

UNIVERSITI PUTRA MALAYSIA

SEMISYNTHESIS OF ANDROGRAPHOLIDE DERIVATIVES AND EVALUATION OF THEIR ANTITUMOUR PROPERTIES

JADA SRINIVASA RAO

FPSK(P) 2004 8

SEMISYNTHESIS OF ANDROGRAPHOLIDE DERIVATIVES AND EVALUATION OF THEIR ANTITUMOUR PROPERTIES

By

JADA SRINIVASA RAO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2004

Abstract of this thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

SEMISYNTHESIS OF ANDROGRAPHOLIDE DERIVATIVES AND EVALUATION OF THEIR ANTITUMOUR PROPERTIES

By

JADA SRINIVASA RAO

October 2004

Chairman: Associate Professor Nasaruddin bin Abdul Aziz, M.D. M.Med. Sc.

Faculty: Medicine and Health Sciences

Previously, andrographolide, which is the major diterpenoid of Andrographis paniculata, was shown to have *in vivo* antitumour activity against human breast tumour xenografts. In this study, among the four compounds isolated from *A. paniculata*, andrographolide was the most potent compound with a mean IC_{50} value of 8 μ M in MCF-7 human breast cancer cells. Neoandrographolide showed a weak cytotoxic effect, whereas 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide failed to exhibit growth inhibitory effect at the highest tested concentration of 100 μ M. Owing to this, andrographolide was considered as the lead compound in the discovery of potent and selective antitumour agents.

Using andrographolide isolated from A. paniculata as one of the starting materials, 3,19-

benzylidene andrographolide and 3,19-alkylidene andrographolide derivatives were synthesised by coupling of the two -OH groups present at C-3 and C-19 of andrographolide with different benzaldehydes and alkyl aldehydes, respectively. In addition, new derivatives were also synthesised by acetylation, oxidation, Heck and esterolysis reactions. The structures of new derivatives of andrographolide derivatives were confirmed by spectral analysis (¹H/¹³C NMR, MS, FT-IR, UV).

Forty seven compounds including andrographolide were tested for antitumour activities in MCF-7 and HCT-116 (colon) cancer cell lines. Using a 72 h MTT cell viability assay, parameters of dose-response effects, GI₅₀. TGI and LC₅₀ were determined. The derivatives had submicromolar GI₅₀ values, except for 3,19-(4nitrobenzylidene) and rographolide (SRJ58), which showed the most potent activity with a GI₅₀ value of 0.7 µM in MCF-7 cells. Only (Z)-2-[1-benzylamino-2-(5,5,6,8atetramethyl-2-methylene-decahydro-naphthalen-1-yl)-ethyl]-4-hydroxy-but-2-enoic acid benzylamide] (SRJ18), displayed a pronounced selectivity (approximately 8-fold) towards HCT-116 cells at the GI₅₀ value compared with MCF-7 cells.

Out of the five compounds (3,19-isopropylideneandrographolide (SRJ01), 14acetylandrographolide (SRJ03), 3,19-(2-bromobenzylidene)-14-deoxy-11,12-didehydro andrographolide (SRJ05), 3,19-(2-bromobenzylidene)andrographolide (SRJ09) and 3,19-(3,4-dimethoxybenzylidene)andrographolide (SRJ13)) tested against the 60 National Cancer Institute (NCI) of USA human cancer cell lines, only SRJ09 showed some form of selectivity towards cancers of the colon, central nervous system, renal and melanoma. The mechanism(s) of actions of the compounds were also studied by

iii

determining their effect in inducing cell cycle arrest and apoptosis. Andrographolide, SRJ01 and SRJ03 induced G₁ and G₂/M arrest in MCF-7 cells, whereas 3,19-(4bromobenzylidene)andrographolide (SRJ08), SRJ09, 3,19-(3-bromobenzylidene) andrographolide (SRJ10), 3,19-(3-chloro-4-fluorobenzylidene)andrographolide (SRJ23) and 3,19-(2-fluorobenzylidene)andrographolide (SRJ27) induced only G₁-phase arrest in MCF-7 cells. SRJ09 down-regulated CDK4 (a G₁-phase regulator) protein levels in MCF-7 cells, which explains the G₁-phase arrest by the compound. NCI's COMPARE mechanistic analysis revealed that the compounds antitumour activities were not similar to that of standard anticancer drugs with known mechanisms of action. Projection of SRJ03 in the Self-Organising Maps (SOMs) analyses of NCI suggested that this compound may be targeting cell cycle related phosphatases or kinases. However, andrographolide, SRJ01, SRJ05, SRJ09 and SRJ13 did not project in the known mechanism categories.

