UNIVERSITI PUTRA MALAYSIA

SEMISYNTHESIS OF ANDROGRAPHOLIDE DERIVATIVES AND EVALUATION OF THEIR ANTITUMOUR PROPERTIES

JADA SRINIVASA RAO

FPSK(P) 2004 8
SEMISYNTHESIS OF ANDROGRAPHOLID DERIVATIVES AND EVALUATION OF THEIR ANTITUMOUR PROPERTIES

By

JADA SRINIVASA RAO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2004
Previously, andrographolide, which is the major diterpenoid of *Andrographis paniculata*, was shown to have *in vivo* antitumour activity against human breast tumour xenografts. In this study, among the four compounds isolated from *A. paniculata*, andrographolide was the most potent compound with a mean IC$_{50}$ value of 8 μM in MCF-7 human breast cancer cells. Neoandrographolide showed a weak cytotoxic effect, whereas 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide failed to exhibit growth inhibitory effect at the highest tested concentration of 100 μM. Owing to this, andrographolide was considered as the lead compound in the discovery of potent and selective antitumour agents.

Using andrographolide isolated from *A. paniculata* as one of the starting materials, 3,19-
benzylidene andrographolide and 3,19-alkylidene andrographolide derivatives were synthesised by coupling of the two -OH groups present at C-3 and C-19 of andrographolide with different benzaldehydes and alkyl aldehydes, respectively. In addition, new derivatives were also synthesised by acetylation, oxidation, Heck and esterolysis reactions. The structures of new derivatives of andrographolide derivatives were confirmed by spectral analysis (\(^1\)H/\(^{13}\)C NMR, MS, FT-IR, UV).

Forty seven compounds including andrographolide were tested for antitumour activities in MCF-7 and HCT-116 (colon) cancer cell lines. Using a 72 h MTT cell viability assay, parameters of dose-response effects, GI\(_{50}\), TGI and LC\(_{50}\) were determined. The derivatives had submicromolar GI\(_{50}\) values, except for 3,19-(4-nitrobenzylidene)andrographolide (SRJ58), which showed the most potent activity with a GI\(_{50}\) value of 0.7 \(\mu\)M in MCF-7 cells. Only (Z)-2-[1-benzylamino-2-(5,5,6,8a-tetramethyl-2-methylene-decahydro-naphthalen-1-yl)-ethyl]-4-hydroxy-but-2-enoic acid benzylamide] (SRJ18), displayed a pronounced selectivity (approximately 8-fold) towards HCT-116 cells at the GI\(_{50}\) value compared with MCF-7 cells.

Out of the five compounds (3,19-isopropylideneandrographolide (SRJ01), 14-acetylandrographolide (SRJ03), 3,19-(2-bromobenzylidene)-14-deoxy-11,12-didehydroandrographolide (SRJ05), 3,19-(2-bromobenzylidene)andrographolide (SRJ09) and 3,19-(3,4-dimethoxybenzylidene)andrographolide (SRJ13)) tested against the 60 National Cancer Institute (NCI) of USA human cancer cell lines, only SRJ09 showed some form of selectivity towards cancers of the colon, central nervous system, renal and melanoma. The mechanism(s) of actions of the compounds were also studied by
determining their effect in inducing cell cycle arrest and apoptosis. Andrographolide,
SRJ01 and SRJ03 induced G₁ and G₂/M arrest in MCF-7 cells, whereas 3,19-(4-
bromobenzylidene)andrographolide (SRJ08), SRJ09, 3,19-(3-bromobenzylidene)
andrographolide (SRJ10), 3,19-(3-chloro-4-fluorobenzylidene)andrographolide (SRJ23)
and 3,19-(2-fluorobenzylidene)andrographolide (SRJ27) induced only G₁-phase arrest
in MCF-7 cells. SRJ09 down-regulated CDK4 (a G₁-phase regulator) protein levels in
MCF-7 cells, which explains the G₁-phase arrest by the compound. NCI’s COMPARE
mechanistic analysis revealed that the compounds antitumour activities were not similar
to that of standard anticancer drugs with known mechanisms of action. Projection of
SRJ03 in the Self-Organising Maps (SOMs) analyses of NCI suggested that this
compound may be targeting cell cycle related phosphatases or kinases. However,
andrographolide, SRJ01, SRJ05, SRJ09 and SRJ13 did not project in the known
mechanism categories.

