his guidance throughout the whole period my project. I also want to thank him for his support, constructive comments and valuable suggestion during the project. Not to forget, special gratitude to my co-supervisors, Prof. Dr. Zuki bin Abu Bakar, Dr. Intan Shameha binti Abdul Razak and Dr. Rozaini binti Mohd Zohdi and also Pre-Clinical science lecturers, Dr. Hafandi bin Ahmad and Dr. Mokrish bin Ajat.

Secondly, I would to express my gratitude to all my friends and especially my project group members; Nurul Hazwani Binti Kamarudin, Norhaifa Binti Ganti and Nurneqman Nashreq Bin Kosni for all the support and their precious co-operation and helps through my thick and thin.

Last but not least, I would like to express my gratitude and appreciation to my family members; especially my parents who always be there for me for all time and my friends. Their moral supports had always encouraged and inspire me to complete my Master of Science Degree. Without them, nothing would have been possible.
I certify that a Thesis Examination Committee has met on 2nd February 2016 to conduct the final examination of Noor Farhana Binti Bachek on her thesis entitled “Expression and Identification Of C5a and Its Receptor (C5aR) as a Diagnostic Marker for Benign Mammary Tumour” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd Nasir Mohd Desa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Md Eaqub Ali, PhD
Senior Lecturer
Nanotechnology and Catalysis Research Centre
Universiti Malaya
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Hezmee Bin Mohd Noor, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Intan Shameha Binti Abdul Razak, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Md Zuki Bin Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Rozaini Binti Mohd Zohdi, PhD
Senior Lecturer
Faculty of Pharmacy
Universiti Teknologi Mara Kampus Puncak Alam
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee:

Signature: ________________________________
Name of Member of Supervisory Committee:

Signature: ________________________________
Name of Member of Supervisory Committee:

Signature: ________________________________
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>Xiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of Study</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Hypothesis of Study</td>
<td>2</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Cancer</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Classification of Cancer Type</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Breast Cancer</td>
<td>3</td>
</tr>
<tr>
<td>2.4 Epidemiology of Breast Cancer Worldwide</td>
<td>4</td>
</tr>
<tr>
<td>2.5 Causes and Factors</td>
<td>5</td>
</tr>
<tr>
<td>2.5.1 Age</td>
<td>5</td>
</tr>
<tr>
<td>2.5.2 Genetics</td>
<td>5</td>
</tr>
<tr>
<td>2.5.3 Smoking and Alcohol</td>
<td>6</td>
</tr>
<tr>
<td>2.5.4 Lifestyles</td>
<td>6</td>
</tr>
<tr>
<td>2.5.5 Radiations</td>
<td>7</td>
</tr>
<tr>
<td>2.5.6 Reproductive Factor</td>
<td>7</td>
</tr>
<tr>
<td>2.6 Types</td>
<td>7</td>
</tr>
<tr>
<td>2.7 Breast Cancer Therapy</td>
<td>8</td>
</tr>
<tr>
<td>2.7.1 Targeted Therapy</td>
<td>8</td>
</tr>
<tr>
<td>2.7.2 Gene Therapy</td>
<td>9</td>
</tr>
<tr>
<td>2.8 Complement</td>
<td>10</td>
</tr>
<tr>
<td>2.8.1 Overview</td>
<td>10</td>
</tr>
<tr>
<td>2.8.2 C5a and Related Disease</td>
<td>12</td>
</tr>
<tr>
<td>2.9 Biomarker</td>
<td>13</td>
</tr>
<tr>
<td>2.9.1 Overview</td>
<td>13</td>
</tr>
<tr>
<td>2.9.2 Established Biomarkers in Breast Cancer</td>
<td>13</td>
</tr>
<tr>
<td>2.9.2.1 Estrogen Receptor (ER)</td>
<td>13</td>
</tr>
<tr>
<td>2.9.2.2 Progesterone Receptor (PR)</td>
<td>14</td>
</tr>
<tr>
<td>2.9.2.3 Human Epithelial Growth Factor Receptor 2 (HER2)</td>
<td>15</td>
</tr>
<tr>
<td>2.9.3 Potensial Use of C5a/C5aR as a Diagnostic Biomarker</td>
<td>15</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS / METHODOLOGY