The mode(s) of cell death induced by SRJ09 and SRJ23, identified by fluorescence microscopy and flow cytometry, was confirmed to be apoptosis in HCT-116 cells.

In conclusion, novel derivatives of andrographolide, especially SRJ09, SRJ18 and SRJ58 are potential lead molecules for future antitumour studies to discover prospective clinical candidates.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai syarat memenuhi keperluan untuk Ijazah Doktor Falsafah

SEMISINTESIS TERBITAN ANDROGRAPHOLIDE DAN PENILAIAN CIRI-CIRI ANTITUMORNYA

Oleh

JADA SRINIVASA RAO

October 2004

Pengerusi: Profesor Madya Nasaruddin bin Abdul Aziz, M.D. M.Med. Sc.

Fakulti : Perubatan dan Sains Kesihatan

Andrographolide merupakan diterpenoid utama tumbuhan Andrographis paniculata dan kajian terdahulu menunjukkan andrographolide mempunyai aktiviti anti-tumor secara in vivo terhadap xenograf tumor payudara manusia. Dalam kajian ini, andrographolide merupakan sebatian yang paling poten diantara empat sebatian daripada *A. paniculata*, dengan nilai min IC_{50} 8 µM dalam sel kanser payudara manusia MCF-7. Neoandrographolide mempamerkan kesan sitotoksik yang lemah, manakala 14-deoxy-11,12-didehydroandrographolide dan 14-deoxyandrographolide gagal menunjukkan kesan perencatan tumbesaran apabila diuji pada kepekatan tertinggi iaitu 100 µM. Justeru itu, andrographolide telah dipilih sebagai sebatian asas dalam usaha menghasilkan agen antitumor yang poten dan selektif berasaskan struktur rangka andrographolide.

Dengan menggunakan andrographolide yang diasingkan daripada *A. paniculata* sebagai bahan asas, 3,19-benzilidene andrographolide dan 3,19-alkilidene andrographolide disintesis dengan mengkupelkan dua kumpulan –OH pada kedudukan C-3 dan C-19 andrographolide masing-masing dengan benzaldehid dan alkil aldehid. Selain itu, terbitan andrographolide juga disintesis melalui proses asetilasi, oksidasi, tindakbalas Heck dan esterolisis. Struktur bagi terbitan baru andrographolide disahkan dengan menggunakan analisis spektral (¹H/¹³C NMR, MS, FT-IR, UV).

Kesemua sebatian termasuk andrographolide diuji untuk menentukan antitumor terhadap kultur kanser payudara, MCF-7 dan kanser kolon, HCT-116. Dengan menggunakan asai viabiliti sel MTT selama 72 jam, nilai GI₅₀, TGI dan LC₅₀ ditentukan. Kesemua sebatian terbitan menunjukkan nilai GI₅₀ submikromolar terhadap kedua-dua jenis sel terutamanya 3,19-(4-nitrobenzylidene)andrographolide (SRJ58), yang menunjukkan aktiviti paling poten dengan nilai GI₅₀ pada 0.7 μ M. Antara sebatian-sebatian tersebut, 8kali ganda (Z)-2-[1-Benzylamino-2-(5,5,6,8a-tetramethyl-2-methylene-decahydronaphthalen-1-yl)-ethyl]-4-hydroxy-but-2-enoic acid benzylamide (SRJ18), menunjukkan selektiviti terhadap sel HCT-116 dengan katara pada nilai GI₅₀ berbanding sel MCF-7.

Daripada lima sebatian (3,19-isopropylideneandrographolide (SRJ01), 14acetylandrographolide (SRJ03), 3,19-(2-bromobenzylidene)-14-deoxy-11,12-didehydro andrographolide (SRJ05), 3,19-(2-bromobenzylidene)andrographolide (SRJ09) and 3,19-(3,4-dimethoxybenzylidene)andrographolide (SRJ13)) yang telah diuji ke atas 60 jenis sel kanser oleh National Cancer Institute (NCI), USA, hanya SRJ09 menunjukkan

selektiviti terhadap kanser sistem saraf pusat dan melanoma.