The mode(s) of cell death induced by SRJ09 and SRJ23, identified by fluorescence
microscopy and flow cytometry, was confirmed to be apoptosis in HCT-116 cells.

In conclusion, novel derivatives of andrographolide, especially SRJ09, SRJ18 and
SRJ58 are potential lead molecules for future antitumour studies to discover prospective
clinical candidates.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai syarat memenuhi keperluan untuk Ijazah Doktor Falsafah

SEMISINTESIS TERBITAN ANDROGRAPHOLIDE DAN PENILAIAN CIRI-CIRI ANTITUMORNYA

Oleh

JADA SRINIVASA RAO

October 2004

Fakulti : Perubatan dan Sains Kesihatan

Andrographolide merupakan diterpenoid utama tumbuhan Andrographis paniculata dan kajian terdahulu menunjukkan andrographolide mempunyai aktiviti anti-tumor secara in vivo terhadap xenograf tumor payudara manusia. Dalam kajian ini, andrographolide merupakan sebatian yang paling poten diantara empat sebatian daripada A. paniculata, dengan nilai min IC₅₀ 8 μM dalam sel kanser payudara manusia MCF-7. Neoandrographolide mempamerkan kesan sitotoksik yang lemah, manakala 14-deoxy-11,12-didehydroandrographolide dan 14-deoxyandrographolide gagal menunjukkan kesan perencatan tumbsesaran apabila diuji pada kepekatan tertinggi iaitu 100 μM.

Justeru itu, andrographolide telah dipilih sebagai sebatian asas dalam usaha menghasilkan agen antitumor yang poten dan selektif berasaskan struktur rangka andrographolide.
Dengan menggunakan andrographolide yang diasingkan daripada *A. paniculata* sebagai bahan asas, 3,19-benzilidene andrographolide dan 3,19-alkilidene andrographolide disintesis dengan mengkupelkan dua kumpulan –OH pada kedudukan C-3 dan C-19 andrographolide masing-masing dengan benzaldehid dan alkil aldehid. Selain itu, terbitan andrographolide juga disintesis melalui proses asetilasi, oksidasi, tindakbalas Heck dan esterolisis. Struktur bagi terbitan baru andrographolide disahkan dengan menggunakan analisis spektral (*¹H/-¹³C NMR, MS, FT-IR, UV*).

Kesemua sebatian termasuk andrographolide diuji untuk menentukan antitumor terhadap kultur kanser payudara, MCF-7 dan kanser kolon, HCT-116. Dengan menggunakan asai viabiliti sel MTT selama 72 jam, nilai GI₅₀, TGI dan LC₅₀ ditentukan. Kesemua sebatian terbitan menunjukkan nilai GI₅₀ submikromolar terhadap kedua-dua jenis sel terutamanya 3,19-(4-nitrobenzylidene)andrographolide (SRJ58), yang menunjukkan aktiviti paling poten dengan nilai GI₅₀ pada 0.7 μM. Antara sebatian-sebatian tersebut, 8-kali ganda (Z)-2-[1-Benzylamino-2-(5,5,6,8a-tetramethyl-2-methylene-decahydro-naphthalen-1-yl)-ethyl]-4-hydroxy-but-2-enoic acid benzylamide (SRJ18), menunjukkan selektiviti terhadap sel HCT-116 dengan katara pada nilai GI₅₀ berbanding sel MCF-7.

Daripada lima sebatian (3,19-isopropylideneandrographolide (SRJ01), 14-acetylandrographolide (SRJ03), 3,19-(2-bromobenzylidene)-14-deoxy-11,12-didehydroandrographolide (SRJ05), 3,19-(2-bromobenzylidene)andrographolide (SRJ09) and 3,19-(3,4-dimethoxybenzylidene)andrographolide (SRJ13)) yang telah diuji ke atas 60 jenis sel kanser oleh National Cancer Institute (NCI), USA, hanya SRJ09 menunjukkan
selektiviti terhadap kanser sistem saraf pusat dan melanoma.

