UNIVERSITI PUTRA MALAYSIA

MOLECULAR AND IMMUNOLOGICAL IDENTIFICATIONS OF
GIARDIA SP. ISOLATED FROM HUMANS, DOGS AND RODENTS

NGAH ZASMY UNYAH

FPSK(P) 2004 6
MOLECULAR AND IMMUNOLOGICAL IDENTIFICATIONS
OF GIARDIA SP. ISOLATED FROM HUMANS,
DOGS AND RODENTS

By

NGAH ZASMY UNYAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia
In Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2004
DEDICATION

This work is dedicated to my family and friends. Thank you for your support, love and friendship.
MOLeCULAR AND IMMUNOLOGICAL IDENTIFICATIONS
OF GIARDIA SP. ISOLATED FROM HUMANS,
DOGS AND RODENTS

By

NGAH ZASMY UNYAH

October 2004

Chairman : Professor Hj. Wan Omar Abdullah, Ph.D.
Faculty : Medicine and Health Sciences

Concentrations and staining methods for identification of Giardia parasites in faecal materials from humans and animals are still the routine methods of diagnosis of giardiasis. Introduction of new and sensitive immunological and molecular methods will definitely facilitate diagnosis and the identification of various Giardia species that will ultimately improve clinical management and control of disease transmission. The identification of specific proteins of Giardia parasites, which are genus and species specific, may further improve the specificity and sensitivity of diagnostic methods. In this study, identification and confirmation of the species of Giardia parasite found in Malaysia, particularly in humans, dogs and rodents were done by Polymerase Chain Reaction (PCR) using species-specific primers. Specific Heat-Shock Protein (HSP) as markers for species identification were done using Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Immunoblotting (WI). These markers were used as antigens for the
production of species-specific monoclonal antibodies (MAb). The objectives of this study were: i) to identify the common *Giardia* sp. infecting humans and other mammals (dogs and rodents) in Malaysia using specific *Giardia* primers by PCR; ii) to produce *in vitro* and detect immunogenic HSP using polyclonal sera from rabbit immunised with antigens from known *Giardia* species on WI, and iii) to produce species-specific MAb from the identified HSP markers. Microscopically, this study has observed that *G. intestinalis* (GI) and *G. duodenalis* (GD) were indistinguishable but *G. muris* (GM) can be distinguished from GI or GD. In addition, this study has also confirmed that PCR using species-specific primers was more reliable and accurate in detecting the variant of GI found in humans and dogs. GD isolates recovered from dogs was found to be the actual variant of GI of humans. Clear morphological differentiations and identifications of GM and GI based on microscopical examination were observed and similar results were obtained by PCR using species-specific primers of respective species of *Giardia*. However, the SDS-PAGE and WI failed to identify species-specific HSP markers, but WI using immunised rabbit sera detected four immunogenic HSP, with the molecular weight of 30 kDa, 34 kDa, 58 kDa and 66 kDa. These four immunogenic HSP were detected at 25 °C, 37 °C and 50 °C in both GI and GM. Three species-specific MAbs were produced using the combinations of the four immunogenic HSPs as antigens. These MAbs were designated as (i) [32 kDa HSPMAbGi(IgG3)], (ii) [29 kDa HSPMAbGm(IgM)], and (iii) [20 kDa HSPMAbGi(IgG1)]. [32 kDa HSPMAbGi(IgG3)] MAb was specific for GI variant found in humans, [29 kDa HSPMAbGm(IgM)] MAb was specific for GM and [20 kDa HSPMAbGi(IgG1)] was specific for GI variant in both humans and dogs. These findings suggest that GI is the main causative agent of giardiasis in both humans and urban dogs in Malaysia.
GM is the main *Giardia* parasite infecting rodents in both rural and urban areas in Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGENALPASTIAN MOLEKUL DAN IMUNOLOGI TERHADAP GIARDIA SP. YANG DIPENCILKAN DARI MANUSIA, ANJING DAN RODEN

