UNIVERSITI PUTRA MALAYSIA

ELUCIDATION OF THE WNT & AKT/PHOSPHOINOSITIDE-3-KINASE PATHWAYS IN COLORECTAL CARCINOMA

KHOR TIN OO

FPSK(P) 2004 2
ELUCIDATION OF THE WNT & AKT/PHOSPHOINOSITIDE-3-KINASE PATHWAYS IN COLORECTAL CARCINOMA

By

KHOR TIN OO

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Degree of Doctor of Philosophy

April 2004
Specially dedicated to,

My beloved wife, son (Hong Ze), parents and sister

The memory of,

My grandma and mother-in-law

For their invaluable love, understanding, patience, support and constant faith.
Colorectal cancer (CRC) is the third most common cancer in Malaysia and is currently the commonest cancer in males. Genetics, experimental and epidemiological data suggest that CRC develops from complex interaction between inherited susceptibility and environmental factors. Accumulating evidence suggests that the Wnt and PI3K (phosphoinositide-3-kinase)/Akt signalling pathways play a causative role in tumorigenesis of colorectal cancer.

By employing immunohistochemical method, the expression and correlation of several key regulators or related biomolecules of the Wnt and PI3K/Akt signalling pathways in 47 archival formalin fixed, paraffin embedded tissues of surgically resected colorectal cancer (CRC) specimens performed at Kuala Lumpur Hospital (KLH) between 1999 and 2000, were studied. Laser captured microdissection
technique, polymerase chain reaction and direct sequencing were used to investigate mutations in exon 3 of the \(\beta\)-catenin gene. Mutations in the mutation cluster region (MCR) of adenomatous polyposis coli (APC) gene were also investigated. The expressions of Wnt-1, WISP-1 and FRAT-1 mRNA were determined by reverse-transcription and real-time polymerase chain reaction method.

The results showed that: The expressions of Wnt-1, FRAT-1, APC, nuclear \(\beta\)-catenin, cytoplasmic \(\beta\)-catenin, membrane \(\beta\)-catenin, membrane E-cadherin, cytoplasmic E-cadherin, WISP-1, cyclin-D1, p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-BAD (Ser136), p-GSK 3\(\beta\)(Ser9) and survivin were found in 55.3%, 36.2%, 51.1% 44.6%, 95.7%, 30.6%, 46.8%, 95.7%, 31.9%, 10.6%, 34%, 44.7%, 57.4% 44.7% and 59.6% of CRC tissues, respectively and 17.5%, 5% 100%, 0%, 75%, 100%, 100%, 50%, 12.5%, 0%, 5%, 12.5%, 22.5%, 22.5% and 32.5% of apparently normal adjacent tissues, respectively. The sum of scores for all biomolecules except APC, membrane \(\beta\)-catenin and membrane E-cadherin staining was significantly higher in CRC tissues in comparison to apparently normal adjacent tissues (p < 0.05). The sum of score for APC, membrane \(\beta\)-catenin and membrane E-cadherin staining was significantly lower in CRC tissues in comparison to apparently normal adjacent tissues (p < 0.05). The expression of Wnt and PI3K/Akt signalling pathway-related biomolecules was interrelated. The results of nucleotide sequencing showed that no mutations at exon-3 of \(\beta\)-catenin were found. However, point mutations in the mutation cluster region of the APC gene leading to the formation of truncated APC protein, were found in four
out eleven CRC tissues examined. A 1.43 to 21.26-fold and 1.11 to 109.14-fold increase in the level of expression of Wnt-1 and FRAT-1 mRNA was found in eight out of eleven CRC tissues relative to apparently normal adjacent tissues. On the other hand, a 1.94 to 46.69-fold increase in the level of WISP-1 mRNA was found in all the CRC tissues.

This study has provided important information for researchers and clinicians in terms of clinical evidence of the involvement of the Wnt signalling pathway and PI3K/Akt signalling pathway in colorectal tumorigenesis. In addition, the present study also provided crucial information on the elucidation of the relationship between the biomolecules of these signalling pathways towards understanding their roles in colorectal tumourigenesis and the identification of potential targets for advance therapeutic intervention of CRC. Based on our current results, we propose that Wnt-1, FRAT-1 and WISP-1 could be served as potent therapeutic target for the treatment of CRC.

On the basis of our present study, we conclude that the Wnt and PI3K/Akt signalling pathways are involved in tumourigenesis of CRC in Malaysia. These pathways are interrelated although they might also act independently in promoting tumour growth and inhibition of apoptosis. This study has also provided useful information for the search or design of better antitumour interventions.
Abstrak tesis yang dikenalkan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENJELASAN LINTASAN WNT DAN AKT/PHOSPHOINOSITIDE-3-KINASE DALAM KARSINOMA KOLOREKTAL

Oleh

KHOR TIN OO

April 2004

Pengerusi: Profesor Dr Seow Heng Fong, Ph.D.

Fakulti: Perubatan dan Sains Kesihatan

Barah kolorektal (CRC) merupakan barah yang ketiga paling kerap di Malaysia dan pada ketika ini, ia merupakan barah yang paling kerap di kalangan lelaki. Data genetik, eksperimental dan data epidemiologi menyarankan bahawa CRC berkembang hasil interaksi antara faktor persekitaran dan faktor keturunan. Bukti-bukti telah menyarankan bahawa lintasan isyarat PI3K (phosphoinositide-3-kinase) /Akt dan Wnt memainkan peranan yang penting dalam perkembangan barah kolorektal.