Andrographolide, **SRJ01** dan **SRJ03** didapati mengaruh perencatan fasa G\(_1\) dan G\(_{2/M}\) pada sel MCF-7, manakala 3,19-(4-bromobenzylidene)andrographolide (**SRJ08**), **SRJ09**, 3,19-(3-bromobenzylidene) andrographolide (**SRJ10**), 3,19-(3-chloro-4-fluorobenzylidene)andrographolide (**SRJ23**) and 3,19-(2-fluorobenzylidene)-andrographolide (**SRJ27**) hanya merencatkan fasa G\(_1\) pada sel MCF-7. Kesan **SRJ09** terhadap (oerangsangan hitaran regulaton cyclin) yang bergantung terhadap kinase 4 (CDK4) telah ditentukan melalui analisis Western blot. **SRJ09** merencatkan tahap CDK4 pada sel MCF-7 setelah dirawat selama 72 jam. Analisis NCI COMPARE menunjukkan mekanisme aktiviti sebatian-sebatian ini, tidak sama seperti yang ada pada dadah antikanser yang diketahui. Projeksi **SRJ03** dalam analisis ‘Self-Organising Maps’ (SOMs) mencadangkan mekanisma tindakannya berkemungkinan bersasar ke atas enzim fosfatase atau kinase. Walau bagaimanapun, andrographolide, **SRJ01**, **SRJ05**, **SRJ09** dan **SRJ13** tidak dipamerkan dalam kategori mekanisma yang diketahui.

Mekanisma kematian sel yang diaruh oleh agen baru ini dikenalpasti melalui pemerhatian mikroskop pendaflor dan ‘sitometri aliran’. Daripada kedua-dua kaedah ini, apoptosis dikenal pasti sebagai mekanisma utama kematian sel HCT-116 yang dirawat dengan **SRJ09** dan **SRJ23**.

Secara kesimpulan, sebahagian sebatian terbitan andrographolide, terutamanya **SRJ09**, **SRJ18** dan **SRJ58** menpunyai potensi sebagai komponen utama kajian antitumor untuk menemui calon klinikal yang bekesan di masa hadapan.
ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor Dr Johnson Stanslas and co-supervisors Prof Dr Nordin Hj. Lajis, Assoc Prof Dr Mohammad Said Saad and Assoc Prof Dr Ahmad Sazali for their support throughout my research. Special thanks to Dr Stanslas for giving me the opportunity to carry out this project and also for providing the chance to work at the Cancer Research Laboratories (CRL), School of Pharmacy, University of Nottingham, United Kingdom.

I am most thankful to Professor Malcolm Stevens, for allowing me to work at CRL and for his support and encouragement during the course of my research at Nottingham.

I am indebted to Dr Andrew McCarroll for spending a huge amount of his time for discussing the synthetic chemistry aspects of this research work. I am grateful to Charlie Matthews for his help in teaching me tissue culture experiments. I am thankful to Dr Andrew Westwell, Dr Ian Hutchinson, Eiichiro and Cedric for their help and suggestions in performing synthesis work. Special thanks to Joe, Eng-Hui, Manish, Jenny and Naresh for their help during tissue culture work and for useful discussions. Heartful appreciation goes to technicians of CRL for their cooperation.

I would like to thank Koushik for his guidance throughout my research work at the Natural Products Laboratory, Institute of Bioscience, Universiti Putra Malaysia. I would also like to thank Sagineedu, Sitaram, Viknes, Velan and my lab mates, and technicians of the Faculty of Medicine and Health Sciences, and Institute Bioscience, UPM for their cooperation during my research period in Malaysia.
I am grateful to European Association for Cancer Research (EACR) and Cancer Research UK for their financial support during my stay at The University of Nottingham, UK. The Malaysian Ministry of Science, Technology and Innovation (MOSTI) is thanked for funding this project under the Intensification of Research in Priority Areas (IRPA) Programme (Grants: 06-02-04-0088 and 06-02-04-0603-EA001).