Oleh
NGAH ZASMY UNYAH

Oktober 2004

Pengerusi : Profesor Hj. Wan Omar Abdullah, Ph.D.
Fakulti : Perubatan dan Sains Kesihatan

Kaedah pewarnaan dan konsentrasi feses bagi pengenalpastian Giardia yang terdapat dalam feses manusia dan haiwan adalah kaedah-kaedah yang masih lagi penting dan digunakan secara rutin dalam diagnosis giardiasis. Kaedah-kaedah terkini imunologi dan molekul dalam diagnosis akan meningkatkan lagi penambahbaikan diagnosis yang akhirnya akan membantu dalam pengurusan klinikal dan kawalan penularan infeksi. Pegenalpastian protein-protein yang spesifik untuk genus and spesies Giardia akan dapat meningkatkan lagi kespesifikan pengenalpastian parasit ini. Dalam kajian ini, pengenalpastian spesies Giardia yang terdapat di Malaysia, terutamanya yang menjangkiti manusia, anjing dan roden telah dilakukan melalui kaedah Tindakbalas Berangkai Polimeras (PCR) dengan menggunakan primer yang spesifik untuk spesies Giardia. Profil Protein Kejutan Haba (HSP) untuk masing-masing spesies Giardia telah dikenalpasti melalui kaedah “Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis” (SDS-PAGE) dan “Western Immunoblotting” (WI). Tidak ada perbezaan profil protei di antara Vi
ketiga-tiga spesies *Giardia* ini namun terdapat perbezaan antiserum poliklonal arnab yang bertindakbalas secara spesifik dengan HSP untuk masing-masing spesies *Giardia*. HSP juga telah digunakan sebagai antigen bagi penghasilan antibodi monoklonal (MAb) yang spesifik untuk spesies *Giardia*. Objektif kajian ini ialah:
i) mengenalpasti spesies *Giardia* yang menjangkiti manusia dan haiwan mamalia (anjing dan roden) yang terdapat di Malaysia dengan menggunakan primer yang spesifik bagi spesies untuk *Giardia* dalam kaedah PCR, ii) menghasilkan dan mengesan HSP yang imunogenik sebagai petanda yang spesifik untuk spesies *Giardia* melalui penggunaan serum poliklonal arnab yang telah diimmunisasi dengan antigen spesies *Giardia* yang mana pengenalpastian proten ini adalah melalui kaedah WI, dan iii) menghasilkan MAb yang spesifik untuk spesies *Giardia* menggunakan HSP yang telah dikenalpasti sebagai antigen. Hasil penyelidikan mendapati, kaedah PCR menggunakan primer spesifik untuk spesies dengan tepatnya dapat mengesan dan membezakan di antara varian spesies *G. intestinalis* (GI) yang terdapat dalam manusia dan anjing. Isolat *G. duodenalis* (GD) yang dijumpai pada anjing adalah merupakan salah satu varian GI, sama seperti yang terdapat pada manusia. Perbezaan dan pengenalpastian morfologi dapat dilihat dengan jelas di antara *G. muris* (GM) dan GI, hasil kajian ini adalah sama seperti hasil kajian yang di kesan oleh PCR dengan menggunakan spesifik untuk spesies primer khas untuk GM dan GI. Keputusan penyelidikan ini mendapati, GI adalah agen penyebab utama penyakit giardiasis pada manusia dan anjing terutama di kawasan bandar di Malaysia. GM pula adalah parasit yang menjangkiti khususnya pada roden di kedua-dua kawasan bandar dan luar bandar di Malaysia. Kaedah SDS-PAGE dan WI didapati tidak dapat mengenalpasti kehadiran spesifik untuk spesies protein HSP sebagai petanda, tetapi kaedah WI dengan menggunakan serum arnab
yang telah diimunisasikan, dapat mengenalpasti empat imunogenik protein HSP yang mempunyai berat molekul 30 kDa, 34 kDa, 58 kDa dan 66 kDa. Keempat-empat HSP ini didapatkan dihasilkan pada suhu 25 °C, 37 °C dan 50 °C oleh G1 dan juga GM. Keempat-empat HSP ini merupakan calon yang sesuai digunakan sebagai antigen dalam penghasilan MAb. Tiga MAb yang spesifik kepada spesies *Giardia* telah berhasil dihasilkan dengan menggunakan gabungan keempat-empat jenis imunogenik protein HSP sebagai antigen. Tiga MAb yang telah dihasilkan adalah (i) [32 kDa HSPMAbGi(IgG3)], (ii) [29 kDa HSPMAbGm(IgM)], dan (iii) [20 kDa HSPMAbGi(IgG1)]. MAb [32 kDa HSPMAbGi (IgG3)] didapat spesifik hanya terhadap varian GI yang terdapat pada manusia, MAb [29 kDa HSPMAbGm(IgM)] hanya spesifik kepada GM dan, [20 kDa HSPMAbGi(IgG1)] didapat spesifik kepada kedua-dua varian GI yang terdapat pada manusia dan anjing.
ACKNOWLEDGEMENTS