3.1 Cell Culture

3.1.1 Cell Subculture

3.2 Cytotoxicity Assay (MTT Assay)

3.2.1 Drugs and MTT Preparations

3.2.2 Seeding of EMT6 Cells

3.2.3 Addition of Drugs and MTT

3.3 Preparation of Drug Treated EMT6 Cells for C5aR Level Screening

3.4 RNA Isolation

3.5 Polymerase Chain Reaction

3.5.1 Reverse – Transcriptase Polymerase Chain Reaction (RT-PCR)

3.5.2 Real – Time Polymerase Chain Reaction (qPCR)

3.5.3 Gel Electrophoresis

3.6 Immunofluorescence Staining

3.6.1 Antibody Preparation

3.6.2 Slide Preparations

3.7 ELISA C5a

3.7.1 Cell Lysate Preparation

3.7.2 Protein Extraction and Determination

3.7.3 C5a ELISA Reaction

3.8 Statistical Analysis

3.9 Summary of Methodology

4 RESULTS

4.1 Immunofluorescence Staining of EMT6 Cells

4.2 Expression of C5a Receptor Gene on EMT6 Cells by RT-PCR

4.3 Quantification of C5aR mRNA Level in Treated EMT6 Cells by qPCR

4.4 Enzyme – Linked Immunosorbent Assay (ELISA) of C5a

4.5 Cell Cytotoxicity Assay of EMT6 Cells Using MTT Assay

5 DISCUSSION

6 CONCLUSION AND RECOMMENDATIONS

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>25</td>
</tr>
<tr>
<td>4.2</td>
<td>26</td>
</tr>
<tr>
<td>4.3</td>
<td>28</td>
</tr>
<tr>
<td>4.4</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>31</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