Finally, I would like to thank my family for their love, support and encouragement.
I certify that an Examination Committee met on 21st October 2004 to conduct the final examination of Jada Srinivasa Rao on his Doctor of Philosophy thesis entitled “Semisynthesis of Andrographolide Derivatives and Evaluation of Their Antitumour Properties” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Nasaruddin bin Abdul Aziz, M.D. M.Med. Sc.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia

Muhammad Nazrul Hakim, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia

Fauziah Othman, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia

Ibrahim Jantan, Ph.D.
Professor
Department of Pharmacy
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 DEC 2004
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the supervisor committee are as follows:

Johnson Stanslas, Ph.D.
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Nordin Hj. Lajis, Ph.D.
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Mohammad Said Saad, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Ahmad Sazali Hamzah, Ph.D.
Associate Professor
Faculty of Applied Sciences
University Technology MARA
(Member)

\[signature\]

AINI IDERIS, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 JAN 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

JADA SRINIVASA RAO

Date: 06/12/2004
TABLE OF CONTENTS

ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

1 LITERATURE REVIEW

1.1 Introduction 1
1.2 Cancer 3
1.2.1 Carcinogens 6
1.2.2 Cancer Chemotherapy 7
1.2.3 Cell Division Cycle 8
1.2.4 Cyclin-Dependent Kinases and Protein Phosphatases 9
1.2.5 CDK Regulators 12
1.2.6 Phosphorylation of Retinoblastoma (Rb) Protein 13
1.2.7 Small-molecule CDKIs As Anticancer Agents 14
1.3 Natural Products in Cancer Therapy 18
1.3.1 Plant-Derived Anticancer Agents 18
1.3.2 Inhibition of Cell Cycle Progression by Natural Products 29
1.4 Andrographis paniculata 31
1.4.1 Chemical Constituents of A. paniculata 33
1.4.2 Secondary Metabolites by Tissue Culture of A. paniculata 39
1.4.3 Pharmacological Properties of A. paniculata Extract 41
 Vs the Compounds Isolated from A. paniculata
1.4.3.1 Anti-HIV Property 41
1.4.3.2 Cell Differentiation-Inducing Activity 42
1.4.3.3 Antipyretic and Anti-inflammatory Activities 42
1.4.3.4 Hypoglycemic Property 43
1.4.3.5 Hepatoprotective Properties 43
1.4.3.6 Immunostimulatory Activity 44
1.4.3.7 Antimalarial Activity 45
1.4.3.8 Antidiarrhoeal Activity 45
1.4.3.9 Cardiovascular Activities 46
1.4.3.10 Antimicrobial Activities 48
1.4.3.11 Pharmacokinetics of Andrographolide 48
1.4.3.12 Inhibitors of Cell Cycle Progression 49
1.4.4 Toxicological Properties of A. paniculata Extract Vs the Compounds Isolated from A. paniculata 50
1.5 Objectives of the Study

2. ISOLATION AND ANTITUMOUR ACTIVITY OF COMPOUNDS FROM A. PANICULATA

2.1 Introduction
2.2 Materials and Methods
 2.2.1 Materials
 2.2.2 Methods
 2.2.2.1 Isolation and Characterisation of Compounds from A. paniculata
 2.2.2.2 A Rapid Method of Isolation of Andrographolide
 2.2.2.3 MTT Cell Viability Assay
 2.2.2.4 Purity of Andrographolide by HPLC
2.3 Results and Discussion

3 SYNTHESIS OF ANDROGRAPHOLIDE DERIVATIVES

3.1 Introduction
3.2 Experimental Section
 3.2.1 Coupling Reactions
 3.2.2 Epoxidation
 3.2.3 Conversion of Lactone to Lactam
3.3 Summary