I would like to thank all individuals, who have helped me directly or indirectly in this study. My sincere appreciations and thanks goes to my Principal Supervisor and the Head of Medical Parasitology and Entomology Unit, Faculty of Medicine and Health Sciences, UPM, Professor Dr. Hj. Wan Omar Abdullah for his inspiring ideas, guidance, understanding and motivations throughout my study as his graduate student and colleague at the Unit and Co-Supervisor, Prof. Dr. Mak Joon Wah and Dr. Patricia Lim Kim Chooi for their continuing support and guidance; Dr. Lokman Hakim and Dr. Noor Rain Abdullah of the Institute for Medical Research (IMR) for allowing us to use some of the parasite specimens and their facilities; Kuala Lumpur Hospital Diagnostic Laboratory (HKL) for helping in the collection of human faecal specimens; Kuala Lumpur Municipal Council (DBKL) for the assistance in obtaining dogs faecal materials and rodent trapping at Setapak and Chow Kit, Kuala Lumpur.
I certify that an Examination Committee met on 29th October 2004 to conduct the final examination of Ngah Zasmy Unyah on his Doctor of Philosophy thesis entitled “Molecular and Immunological Identification of Giardia sp. Isolated from Humans, Dogs and Rodents” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Elizabeth George, MBBS, MD., Ph.D.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Dato' C.P. Ramachandran, D.Med.Sc., Ph.D.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Rozita RosH, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Norhayati Mokhtar, MD., MScPH, Ph.D.
Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSLI RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 DEC 2004
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Hj. Wan Omar Abdullah, DVM, Ph.D.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mak Joon Wah, MBBS, MD.
Professor
International Medical University
Kuala Lumpur
(Member)

Patricia Lim Kim Chooi, Ph.D.
Institute for Medical Research
Kuala Lumpur
(Member)

AINI IDERIS, DVM, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 JAN 2005
DECLARATION

I hereby declare that the thesis is based on my own original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NGAH ZASMY UNYAH

Date: 26 November 2003
TABLE OF CONTENTS

DEDICATION
ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

I INTRODUCTION
1.1 General introduction
1.2 Hypotheses
1.3 Objectives

II LITERATURE REVIEW
2.1 Morphological identification of Giardia
2.2 Identification of Giardia by host specificity
2.3 DNA analysis for identification of Giardia
2.4 Genetic diversity of G. intestinalis
2.5 Giardiasis
2.6 Immune responses to Giardia infection
2.7 Immunogenicity of Giardia antigens
2.8 Diagnosis methods for identification of Giardia