Andrographolide, SRJ01 dan SRJ03 didapati mengaruh perencatan fasa G₁ dan G₂/M pada sel MCF-7, manakala 3,19-(4-bromobenzylidene)andrographolide (SRJ08), 3,19-(3-bromobenzylidene) andrographolide (SRJ10), 3,19-(3-chloro-4-SRJ09. fluorobenzylidene)andrographolide (SRJ23) and 3,19-(2-fluorobenzylidene)andrographolide (SRJ27) h anya m erencatkan fasa G_1 p ada s el MCF-7. Kesan SRJ09 terhadap (oerangsangan hitaran regulaton cyclin) yang bergantung terhadap kinase 4 (CDK4) telah ditentukan melalui analisis Western blot. SRJ09 merencatkan tahap CDK4 pada sel MCF-7 setelah dirawat selama 72 jam. Analisis NCI COMPARE menunjukkan mekanisme aktiviti sebatian-sebatian ini, tidak sama seperti yang ada pada dadah antikanser yang diketahui. Projeksi SRJ03 dalam analisis 'Self-Organising Maps' (SOMs) mencadangkan mekanisma tindakannya berkemungkinan bersasar ke atas enzim fosfatase atau kinase. Walau bagaimanapun, andrographolide, SRJ01, SRJ05, SRJ09 dan SRJ13 tidak dipamerkan dalam kategori mekanisma yang diketahui.

Mekanisma kematian sel yang diaruh oleh agen baru ini dikenalpasti melalui pemerhatian mikroskop pendaflor dan 'sitometri aliran'. Daripada kedua-dua kaedah ini, apoptosis dikenal pasti sebagai mekanisma utama kematian sel HCT-116 yang dirawat dengan SRJ09 dan SRJ23.

Secara kesimpulan, sebahagian sebatian terbitan andrographolide, terutamanya SRJ09, SRJ18 dan SRJ58 menpunyai potensi sebagai komponen utama kajian antitumor untuk menemui calon klinikal yang bekesan di masa hadapan.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor Dr Johnson Stanslas and co-supervisors Prof Dr Nordin Hj. Lajis, Assoc Prof Dr Mohammad Said Saad and Assoc Prof Dr Ahmad Sazali for their support through out my research. Special thanks to Dr Stanslas for giving me the opportunity to carry out this project and also for providing the chance to work at the Cancer Research Laboratories (CRL), School of Pharmacy, University of Nottingham, United Kingdom.

I am most thankful to Professor Malcolm Stevens, for allowing me to work at CRL and for his support and encouragement during the course of my research at Nottingham. I am indebted to Dr Andrew McCarroll for spending a huge amount of his time for discussing the synthetic chemistry aspects of this research work. I am grateful to Charlie Matthews for his help in teaching me tissue culture experiments. I am thankful to Dr Andrew Westwell, Dr Ian Hutchinson, Eiichiro and Cedric for their help and suggestions in performing synthesis work. Special thanks to Joe, Eng-Hui, Manish, Jenny and Naresh for their help during tissue culture work and for useful discussions. Heartful appreciation goes to technicians of CRL for their cooperation.

I would like to thank Koushik for his guidance throughout my research work at the Natural Products Laboratory, Institute of Bioscience, Universiti Putra Malaysia. I would also like to thank Sagineedu, Sitaram, Viknes, Velan and my lab mates, and technicians of the Faculty of Medicine and Health Sciences, and Institute Bioscience, UPM for their cooperation during my research period in Malaysia.

I am grateful to European Association for Cancer Research (EACR) and Cancer Research UK for their financial support during my stay at The University of Nottingham, UK. The Malaysian Ministry of Science, Technology and Innovation (MOSTI) is thanked for funding this project under the Intensification of Research in Priority Areas (IRPA) Programme (Grants: 06-02-04-0088 and 06-02-04-0603-EA001).