4 IN VITRO ANTITUMOUR ACTIVITIES OF ANDROGRAPHOLIDE DERIVATIVES

4.1 Introduction
4.2 Materials and Methods
 4.2.1 Materials
 4.2.1.1 Chemicals and Suppliers
 4.2.1.2 Equipment and Instrumentation
 4.2.1.3 Preparation of Drug Solutions
 4.2.2 Methods
 4.2.2.1 General Cell Culture Procedures
 4.2.2.2 Cell Viability Assays
4.3 Statistical Analysis
4.4 Results and Discussion
 4.4.1 Antitumour Activities of 3,19-bromobenzylidene andrographolides
 4.4.2 Antitumour Activities of 3,19-fluorobenzylidene andrographolides
 4.4.3 Antitumour Activities of 3,19-chlorobenzylidene andrographolides
 4.4.4 Antitumour Activities of 3,19-ethoxy, hydroxy,
methoxybenzylidene andrographolides

4.4.5 Antitumour Activities of 3,19-nitrobenzylidene andrographolides 141
4.4.6 Antitumour Activities of 3,19-methylbenzylidene andrographolides 143
4.4.7 Antitumour Activities of Intermediate Products in the Synthesis of Lactam Andrographolide 144
4.4.8 Antitumour Activities of Miscellaneous Compounds 145
4.4.9 Conclusion 147

4.5 NCI in vivo Screen 148
4.6 Summary 157

5 MECHANISMS OF ANTITUMOUR ACTIVITIES OF ANDROGRAPHOLIDE DERIVATIVES

5.1 Introduction 160
5.2 Materials and Methods 163
 5.2.1 Materials 163
 5.2.1.1 Solutions for Cell Cycle Analysis 163
 5.2.1.2 Solutions and Buffers for Western Blot 163
 5.2.1.3 Solutions for Annexin V-FITC/PI - Flow Cytometry Analysis 165
 5.2.2 Methods 165
 5.2.2.1 Flow Cytometry for Determination of DNA Content of Cells 165
 5.2.2.2 Determination of Protein Contents 167
 5.2.2.3 Preparation of the SDS-Polyacrylamide Gel 167
 5.2.2.4 Western Blot 169
 5.2.2.5 Annexin V - FITC/PI - Flow Cytometry Analysis 171
5.3 Results and Discussion 174
 5.3.1 Cell Cycle Arrest by Andrographolide and Its Derivatives 174
 5.3.2 Effect of SRJ09 on CDK1 and CDK4 levels in MCF-7 cells 188
 5.3.3 Identification of the Mode(s) of Cell Death Induced by Andrographolide Derivatives 189
 5.3.3.1 Cellular Morphology 189
 5.3.3.2 Annexin V-FITC/PI - Flow Cytometry Analysis of Apoptosis 192
 5.3.4 NCI's COMPARE and SOM Cluster Analyses 197
5.4 Summary 201