III MATERIALS AND METHODS
3.1 Materials
3.1.1 Materials for isolation and purification of Giardia isolates from faecal materials
3.1.2 Materials for in vivo and in vitro maintenance of Giardia isolates
3.1.3 Materials for Polymerase Chain Reaction
3.1.4 Materials for Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis and Western Immunoblotting
3.1.5 Materials for production of monoclonal antibody
3.2 Methods
3.2.1 Isolation and purification of Giardia parasites from faecal materials
3.2.2 In vivo maintenance of Giardia parasites in gerbils
3.2.3 In vitro maintenance of Giardia parasites for the production of Heat-Shock Protein
3.2.4 Polymerase Chain Reaction
3.2.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis
3.2.6 Western Immunoblotting
3.2.7 Production of monoclonal antibody
IV RESULTS

4.1 Giardia infections in humans, dogs and rodents

4.2 Detection and identification of Giardia sp. by Polymerase Chain Reaction

4.2.1 Genus identification by PCR using Universal Fungal and Protozoan Primers, GspL and GspR on humans’s Giardia isolates

4.2.2 Species identification by PCR using species-specific primers for G. intestinalis, JW1 and JW2 on humans’s Giardia isolates

4.2.3 Genus identification by PCR using Universal Fungal and Protozoan Primers, GspL and GspR on dog’s Giardia isolates

4.2.4 Species identification by PCR using species-specific primers for G. duodenalis, JW1 and JW2 on dog’s Giardia isolates

4.2.5 Genus identification by PCR using Universal Fungal and Protozoan Primers, GspL and GspR on rodent’s Giardia isolates

4.2.6 Species identification by PCR using species-specific primers for G. muris, GMR and GML on rodent’s Giardia isolates

4.3 Differentiation and characterisation of Giardia sp. by the production of Heat-Shock Proteins

4.3.1 Sodium Dodesyl Sulphate-Polyacrylamide Gel Electrophoresis on produced Heat-Shock Proteins

4.4 Western Immunoblotting on Heat-Shock Proteins produced by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis

4.4.1 Western Immunoblotting of polyclonal rabbits sera immunised with G. intestinalis antigens (Portland-I, ATCC 30888 and WB, ATCC 30975) against the antigens of G. intestinalis isolates from humans

4.4.2 Western Immunoblotting of polyclonal rabbits sera immunised with G. muris antigens (IMR 1046) against the antigens of G. muris isolates from rodents

4.4.3 Western Immunoblotting of polyclonal rabbits sera immunised with G. duodenalis antigens (IMR 2048) against the antigens of G. duodenalis isolates from dogs

4.5 Production of monoclonal antibody

4.5.1 Production of monoclonal antibody from combination of 30 kDa, 34 kDa, 58 kDa and 66 kDa immunogenic Heat-Shock Proteins antigens of G. intestinalis

4.5.2 Production of monoclonal antibody from combination of 30 kDa, 34 kDa, 58 kDa and 66 kDa immunogenic Heat-Shock Proteins antigens of G. duodenalis

4.5.3 Production of monoclonal antibody from combination of 30 kDa, 34 kDa, 58 kDa and 66 kDa immunogenic Heat-Shock Proteins antigens of G. muris

4.5.4 Identification of Giardia isolates from humans using [32 kDaHSPMAbGi(IgG3)], [20 kDaHSPMAbGi(IgG1)] and [29 kDaHSPMAbGm(IgM)] monoclonal antibodies

4.5.5 Identification of Giardia isolates from dogs using [32 kDaHSPMAbGi(IgG3)], [20 kDaHSPMAbGi(IgG1)] and [29 kDaHSPMAbGm(IgM)] monoclonal antibodies
4.5.6 Identification of *Giardia* isolates from rodents using
[32 kDaHSPMAbGi(IgG3)],
[20 kDaHSPMAbGi(IgG1)] and
[29 kDaHSPMAbGm(IgM)] monoclonal antibodies