Finally, I would like to thank my family for their love, support and encouragement.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMNTS	viii
APPROVAL	х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxi

CHAPTER

1	ITTED	ATUDE	DEVIEW
I	LILER	AIUKE	KE VIE W

1.1	Introd	uction	1
1.2	Cance	r	3
	1.2.1	Carcinogens	6
	1.2.2	Cancer Chemotherapy	7
	1.2.3	Cell Division Cycle	8
	1.2.4	Cyclin-Dependent Kinases and Protein Phosphatases	9
	1.2.5	CDK Regulators	12
	1.2.6	Phosphorylation of Retinoblastoma (Rb) Protein	13
	1.2.7	Small-molecule CDKIs As Anticancer Agents	14
1.3	Natura	al Products in Cancer Therapy	18
	1.3.1	Plant-Derived Anticancer Agents	18
	1.3.2	Inhibition of Cell Cycle Progression by Natural Products	29
1.4	Andro	graphis paniculata	31
	1.4.1	Chemical Constituents of A. paniculata	33
	1.4.2	Secondary Metabolites by Tissue Culture of A. paniculata	39
	1.4.3	Pharmacological Properties of A. paniculata Extract	41
		Vs the Compounds Isolated from A. paniculata	
	1.4.3.	I Anti-HIV Property	41
	1.4.3.2	2 Cell Differentiation-Inducing Activity	42
	1.4.3.3	3 Antipyretic and Anti-inflammatory Activities	42
	1.4.3.4	4 Hypoglycemic Property	43
	1.4.3.	5 Hepatoprotective Properties	43
	1.4.3.0	5 Immunostimulatory Activity	44
	1.4.3.1	7 Antimalarial Activity	45
	1.4.3.8	8 Antidiarrhoeal Activity	45
	1.4.3.9	9 Cardiovascular Activities	46
	1.4.3.1	10 Antimicrobial Activities	48
	1.4.3.	11 Pharmacokinetics of Andrographolide	48
	1.4.3.	12 Inhibitors of Cell Cycle Progression	49
	1.4.4	Toxicological Properties of A. paniculata Extract Vs the	50
		Compounds Isolated from A. paniculata	

xiii

1.5	Objectives of the Study
ISOI FRO	ATION AND ANTITUMOUR ACTIVITY OF COMPOUNDS M A. PANICULATA
2.1	Introduction
2.2	Materials and Methods
	2.2.1 Materials
	2.2.2 Methods
	2.2.2.1 Isolation and Characterisation of Compounds from

A. paniculata2.2.2.2 A Rapid Method of Isolation of Andrographolide592.2.2.3 MTT Cell Viability Assay592.2.2.4 Purity of Andrographolide by HPLC61Results and Discussion62

3 SYNTHESIS OF ANDROGRAPHOLIDE DERIVATIVES

2.

2.3

3.1	Introd	luction	64
3.2	Experimental Section		66
	3.2.1	Coupling Reactions	67
	3.2.2	Epoxidation	117
	3.2.3	Conversion of Lactone to Lactam	118
3.3	Summ	nary	126

4 *IN VITRO* ANTITUMOUR ACTIVITIES OF ANDROGRAPHOLIDE DERIVATIVES

4.1	Introduction	127
4.2	Materials and Methods	129
	4.2.1 Materials	129
	4.2.1.1 Chemicals and Suppliers	129
	4.2.1.2 Equipment and Instrumentation	130
	4.2.1.3 Preparation of Drug Solutions	131
	4.2.1.4 Cell Culture Reagents	131
	4.2.2 Methods	131
	4.2.2.1 General Cell Culture Procedures	131
	4.2.2.2 Cell Viability Assays	133
4.3	Statistical Analysis	136
4.4	Results and Discussion	137
	4.4.1 Antitumour Activities of 3,19-bromobenzylidene andrographolides	137
	4.4.2 Antitumour Activities of 3,19-fuororobenzylidene andrographolides	138
	4.4.3 Antitumour Activities of 3,19-chlorobenzylidene andrographolides	139
	4.4.4 Antitumour Activities of 3,19-ethoxy, hydroxy,	140

xiv

52

		methoxybenzylidene andrographolides	
	4.4.5	Antitumour Activities of 3,19-nitrobenzylidene andrographolides	141
	4.4.6	Antitumour Activities of 3,19-methylbenzylidene andrographolides	143
	4.4.7	Antitumour Activities of Intermediate Products in the Synthesisof Lactam Andrographolide	144
	4.4.8	Antitumour Activities of Miscellaneous Compounds	145
	4.4.9	Conclusion	147
4.5	NCI in	vitro Screen	148
4.6	Summ	ary	157