1.1 The complement activation pathways
3.1 Summary of methodology for the research study
4.1 The expression of C5aR on EMT6 cells by confocal Immunofluorescence staining
4.2 The detection of C5aR in EMT6 cells using RT-PCR
4.3 Relative expression of C5aR mRNA in EMT6 cells by qPCR
4.4 Effects of various treatments of EP54, PMX205, and Tamoxifen on C5aR production in EMT6 cells
4.5 MTT assay of EMT6 cells
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>AI</td>
<td>Aromatase Inhibitor</td>
</tr>
<tr>
<td>AMD</td>
<td>Age-related Macular Degeneration</td>
</tr>
<tr>
<td>AMV</td>
<td>Avian Myeloblastosis Virus</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic Acid</td>
</tr>
<tr>
<td>BCS</td>
<td>Breast-Conserving Surgery</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BRCA</td>
<td>Breast Cancer Gene</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CHEK2</td>
<td>Checkpoint Kinase 2</td>
</tr>
<tr>
<td>C-terminus</td>
<td>Carbon-Terminus</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>C1INH</td>
<td>C1 Inhibitor</td>
</tr>
<tr>
<td>C3</td>
<td>Complement 3</td>
</tr>
<tr>
<td>C3b</td>
<td>Complement 3b</td>
</tr>
<tr>
<td>C4bp</td>
<td>C4-binding Protein</td>
</tr>
<tr>
<td>C5</td>
<td>Complement 5</td>
</tr>
<tr>
<td>C5a</td>
<td>Complement 5a</td>
</tr>
<tr>
<td>C5aR</td>
<td>Complement 5a Receptor</td>
</tr>
<tr>
<td>C5a-des arg</td>
<td>C5a derivative</td>
</tr>
<tr>
<td>C5b</td>
<td>Complement 5b</td>
</tr>
<tr>
<td>C5L2</td>
<td>C5a receptor 2</td>
</tr>
<tr>
<td>C6</td>
<td>Complement 6</td>
</tr>
<tr>
<td>C7</td>
<td>Complement 7</td>
</tr>
<tr>
<td>C8</td>
<td>Complement 8</td>
</tr>
</tbody>
</table>
C9 Complement 9
CD35 Complement receptor type 1
CD46 Complement regulatory protein CD46
CD59 Complement regulatory protein CD59
CD55 Complement decay-accelerating factor
CD88 C5a receptor 1
cT Cycle Threshold
DCIS Ductal Carcinoma In Situ
DAPI 4',6-Diamidino-2-Phenylindole
DMSO Dimethyl Sulfoxide
DNA Deoxyribonucleic Acid
DNase Deoxyribonuclease
dNTP Deoxynucleotide
dSS Dextran Sulphide Sodium
EBCTCG Early Breast Cancer Trialists' Collaborative Group
EDTA Ethylenediaminetetraacetic Acid
ELISA Enzyme-linked immunosorbent assay
EP54 C5a Agonist
ER Estrogen Receptor
FDA Food and Drug Administration
FBS Fetal Bovine Serum
fH Complement Regulatory Protein Factor H
fI Complement Regulatory Protein Factor I
FITC fluorescein isothiocyanate
g Gram
G Gauze
GAPDH Glyceraldehyde 3—phosphate dehydrogenase
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER-2</td>
<td>Human Epidermal Growth Factor Receptor 2</td>
</tr>
<tr>
<td>HRT</td>
<td>Hormone-Replacement Therapy</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IDC</td>
<td>Invasive Ductal Carcinoma</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>ILC</td>
<td>Invasive Lobular Carcinoma</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LCIS</td>
<td>Lobular Carcinoma In Situ</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MAC</td>
<td>Membrane Attack Complex</td>
</tr>
<tr>
<td>MBL</td>
<td>Mannan Binding Lectin</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>MgSO4</td>
<td>Magnesium Sulphate</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>MTT</td>
<td>Methylthiazol Tetrozolium</td>
</tr>
<tr>
<td>N-terminus</td>
<td>Nitrogen Terminus</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>Absorbance unit</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>p53</td>
<td>Tumour protein p53</td>
</tr>
<tr>
<td>PAHS2</td>
<td>Polycyclic Aromatic Hydrocarbon</td>
</tr>
<tr>
<td>PALB2</td>
<td>Partner and Localizer of BRCA2</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>pg</td>
<td>Picogram</td>
</tr>
<tr>
<td>PMX 205</td>
<td>C5a Antagonist</td>
</tr>
<tr>
<td>PR</td>
<td>Prongesterone Receptor</td>
</tr>
<tr>
<td>Psi</td>
<td>Pounds per square inch</td>
</tr>
<tr>
<td>qPCR</td>
<td>Real Time Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radioimmunoprecipitation assay buffer</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>RQ</td>
<td>Relative quantification</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SDS-HCL</td>
<td>MTT solvent of Sodium Dodecyl Sulfate-Hydrochloric Acid</td>
</tr>
<tr>
<td>SERMs</td>
<td>Selective estrogen receptor modulators</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetate-EDTA</td>
</tr>
<tr>
<td>Tfl</td>
<td>Thermus Flavus DNA polymerase</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting Temperature</td>
</tr>
<tr>
<td>u</td>
<td>unit</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µmol</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Cancer is normally described as an abnormal growth of cell in the body and has become a major health problem that causing huge numbers of mortality worldwide. There are three major phases of cancer progression: initiation, promotion and progression. Among the existing cancer-related death known today, breast cancer has become a major occurrence death among women in the United States and it is expected 40,290 deaths occurred in 2014 (National Cancer Society, 2015).