V DISCUSSION

VI CONCLUSION AND RECOMMENDATIONS

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>List of successful in vivo maintenance of Giardia isolates from humans</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>List of successful in vivo maintenance of Giardia isolates from dogs</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>List of successful in vivo maintenance of Giardia isolates from rodents</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Preparation of TYI-S-33 medium (In vitro culture media)</td>
<td>223</td>
</tr>
<tr>
<td>5</td>
<td>Preparation of Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis</td>
<td>224</td>
</tr>
<tr>
<td>6</td>
<td>Phosphate Buffer Saline, pH 7.2</td>
<td>224</td>
</tr>
<tr>
<td>7</td>
<td>Preparation of Western Immunoblotting</td>
<td>225</td>
</tr>
<tr>
<td>8</td>
<td>Preparation of 0.85% NaCl</td>
<td>225</td>
</tr>
<tr>
<td>9</td>
<td>Methods for Trichrome staining</td>
<td>225</td>
</tr>
<tr>
<td>10</td>
<td>Preparation of Polyvinyl Alcohol Fixative</td>
<td>226</td>
</tr>
<tr>
<td>11</td>
<td>Giardiasis in humans, dogs and rodents</td>
<td>227</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2% agarose gel analysis of PCR for detection of known controls: G. muris (IMR 1046), G. intestinalis (Portland-1, ATCC 30888) and G. duodenalis (IMR 2048).</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from patients using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from patients using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from dogs using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from dogs using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from gerbils using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from gerbils using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>2% agarose gel analysis of PCR for detection of Giardia sp. from gerbils using universal Giardia primers, GspL (5'-AAGTGCGTCAACGAGCAGCT-3') and GspR (5'-TTAGTGCTTTTGACCATCGA-3') (Mahbubani, et. al., 1991)</td>
<td>54</td>
</tr>
</tbody>
</table>
2% agarose gel analysis of PCR for detection of *Giardia intestinalis* from patients using specific *G. intestinalis* primers, JW1 (5'-GCGCACCAGGAATGTCTTGT-3') and JW2 (5'-TCACCTACGGATACCTTGT-3') (Weiss, J.B., et al., 1992)

2% agarose gel analysis of PCR for detection of *Giardia intestinalis* from patients using specific *G. intestinalis* primers, JW1 (5'-GCGCACCAGGAATGTCTTGT-3') and JW2 (5'-TCACCTACGGATACCTTGT-3') (Weiss, J.B., et al., 1992)

2% agarose gel analysis of PCR for detection of *Giardia muris* from gerbils using specific *G. muris* primers, GMR (5'-CATAAATCAGTGCGAGTGTTC-3') and GML (5'-GAGGAATCATCAGAACCTCGC-3') (Ionas, G., et al., 1992)

2% agarose gel analysis of PCR for detection of *Giardia muris* from gerbils using specific *G. muris* primers, GMR (5'-CATAAATCAGTGCGAGTGTTC-3') and GML (5'-GAGGAATCATCAGAACCTCGC-3') (Ionas, G., et al., 1992)

2% agarose gel analysis of PCR for detection of *Giardia duodenalis* from dogs using specific *G. intestinalis* primers, JW1 (5'-GCGCACCAGGAATGTCTTGT-3') and JW2 (5'-TCACCTACGGATACCTTGT-3') (Weiss, J.B., et al., 1992)

2% agarose gel analysis of PCR for detection of *Giardia duodenalis* from dogs using specific *G. intestinalis* primers, JW1 (5'-GCGCACCAGGAATGTCTTGT-3') and JW2 (5'-TCACCTACGGATACCTTGT-3') (Weiss, J.B., et al., 1992)

SDS PAGE of heat shock proteins produce by *Giardia intestinalis* (WB, ATCC 30957) at 4°C, 25°C, 37°C, 50°C and 70°C.
18 SDS PAGE of heat shock proteins produced by *Giardia muris* (IMR 1046) at 4°C, 25°C, 37°C, 50°C and 70°C.