6 GENERAL DISCUSSION AND CONCLUSIONS

6.1 Discussion 203
6.2 Conclusions 208
6.3 Future Work 209

REFERENCES 210
APPENDICES 227
BIODATA OF THE AUTHOR 253
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Types of carcinogens</td>
<td>p6</td>
</tr>
<tr>
<td>1.2 Small-molecule CDKIs</td>
<td>p17</td>
</tr>
<tr>
<td>1.3 Plant-derived anticancer agents used in clinic</td>
<td>p24</td>
</tr>
<tr>
<td>2.1 IC₅₀ values of andrographolides in MCF-7 cells</td>
<td>p63</td>
</tr>
<tr>
<td>4.1 GI₅₀, TGI and LC₅₀ values of SRJ08, SRJ09, SRJ10 and SRJ78 in MCF-7 and HCT-116 cell lines</td>
<td>p138</td>
</tr>
<tr>
<td>4.2 GI₅₀, TGI and LC₅₀ values of SRJ22, SRJ27, SRJ29 and SRJ77 in MCF-7 and HCT-116 cell lines</td>
<td>p139</td>
</tr>
<tr>
<td>4.3 GI₅₀, TGI and LC₅₀ values of SRJ11, SRJ23, SRJ44, SRJ53, SRJ67, SRJ68 and SRJ79 in MCF-7 and HCT-116 cell lines</td>
<td>p140</td>
</tr>
<tr>
<td>4.4 GI₅₀, TGI and LC₅₀ values of SRJ13, SRJ30, SRJ31, SRJ54, SRJ57, SRJ61, SRJ62 and SRJ73 in MCF-7 and HCT-116 cell lines</td>
<td>p142</td>
</tr>
<tr>
<td>4.5 GI₅₀, TGI and LC₅₀ values of SRJ33, SRJ58, SRJ59 and SRJ60 in MCF-7 and HCT-116 cell lines</td>
<td>p143</td>
</tr>
<tr>
<td>4.6 GI₅₀, TGI and LC₅₀ values of SRJ63, SRJ64 and SRJ65 in MCF-7 and HCT-116 cell lines</td>
<td>p144</td>
</tr>
<tr>
<td>4.7 GI₅₀, TGI and LC₅₀ values of SRJ18, SRJ24, SRJ51 and SRJ66 in MCF-7 and HCT-116 cell lines</td>
<td>p145</td>
</tr>
<tr>
<td>4.8 GI₅₀, TGI and LC₅₀ values of andrographolide and its derivatives in MCF-7 and HCT-116 cell lines</td>
<td>p146</td>
</tr>
<tr>
<td>4.9 Summary of cancer selectivity of andrographolide and its derivatives in the 60 NCI cell line panel</td>
<td>p155</td>
</tr>
<tr>
<td>4.10 Mean (± SD) GI₅₀, TGI and LC₅₀ values of andrographolide and its derivatives in the NCI in vitro screen</td>
<td>p156</td>
</tr>
<tr>
<td>4.11 Classifications of compounds according to their antitumour activities compared with andrographolide</td>
<td>p157</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>5.1</td>
<td>Effects of andrographolide, SRJ01 and SRJ03 on cell cycle phase distributions of MCF-7 cells</td>
</tr>
<tr>
<td>5.2</td>
<td>Effects of SRJ08, SRJ09, SRJ10 and SRJ27 on cell cycle phase distribution of MCF-7 cells</td>
</tr>
<tr>
<td>5.3</td>
<td>Effects of SRJ18 and SRJ23 on cell cycle phase distribution of HCT-116 cells</td>
</tr>
<tr>
<td>5.4</td>
<td>COMPARE analysis of SRJ01 and SRJ03 with standard agents (at GI_50 values)</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of cell cycle arrest induced by andrographolide and its derivatives</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The cell cycle</td>
<td>p10</td>
</tr>
<tr>
<td>1.2</td>
<td>Retinoblastoma (Rb) phosphorylation</td>
<td>p13</td>
</tr>
<tr>
<td>1.3</td>
<td>Structures of CDKIs</td>
<td>p15</td>
</tr>
<tr>
<td>1.4</td>
<td>Structures of plant derived anticancer agents</td>
<td>p25</td>
</tr>
<tr>
<td>1.5</td>
<td>Relative timing of arrest by different cell cycle arresting agents</td>
<td>p30</td>
</tr>
<tr>
<td>1.6</td>
<td>Andrographis paniculata</td>
<td>p31</td>
</tr>
<tr>
<td>1.7</td>