Variable treatment options are available. For example surgery, hormonal therapy, or chemotherapy (tamoxifen and aromatase inhibitors, radiation and/or immunotherapy (Bonneterre et al., 2001; Clarke et al., 2005; Florescu et al., 2011). In the case of hormone-related breast cancer, it is possible to treat them in the way of inhibiting the effects of these hormones such as estrogen and progesterone. The magnitude of these hormones in body can be an indicative for the presence of cancer, which can be used as biomarkers. To date, the existing serum biomarkers for breast cancer which are estrogen, HER-2/neu, and progesterone receptors are totally insufficient for an early detection, as it does not possess the required sensitivity and specificity. However, those biomarker could have implementation among the other established protein biomarkers (Misek and Kim, 2011).

When body is introduced to foreign organism and subsequently react to its stimuli, inflammation will takes place as it is a natural eradication process. The theory of cancer cells arise from the inflammation process as it has been long discussed by previous studies (Balkwill and Mantovani, 2001; Coussens and Werb, 2002). While neoplastic progression can be halt by acute inflammation (Markiewski & Lambris, 2009; Loveland & Cebon, 2008; Ostrand-Rosenberg, 2008), chronic inflammation on the other hand is believed to be the key contributor to cancer development and progression.

As a part of body defence system, the complement system is crucial mechanisms against exogenous threat such as microbial attack and also endogenous threat including altered-self molecules and apoptotic cells (Klos et al., 2009). There are over 30 proteins that involved in complement system and one of the key player is C5a. C5a is a 74 amino acid polypeptide and its anaphylatoxin properties plays a pivotal role as causative agent of several inflammation-related diseases such as sepsis (Guo and Ward, 2006; Markiewski et al., 2008b; Ward, 2004), allergy and asthma (Gerard and Gerard, 2002), Alzheimer (Fonseca et al., 2009), rheumatoid arthritis and periodontitis (Chai et al., 2010; Chang et al., 2008). Immunomodulatory properties of C5a and its receptor have been extensively
characterized in the immunological literature, suggesting that C5a promotes and perpetuates inflammation that provides the basis of their involvement in cancer models. In breast cancer cases, immediate detection is imperative to improve survival for a number of patients.

However, the established serum biomarkers are inadequate for early identification of breast cancer (Misek and Kim, 2011). Besides that, well established of breast cancer biomarkers such as ER, PR and HER2 status are unstable throughout tumour progression in contrast to the primary tumour (Lindström et al., 2012). There is an increasing body of evidence to suggest that modulation of complement, particularly the C5a component, has significant therapeutic potential. Therefore, a discovery of a new and much improved biomarker for breast cancer is warranted and hence the potential of C5aR as a candidate for the new protein biomarker for breast cancer.

1.2 Objectives of Study
The objectives of the studies are as follow:
1. To assess the expression of C5a/C5aR in the mouse mammary cancer cells;
2. To measure the magnitude of the expression and up-regulation of C5a/C5aR in mammary cancer cell line;
3. To correlate the amount of proteins and their respective mRNAs in mouse expressing C5a/C5aR.

1.3 Hypothesis of Study
The hypotheses of the studies are as follow:
1. Complement C5a and its receptor C5aR is up-regulated in mouse mammary cancer cells.
2. C5a/C5aR up-regulation can be used as a screening biomarker for mammary cancer in both human and animal.
REFERENCE

Bonneterre, J., Buzdar, A., Nabholz, J. M., Robertson, J. F., Thürlimann, B., von Euler, M., Sahmoud, T., Webster, A., Steinberg, M., Arimidex Writing Committee; Investigators Committee Members. (2001). Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer, 92(9), 2247-2258.

Biopsies Relationship to Steroid Receptor Status and Regulation by Progestins. Cancer Research, 59(3), 529-532.

obesity, metabolic dysfunction, and adipocyte and macrophage signaling. The FASEB Journal, 27(2), 822-831.

6q25. 1 by FISH and a simple post-FISH banding technique. Genomics, 17(1), 263-265.

women: principal results From the Women's Health Initiative randomized controlled trial. *JAMA, 288*(3), 321-333.