5 MECHANISMS OF ANTITUMOUR ACTIVITIES OF ANDROGRAPHOLIDE DERIVATIVES

6

5.1 Introdu	ction	160
5.2 Materia	als and Methods	163
5.2.1	Materials	163
5.2.1.1	Solutions for Cell Cycle Analysis	163
5.2.1.2	Solutions and Buffers for Western Blot	163
5.2.1.3	Solutions for Annexin V-FITC/PI - Flow Cytometry Analysis	5 165
5.2.2	Methods	165
5.2.2.1	Flow Cytometry for Determination of DNA Content of Cells	165
5.2.2.2	Determination of Protein Contents	167
5.2.2.3	Preparation of the SDS-Polyacrylamide Gel	167
5.2.2.4	Western Blot	169
5.2.2.5	Annexin V - FITC/PI – Flow Cytometry Analysis	171
5.3 Results	s and Discussion	174
5.3.1	Cell Cycle Arrest by Andrographolide and Its Derivatives	174
5.3.2	Effect of SRJ09 on CDK1 and CDK4 levels in MCF-7 cells	188
5.3.3	Identification of the Mode(s) of Cell Death Induced by	189
5331	Cellular Morphology	180
5337	Annevin V-FITC/PI - Flow Cytometry Analysis	102
5.5.5.2	of Apoptosis	192
5.3.4	NCI's COMPARE and SOM Cluster Analyses	197
5.4	Summary	201
GENERAL D	DISCUSSION AND CONCLUSIONS	

6.1	Discussion	203
6.2	Conclusions	208
6.3	Future Work	209
REFERENCES		210
APPENDICES		227
BIODATA OF THE AUTHOR		253

xv

LIST OF TABLES

Table		Page
1.1	Types of carcinogens	p6
1.2	Small-molecule CDKIs	p17
1.3	Plant-derived anticancer agents used in clinic	p24
2.1	IC_{50} values of andrographolides in MCF-7 cells	p63
4.1	GI ₅₀ , TGI and LC ₅₀ values of SRJ08, SRJ09, SRJ10 and SRJ78 in MCF-7 and HCT-116 cell lines	p138
4.2	GI ₅₀ , TGI and LC ₅₀ values of SRJ22, SRJ27, SRJ29 and SRJ77 in MCF-7 and HCT-116 cell lines	p139
4.3	GI ₅₀ , TGI and LC ₅₀ values of SRJ11, SRJ23, SRJ44, SRJ53, SRJ67, SRJ68 and SRJ79 in MCF-7 and HCT-116 cell lines	p140
4.4	GI ₅₀ , TGI and LC ₅₀ values of SRJ13, SRJ30, SRJ31, SRJ54, SRJ57, SRJ61, SRJ62 and SRJ73 in MCF-7 and HCT-116 cell lines	p142
4.5	GI_{50} , TGI and LC_{50} values of SRJ33, SRJ58, SRJ59 and SRJ60 in MCF-7 and HCT-116 cell lines	p143
4.6	GI ₅₀ , TGI and LC ₅₀ values of SRJ63, SRJ64 and SRJ65 in MCF-7 and HCT-116 cell lines	p144
4.7	GI ₅₀ , TGI and LC ₅₀ values of SRJ18, SRJ24, SRJ51 and SRJ66 in MCF-7 and HCT-116 cell lines	p145
4.8	$\rm GI_{50},$ TGI and $\rm LC_{50}$ values of andrographolide and its derivatives in MCF-7 and HCT-116 cell lines	p146
4.9	Summary of cancer selectivity of andrographolide and its derivatives in the 60 NCI cell line panel	p155
4.10	Mean (\pm SD) GI ₅₀ , TGI and LC ₅₀ values of andrographolide and its derivatives in the NCI <i>in vitro</i> screen	p156
4.11	Classifications of compounds according to their antitumour activities compared with andrographolide	p157

X V 11	

.

5.1	Effects of andrographolide, SRJ01 and SRJ03 on cell cycle phase distributions of MCF-7 cells	p180
5.2	Effects of SRJ08, SRJ09, SRJ10 and SRJ27 on cell cycle phase distribution of MCF-7 cells	p186
5.3	Effects of SRJ18 and SRJ23 on cell cycle phase distribution of HCT-116 cells	p187
5.4	COMPARE analysis of SRJ01 and SRJ03 with standard agents (at GI_{50} values)	p197
5.5	Summary of cell cycle arrest induced by andrographolide and its derivatives	p201