<td>Chemical constituents of A. paniculata</td>
<td>p35</td>
</tr>
<tr>
<td>1.8</td>
<td>Secondary metabolites by tissue culture of A. paniculata</td>
<td>p40</td>
</tr>
<tr>
<td>2.1</td>
<td>Structures of compounds isolated from A. paniculata</td>
<td>p58</td>
</tr>
<tr>
<td>2.2</td>
<td>HPLC chromatogram of andrographolide isolated from A. paniculata</td>
<td>p61</td>
</tr>
<tr>
<td>3.1</td>
<td>Andrographolide skeleton and the proposed synthesis of derivatives by (A) coupling reactions, (B) converting 5-membered lactone to lactam and (C) Heck reaction</td>
<td>p64</td>
</tr>
<tr>
<td>3.2</td>
<td>8-Chloroandrographolide triacetate</td>
<td>p71</td>
</tr>
<tr>
<td>3.3</td>
<td>Reagents; a) acetic anhydride, ZnCl₂, reflux, 5 min; b) benzylamine, 50 °C, 4 h; c) K₂CO₃, MeOH/H₂O, 2 h.</td>
<td>p119</td>
</tr>
<tr>
<td>3.4</td>
<td>Reagents; a) t-butyldimethylsilyl chloride, imidazole, DMF, 60 °C, 2 h; b) benzylamine, 50 °C, 24 h; c) Mesyl chloride, triethylamine, THF, 0 °C (6 h), RT- 3 days</td>
<td>p123</td>
</tr>
<tr>
<td>4.1</td>
<td>An example of growth-inhibition curve, from which GI₅₀, TGI and LC₅₀ were derived</td>
<td>p136</td>
</tr>
<tr>
<td>4.2</td>
<td>An example of dose-response growth-inhibition of SRJ09</td>
<td>p137</td>
</tr>
</tbody>
</table>
4.3 Mean graphs of andrographolide in the NCI in vitro screen p149
4.4 Mean graphs of SRJ01 in the NCI in vitro screen p150
4.5 Mean graphs of SRJ03 in the NCI in vitro screen p151
4.6 Mean graphs of SRJ05 in the NCI in vitro screen p152
4.7 Mean graphs of SRJ09 in the NCI in vitro screen p153
4.8 Mean graphs of SRJ13 in the NCI in vitro screen p154
5.1 Externalisation of phosphatidylserine during apoptosis p172
5.2 DNA histograms showing the cell cycle phase distribution of control and andrographolide treated MCF-7 cells p177
5.3 DNA histograms showing the cell cycle phase distribution of control and SRJ01 treated MCF-7 cells p178
5.4 DNA histograms showing the cell cycle phase distribution of control and SRJ03 treated MCF-7 cells p179
5.5 DNA histograms showing the cell cycle phase distribution of control and SRJ09 treated MCF-7 cells p183
5.6 DNA histograms showing the cell cycle phase distribution of control and SRJ10 treated MCF-7 cells p184
5.7 DNA histograms showing the cell cycle phase distribution of control and SRJ23 HCT-116 treated cells p185
5.8 Western blot analysis of lysates from SRJ09-treated MCF-7 cells with CDK1, CDK4 and actin antibodies p188
5.9 Acridine orange staining of floating and adherent HCT-116 cells. (A) control cells (B) cells treated for 48 h with 7 μM of SRJ09 p191
5.10 Acridine orange staining of floating and adherent HCT-116 cells. (A) control cells (B) cells treated for 48 h with 7 μM of SRJ23 p191
5.11 Density plots showing the percentage distribution of HCT-116 control and SRJ09 (10, 24 and 48 h) treated cells p194
5.12 Density plots showing the percentage distribution of HCT-116 control and SRJ23 (10, 24 and 48 h) treated cells p195
5.13 Early apoptotic cells of HCT-116 cells (expressed in percentage) after 10, 24 and 48 h exposure to SRJ09 (4 and 7 µM) and SRJ23 (4 and 7 µM) p196