Werfel, T., Oppermann, M., Begemann, G., Götze, O., & Zwirner, J. (1997). C5a receptors are detectable on mast cells in normal human skin and in psoriatic plaques but not in weal and flare reactions or in urticaria pigmentosa by immunohistochemistry. *Archives of Dermatological Research, 289*(2), 83-86.

APPENDICES

Appendix A1

Preparation of Cell culture's Reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waymouth's complete medium</td>
<td>To make 50 ml of complete medium, 5% (2.5 ml) of fetal bovine serum (FBS) and 1 % (0.5 ml) of penicillin streptomycin are mix with 47 ml of Waymouth’s media</td>
</tr>
<tr>
<td>Freezing medium</td>
<td>To make 50 ml of freezing medium, 5% (2.5 ml) of DMSO is mix with 47.5 ml of Waymouth’s complete medium</td>
</tr>
<tr>
<td>1X Phosphate buffer saline (PBS)</td>
<td>One tablet of PBS (10X) (10 mM sodium phosphates, 2.68 mM KCl, 140 mM NaCl) is dissolved in 100 ml of distilled water and autoclaved at 121°C, 15 psi for two hours to make 1X PBS.</td>
</tr>
<tr>
<td>Fetal bovine serum (FBS)</td>
<td>FBS is heat deactivated in water bath at 56°C for 30 minutes and gently swirl the FBS in every 10 minutes internal.</td>
</tr>
</tbody>
</table>
Appendix A2

Preparation of Immunofluorescence staining’s Reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4% paraformaldehyde</td>
<td>Mix 4.3 ml of 37% formaldehyde with 35.7 ml of 1X PBS to total volume of 40 ml.</td>
</tr>
<tr>
<td>0.1% Triton-X</td>
<td>To make 100 ml solution, 0.1% (0.1 ml) of Triton X-100 is mixed with 99.9 ml of 1X PBS solution.</td>
</tr>
<tr>
<td>Blocking solution</td>
<td>To make 10 ml blocking solution, 1% (1 g) bovine serum albumin (BSA) and 5% (5 ml) horse serum are mixed with 5 ml of 1X PBS solution.</td>
</tr>
<tr>
<td>Hoechst dye</td>
<td>To make 1:500 dilution, 1 µl of Hoechst dye is mixed with 499 µl of 1X PBS solution.</td>
</tr>
</tbody>
</table>
Appendix A3

Bicinchoninic acid assay (BCA assay)

Preparation 10 mg/ml bovine serum albumin (BSA) stock solution

1. Weigh 0.1 g BSA powder and mix with 10 ml of 1X PBS.
2. Roll the mixture on the roller until the BSA is dissolved (do not vortex to prevent protein denaturation).
3. Aliquot the BSA stock solution into 2 mg/ml by adding 0.2 ml BSA stock solution into 0.8 ml of 1X PBS solution.

Preparation of diluted albumin (BSA) standard

<table>
<thead>
<tr>
<th>Vial</th>
<th>Volume of diluent (µl)</th>
<th>Volume and source of BSA (µl)</th>
<th>Final BSA concentration (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>300 of stock</td>
<td>2000</td>
</tr>
<tr>
<td>B</td>
<td>125</td>
<td>375 of stock</td>
<td>1500</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>325 of stock</td>
<td>1000</td>
</tr>
<tr>
<td>D</td>
<td>175</td>
<td>175 of vial B dilution</td>
<td>750</td>
</tr>
<tr>
<td>E</td>
<td>325</td>
<td>325 of vial C dilution</td>
<td>500</td>
</tr>
<tr>
<td>F</td>
<td>325</td>
<td>325 of vial E dilution</td>
<td>250</td>
</tr>
<tr>
<td>G</td>
<td>325</td>
<td>325 of vial F solution</td>
<td>125</td>
</tr>
<tr>
<td>H</td>
<td>400</td>
<td>100 of vial G dilution</td>
<td>25</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>0</td>
<td>0 = blank</td>
</tr>
</tbody>
</table>
BCA standard curve