xviii

LIST OF FIGURES

Figure		Page
1.1	The cell cycle	p10
1.2	Retinoblastoma (Rb) phosphorylation	p13
1.3	Structures of CDKIs	p15
1.4	Structures of plant derived anticancer agents	p25
1.5	Relative timing of arrest by different cell cycle arresting agents	p30
1.6	Andrographis paniculata	p31
1.7	Chemical constituents of A. paniculata	p35
1.8	Secondary metabolites by tissue culture of A. paniculata	p40
2.1	Structures of compounds isolated from A. paniculata	p58
2.2	HPLC chromatogram of andrographolide isolated from <i>A. paniculata</i>	p61
3.1	Andrographolide skeleton and the proposed synthesis of derivatives by (A) coupling reactions, (B) converting 5-membered lactone to lactam and (C) Heck reaction	p64
3.2	8-Chloroandrographolide triacetate	p71
3.3	Reagents; a) acetic anhydride, ZnCl ₂ , reflux, 5 min; b) benzylamine,50 °C, 4 h; c) K ₂ CO ₃ , MeOH/H ₂ O, 2 h.	p119
3.4	Reagents; a) <i>t</i> -butyldimethylsilyl chloride, imidazole, DMF, 60 °C, 2 h; b) benzylamine, 50 °C, 24 h; c) Mesyl chloride, triethylamine, THF, 0 °C (6 h), RT- 3 days	p123
4.1	An example of growth-inhibition curve, from which GI_{50} , TGI and LC_{50} were derived	p136
4.2	An example of dose-response growth-inhibition of SRJ09	p137

4.3	Mean graphs of andrographolide in the NCI in vitro screen	p149
4.4	Mean graphs of SRJ01 in the NCI in vitro screen	p150
4.5	Mean graphs of SRJ03 in the NCI in vitro screen	p151
4.6	Mean graphs of SRJ05 in the NCI in vitro screen	p152
4.7	Mean graphs of SRJ09 in the NCI in vitro screen	p153
4.8	Mean graphs of SRJ13 in the NCI in vitro screen	p154
5.1	Externalisation of phosphatidylserine during apoptosis	p172
5.2	DNA histograms showing the cell cycle phase distribution of control and andrographolide treated MCF-7 cells	p177
5.3	DNA histograms showing the cell cycle phase distribution of control and SRJ01 treated MCF-7 cells	p178
5.4	DNA histograms showing the cell cycle phase distribution of control and SRJ03 treated MCF-7cells	p179
5.5	DNA histograms showing the cell cycle phase distribution of control and SRJ09 treated MCF-7cells	p183
5.6	DNA histograms showing the cell cycle phase distribution of control and SRJ10 treated MCF-7cells	p184
5.7	DNA histograms showing the cell cycle phase distribution of control and SRJ23 HCT-116 treated cells	p185
5.8	Western blot analysis of lysates from SRJ09-treated MCF-7 cells with CDK1, CDK4 and actin antibodies	p188
5.9	Acridine orange staining of floating and adherent HCT-116 cells. (A) control cells (B) cells treated for 48 h with 7 μ M of SRJ09	p191
5.10	Acridine orange staining of floating and adherent HCT-116 cells. (A) control cells (B) cells treated for 48 h with 7 μ M of SRJ23	p191
5.11	Density plots showing the percentage distribution of HCT-116 control and SRJ09 (10, 24 and 48 h) treated cells	p194
5.12	Density plots showing the percentage distribution of HCT-116 control and SRJ23 (10, 24 and 48 h) treated cells	p195

i

į

5.13	Early apoptotic cells of HCT-116 cells (expressed in percentage) after 10, 24 and 48 h exposure to SRJ09 (4 and 7 μ M) and SRJ23 (4 and 7 μ M)	p196
5.14	Late apoptotic/secondary necrotic cells of HCT-116 cells (expressed in percentage) after 10, 24 and 48 h exposure to SRJ09 (4 and 7 μ M) and SRJ23 (4 and 7 μ M)	p196
5.15	Location of (A) andrographolide, (B) SRJ01 (C) SRJ03, (D) SRJ05, (E) SRJ09 and (F) SRJ13 on the SOM map	p199
5.16	Projection of (A) andrographolide, (B) SRJ01 (C) SRJ03, p200(D) SRJ05, (E) SRJ09 and (F) SRJ13 on the NCI standard anticancer agents (171 agents) map	p200