19 SDS PAGE of heat shock proteins produced by *Giardia duodenalis* (IMR 2048) at 4°C, 25°C, 37°C, 50°C and 70°C.

20 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL1 at 4°C, 25°C, 37°C, 50°C and 70°C.

21 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL2 at 4°C, 25°C, 37°C, 50°C and 70°C.

22 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL3 at 4°C, 25°C, 37°C, 50°C and 70°C.

23 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL4 at 4°C, 25°C, 37°C, 50°C and 70°C.

24 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL5 at 4°C, 25°C, 37°C, 50°C and 70°C.

26 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL7 at 4°C, 25°C, 37°C, 50°C and 70°C.

27 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL8 at 4°C, 25°C, 37°C, 50°C and 70°C.

28 SDS PAGE of heat shock proteins produced by *Giardia* sp. Patient No. HKL9 at 4°C, 25°C, 37°C, 50°C and 70°C.

29 SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR1 at 4°C, 25°C, 37°C, 50°C and 70°C.

30 SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR2 at 4°C, 25°C, 37°C, 50°C and 70°C.

31 SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR3 at 4°C, 25°C, 37°C, 50°C and 70°C.

32 SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR4 at 4°C, 25°C, 37°C, 50°C and 70°C.

33 SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR5 at 4°C, 25°C, 37°C, 50°C and 70°C.
SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR6 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR7 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR8 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR9 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR10 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR11 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR12 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR13 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Gerbil No. IMR14 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL1 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL2 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL3 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL4 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL5 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL6 at 4°C, 25°C, 37°C, 50°C and 70°C.

SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL7 at 4°C, 25°C, 37°C, 50°C and 70°C.
50 SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL8 at 4°C, 25°C, 37°C, 50°C and 70°C.

51 SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL9 at 4°C, 25°C, 37°C, 50°C and 70°C.

52 SDS PAGE of heat shock proteins produced by *Giardia* sp. Dog No. DBKL10 at 4°C, 25°C, 37°C, 50°C and 70°C.

Immunoblotting of *G. muris* (IMR 1046), *G. duodenalis* (IMR2048), *G. Intestinalis* (Portland-1, ATCC 30888), *Cryptosporidium parvum* (IMR 11) and *Entamoeba histolytica* (HK9, ATCC 30015) antigens against 32 kDa HSPMAb *G. intestinalis* (IgG3).

Detection of IgG3 monoclonal antibody of 32 kDa HSPMAb *G. intestinalis* (IgG3) using Iso Typing Detection Kit (GIBCO, USA).

Immunoblotting of *G. muris* (IMR 1046), *G. duodenalis* (IMR2048), *G. Intestinalis* (Portland-1, ATCC 30888), *Cryptosporidium parvum* (IMR 11) and *Entamoeba histolytica* (HK9, ATCC 30015) antigens against 29 kDa HSPMAb *G. muris* (IgM).

Detection of IgM monoclonal antibody of 29 kDa HSPMAb *G. muris* (IgM) using Iso Typing Detection Kit (GIBCO, USA).

Immunoblotting of *G. muris* (IMR 1046), *G. duodenalis* (IMR2048), *G. Intestinalis* (Portland-1, ATCC 30888), *Cryptosporidium parvum* (IMR 11) and *Entamoeba histolytica* (HK9, ATCC 30015) antigens against 20 kDa HSPMAb *G. intestinalis* (IgG1).

Detection of IgG1 monoclonal antibody of 20 kDa HSPMAb *G. intestinalis* (IgG1) using Iso Typing Detection Kit (GIBCO, USA).

Immunoblotting of randomly selected antigens of *Giardia* isolates from patients, gerbils, dogs, *Cryptosporidium parvum*, (IMR 11), *Giardia intestinalis* (Portland-1, ATCC 30888), *Giardia duodenalis* (IMR 2048) and *Entamoeba histolytica* (HK9, ATCC 30015) against 32 kDa HSPMAb *G. intestinalis* (IgG3).