\[y = 0.001x + 0.151 \]

\[R^2 = 0.9882 \]
Appendix A4

Reverse Transcriptase – Polymerase Chain Reaction

Preparation of the reaction mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume per 50 µl reaction</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-Free water (to a final volume of 50 µl)</td>
<td>X µl</td>
<td>-</td>
</tr>
<tr>
<td>AMV/ tfl 5X reaction buffer</td>
<td>10 µl</td>
<td>1 X</td>
</tr>
<tr>
<td>dNTP mix (10 mM each dNTP)</td>
<td>1 µl</td>
<td>0.2 mM</td>
</tr>
<tr>
<td>Forward primer</td>
<td>1 µl</td>
<td>1 µM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>1 µl</td>
<td>1 µM</td>
</tr>
<tr>
<td>25 mM MgSO₄</td>
<td>2 µl</td>
<td>1 mM</td>
</tr>
<tr>
<td>AMV reverse transcriptase (5 u/µl)</td>
<td>1 µl</td>
<td>0.1 u/µl</td>
</tr>
<tr>
<td>Tfl DNA polymerase (5 u/µl)</td>
<td>1 µl</td>
<td>0.1 u/µl</td>
</tr>
<tr>
<td>RNasin inhibitor</td>
<td>1 µl</td>
<td>40 u/ µl</td>
</tr>
<tr>
<td>RNA sample or control</td>
<td>2 µl</td>
<td>10³ – 10⁶ copies</td>
</tr>
</tbody>
</table>
Appendix A5

Real – Time Polymerase Chain Reaction (qPCR)

Preparation of the reaction mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume per 50 µl reaction</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoTaq® qPCR master mix, 2X</td>
<td>25 µl</td>
<td>1X</td>
</tr>
<tr>
<td>Forward primer</td>
<td>1 µl</td>
<td>1 µM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>1 µl</td>
<td>1 µM</td>
</tr>
<tr>
<td>RNasin inhibitor</td>
<td>1 µl</td>
<td>40 u/ µl</td>
</tr>
<tr>
<td>RNA sample or control</td>
<td>2 µl</td>
<td>$10^3 - 10^6$ copies</td>
</tr>
<tr>
<td>Nuclease-Free water (to a final volume of 50 µl)</td>
<td>X µl</td>
<td>-</td>
</tr>
</tbody>
</table>
BIODATA OF STUDENT

Noor Farhana Binti Bachek was born in Kuala Lumpur on the 5th of October 1990. Her primary education was obtained from Sekolah Kebangsaan Bangsar, Kuala Lumpur from 1997 to 2002. She carried on with her secondary education from 2002 to 2007 at Sekolah Menengah Kebangsaan Bangsar, Kuala Lumpur where she sit for her Penilaian Menengah Rendah (PMR) and Sijil Pelajaran Malaysia (SPM) examination in 2005 and 2007 respectively.

In 2008, the author furthered her study in matriculation program in field of Biology in Kolej Matrikulasi Negeri Sembilan for one year. After completion of matriculation, the author furthered her study in Bachelor Science (Hons.) of Microbiology in Faculty of Biotechnology and Biomolecule Sciences, Universiti Putra Malaysia for three years. Upon graduation, the author enrolled as a full-time candidate pursuing her study in Master of Science program in field of Pharmacology under supervision of Dr. Mohd Hezme Bin Mohd Noor in Faculty of Veterinary Medicine, Universiti Putra Malaysia.
LIST OF PUBLICATION

PROCEEDINGS

JOURNALS

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ________________

TITLE OF THESIS / PROJECT REPORT :
__
__
__

NAME OF STUDENT :
__

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (✓)

☐ CONFI DENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RE S TRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ O PEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.
This thesis is submitted for:

PATENT

Embargo from _____________ until _____________ (date)

Approved by:

________________________ ____________________
(Signature of Student) (Signature of Chairman of Supervisory Committee)
New IC No/ Passport No.: Name:
Date :

Date :

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]