5.14 Late apoptotic/secondary necrotic cells of HCT-116 cells (expressed in percentage) after 10, 24 and 48 h exposure to SRJ09 (4 and 7 µM) and SRJ23 (4 and 7 µM) p196

5.15 Location of (A) andrographolide, (B) SRJ01, (C) SRJ03, (D) SRJ05, (E) SRJ09 and (F) SRJ13 on the SOM map p199

5.16 Projection of (A) andrographolide, (B) SRJ01, (C) SRJ03, (D) SRJ05, (E) SRJ09 and (F) SRJ13 on the NCI standard anticancer agents (171 agents) map p200
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab-1</td>
<td>Actin</td>
</tr>
<tr>
<td>AO</td>
<td>acridine orange</td>
</tr>
<tr>
<td>AMPS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>AG</td>
<td>andrographolide</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinase</td>
</tr>
<tr>
<td>CDKI</td>
<td>cyclin-dependent kinase inhibitor</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COMPARE</td>
<td>Computerised Pattern-recognition algorithm</td>
</tr>
<tr>
<td>DAPI</td>
<td>4,6-diamino-2-phenyl indole</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethyl formamide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic-acid</td>
</tr>
<tr>
<td>ECL</td>
<td>enzyme chemiluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EGTR</td>
<td>ethylene glycol-bis (β-aminoethyl ether) N, N', N''-tetraacetic acid</td>
</tr>
<tr>
<td>FACs</td>
<td>fluorescence-activated cell sorter</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>GI<sub>50</sub></td>
<td>50% growth inhibition</td>
</tr>
</tbody>
</table>
H₂O distilled water/sterile water
HPLC high-pressure liquid chromatography
HRP horseradish peroxidase
IC₅₀ 50% inhibition concentration
LC₅₀ 50% lethal concentration
MTT 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
NCI National Cancer Institute
PBS phosphate-buffered saline
PCC Pearson correlation coefficient
PI propidium iodide
PS phosphatidylserine
PVDF polyvinylidene fluoride
RNA ribonucleic acid
RNase ribonuclease
RPMI Roswell Park Memorial Institute
SD standard deviation
SDS sodium dodecyl sulphate
SDS–PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
SOM self-organising maps
TCM traditional Chinese medicine
TEMED N,N,N',N'-tetramethylethylenediamine
TGI total growth inhibition
THF tetrahydrofuran
TLC thin layer chromatography
CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

The use of plants as medicines goes back to early man. Certainly the great civilisations of the ancient Indians, Chinese, and North Africans provided written evidence of man's ingenuity in utilising plants for the treatment of a wide variety of diseases. In ancient Greece, scholars classified plants and gave descriptions of them thus aiding the identification process. It was not until the 19th century that man began to isolate the active principles of medicinal plants and one particular landmark was the discovery of quinine from *Cinchona* bark by the French scientists Caventou and Pelletier. Such discoveries led to an interest in plants from the New World and expeditions scoured the almost impenetrable jungles and forests in the quest for new medicines (reviewed by Phillipson, 2001). Despite major scientific and technological progress in combinatorial chemistry, drugs derived from natural products still make an enormous contribution to drug discovery today (reviewed by Phillipson, 2001).

Nature is an attractive source of new therapeutic candidate compounds and has a tremendous chemical diversity found in millions of species of plants, animals, marine organisms and microorganisms. The development of novel agents from natural sources presents obstacles that are not usually met when one deals with synthetic compounds. For instance, there may be difficulties in accessing the source of the samples, obtaining appropriate amounts of the sample, identification and isolation of the active compound in the sample, and problems in synthesising the necessary amounts of the compound of interest (Rocha *et al.*, 2001).
There are about 500,000 species of plants growing on the earth and it is estimated that at least 5000 different chemical compounds of secondary metabolites are present in a single species of plant (reviewed by Verpoorte, 1998). It is apparent that the secondary metabolites of plant origin constitute a tremendous resource for exploring useful drugs. In plants, the primary metabolites, including proteins, lipids, nucleic acids, enzymes, and coenzymes, etc., come from the metabolism of carbohydrates with the incorporation of nitrogen and mineral elements. By utilising primary metabolites and numerous infinite molecules, plants synthesise the secondary metabolites for the purpose of survival and well-being. Taxonomically related plants generally produce chemically similar secondary metabolites and, therefore, may have similar pharmacological effects. Natural products exhibiting antitumour activity continue to be the subject of extensive research aimed at the development of drugs for the treatment of different human tumours.

In the early 1950s, a research program screening for antitumour drugs of plant origin was initiated mainly by the National Cancer Institute (NCI) in the USA. Large-scale screening procedures were made available, plant materials were produced, and crude extracts were put through preliminary screening. Basic pharmacological and toxicological studies in animals ensued, and finally, a number of promising compounds were selected for chemical studies, with the ultimate goal of finding the active antitumour drugs from plants. This program represented a combined effort mobilising many biomedical research organisations in the government and in medical, pharmaceutical, and chemical institutes and industries. The achievements during the past few decades have been very rewarding (reviewed by Cragg et al., 1999).