LIST OF ABBREVIATIONS

Ab-1	Actin
ΑΟ	acridine orange
AMPS	ammonium persulfate
AG	andrographolide
ATP	adenosine triphosphate
BSA	bovine serum albumin
CDK	cyclin-dependent kinase
CDKI	cyclin-dependent kinase inhibitor
CNS	central nervous system
COMPARE	Computerised Pattern-recognition algorithm
DAPI	4,6-diamino-2-phenyl indole
DMSO	dimethyl sulfoxide
DMF	dimethyl formamide
DNA	deoxyribonucleic-acid
ECL	enzyme chemiluminescence
EDTA	ethylenediaminetetraacetic acid
EGFR	epidermal growth factor receptor
EGTR	ethylene glycol-bis (β -aminoethyl ether) N, N, N', N'-tetraacetic
	acid
FACS	fluorescence-activated cell sorter
FCS	foetal calf serum
FITC	fluorescein isothiocyanate
GI ₅₀	50% growth inhibition

H ₂ O	distilled water/sterile water
HPLC	high-pressure liquid chromatography
HRP	horseradish peroxidase
IC ₅₀	50% inhibition concentration
LC ₅₀	50% lethal concentration
MTT	3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
NCI	National Cancer Institute
PBS	phosphate-buffered saline
PCC	Pearson correlation coefficient
PI	propidium iodide
PS	phosphatidylserine
PVDF	polyvinylidene fluoride
RNA	ribonucleic acid
RNase	ribonuclease
RPMI	Roswell Park Memorial Institute
SD	standard deviation
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
SOM	self-organising maps
ТСМ	traditional Chinese medicine
TEMED	N,N,N',N'-tetramethylethylenediamine
TGI	total growth inhibition
THF	tetrahydrofuran
TLC	thin layer chromatography

``

CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

The use of plants as medicines goes back to early man. Certainly the great civilisations of the ancient Indians, Chinese, and North Africans provided written evidence of man's ingenuity in utilising plants for the treatment of a wide variety of diseases. In ancient Greece, scholars classified plants and gave descriptions of them thus aiding the identification process. It was not until the 19th century that man began to isolate the active principles of medicinal plants and one particular landmark was the discovery of quinine from *Cinchona* bark by the French scientists Caventou and Pelletier. Such discoveries led to an interest in plants from the New World and expeditions scoured the almost impenetrable jungles and forests in the quest for new medicines (reviewed by Phillipson, 2001). Despite major scientific and technological progress in combinatorial chemistry, drugs derived from natural products still make an enormous contribution to drug discovery today (reviewed by Phillipson, 2001).

Nature is an attractive source of new therapeutic candidate c ompounds and has a tremendous chemical diversity found in millions of species of plants, animals, marine organisms and microorganisms. The development of novel agents from natural sources presents obstacles that are not usually met when one deals with s ynthetic compounds. For instance, there may be difficulties in accessing the source of the samples, obtaining appropriate amounts of the sample, identification and isolation of the active compound in the sample, and problems in synthesising the necessary amounts of the compound of interest (Rocha *et al.*, 2001).

1

There are about 500,000 species of plants growing on the earth and it is estimated that at least 5000 different chemical compounds of secondary metabolites are present in a single species of plant (reviewed by Verpoorte, 1998). It is apparent that the secondary metabolites of plant origin constitute a tremendous resource for exploring useful d rugs. In plants, the primary metabolites, including proteins, lipids, nucleic acids, enzymes, and c oenzymes, etc., come from the metabolism of carbohydrates with the incorporation of nitrogen and mineral elements. By utilising primary metabolites and numerous infinite molecules, plants synthesise the secondary metabolites for the purpose of survival and well being. Taxonomically related plants generally produce chemically similar secondary metabolites and, therefore, may have similar pharmacological effects. Natural products exhibiting antitumour activity continue to be the subject of extensive research aimed at the development of drugs for the treatment of different human tumours.

In the early 1950s, a research program screening for antitumour drugs of plant origin was initiated mainly by the National Cancer Institute (NCI) in the USA. Large-scale screening procedures were made available, plant materials were produced, and crude extracts were put through preliminary screening. Basic pharmacological and toxicological studies in animals ensued, and finally, a number of promising compounds were selected for chemical studies, with the ultimate goal of finding the active antitumour drugs from plants. This program represented a combined effort mobilising many biomedical research organisations in the government and in medical, pharmaceutical, and chemical institutes and industries. The achievements during the past few decades have been very rewarding (reviewed by Cragg *et al.*, 1999).