Dengan menggunakan kaedah immunohistokimia, ekspresi dan hubungan antara beberapa pengawal-atur atau biomolekul yang berkaitan dengan lintasan isyarat

Keputusan kami menunjukkan bahawa ekspresi Wnt-1, FRAT-1, APC, β-katenin nukleus, β-katenin sitoplasma, β-katenin membran, E-cadherin membran, E-cadherin sitoplasma, WISP-1, cyclin-D1, p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-BAD (Ser136), p-GSK 3β(Ser9) dan survivin telah dikesan di 55.3%, 36.2%, 51.1% 44.6%, 95.7%, 30.6%, 46.8%, 95.7%, 31.9%, 10.6%, 34%, 44.7%, 57.4% 44.7% dan 59.6% tisu CRC, masing-masing dan 17.5%, 5% 100%, 0%, 75%, 100%, 100%, 50%, 12.5%, 0%, 5%, 12.5%, 22.5%, 22.5% dan 32.5% tisu sekeliling yang kelihatan biasa, masing-masing. Jumlah skor untuk semua biomolekul kecuali APC, β-katenin membran and E-cadherin membran adalah lebih tinggi dalam tisu CRC berbanding dengan tisu sekeliling yang kelihatan biasa (p < 0.05). Jumlah skor untuk APC, β-katenin membran and E-cadherin membran adalah lebih rendah dalam tisu CRC berbanding tisu sekeliling yang kelihatan biasa (p < 0.05). Ekspresi biomolekul yang berkaitan dengan lintasan isyarat Wnt dan PI3K/Akt adalah saling berhubungan. Keputusan penjujukan menunjukkan bahawa tidak ada mutasi berlaku di ekson-3,

Kajian ini telah menghasilkan maklumat yang penting kepada para penyelidik dan perubatan dari segi bukti klinikal bagi pembabitan lintasan isyarat Wnt dan PI3K/Akt dalam tumorigenesis kolorektal. Kajian kami juga memberi maklumat penting dalam penjelasan hubungan antara biomolekul bagi lintasan isyarat yang berkenaan, menuju pemahaman peranan mereka di dalam tumorigenesis kolorektal dan pengenalan sasaran-potensi bagi intervensi CRC therapi maju. Berdasarkan keputusan ini, kami mencadangkan bahawa Wnt-1, FRAT-1 dan WISP-1 boleh dianggap sebagai sasaran terapeutik yang berpotensi untuk rawatan CRC.

Berdasarkan keputusan yang diperolehi, kami membuat kesimpulan bahawa lintasan isyarat Wnt dan PI3K/Akt adalah berkait dengan tumourigenesis CRC di Malaysia. Lintasan isyarat ini adalah saling berhubungan walaupun mereka juga boleh bertindak secara bersendirian untuk menggalakkan pertumbuhan barah dan perencatan apoptosis. Kajian ini telah memberi maklumat yang berguna kepada para...
penyelidik dan doctor perubatan dalam penemuan dan penerokaan intervensi anti-barah yang lebih baik.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and heartfelt appreciation to my main supervisor, Prof. Dr. Seow Heng Fong, for her advice, patience, encouragement and generous guidance throughout my research. Her supportive supervision and constructive criticism have been crucially important for this thesis.

My sincere thanks are also accorded to my co-supervisors, Prof. Dr. Yunus Gul Alif Gul and Dr. Hairuszah Ithnin, for their endless help, priceless comments and invaluable advice throughout the entire progress of this project.

I would like to acknowledge and thank surgeons Mr. Faisal, Mr. Kwan and Ms. Subhita for generously helping me to collect the specimens. A special note of appreciation also goes out to Dr. Goh Yong Meng for providing logistic support and advice on statistics.

I am indebted to my labmates, Andrea Lisa Holmes, Wang Suk Mei, Maha Abdullah, Ban KeChen, Tina Ong, Leong Pooi Pooi, Lim Pei Ching, Loh Hui Woon and Anthonysamy for their helpful collaboration and discussion.

Finally, I would like to express my deepest gratitude to my wife, parents and sister for their continual support and encouragement for me to proceed to completion of this project.
I certify that an Examination Committee met on 14th April 2004 to conduct the final examination of Khor Tin Oo on his Doctor of Philosophy thesis entitled “Elucidation of the Wnt and Akt/Phosphoinositide-3-Kinase Pathways in Colorectal Carcinoma” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Yushak Abdul Wahab, KMN, SMT. MBBS, FRCS, AM
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zarida Hambali, MD, DCP, Ph.D., AM
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mariana Nor Shamsudin, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Alistair Renwick, MA, MBChB, MDPhD., FRCPath, FRCPE, CChem, FRCS
Professor
International Medical University
Sesama Street, Plaza Komanwel
Bukit Jalil
57000 Kuala Lumpur
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 Aug 2004
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The member of the Supervisory Committee are as follows:

SEOW HENG FONG, Ph.D.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

YUNUS GUL ALIF GUL, MBBCH, FRCS
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HAIRUSZAH ITHNIN, MD, M.PATH, AM
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

\[\text{Signature}\]

AINI IDEERIS, Ph.D.
Professor/Dean,
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 SEP 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHOR TIN OO

Date: 15/07/04
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS x
APPROVAL xii
DECLARATION xiii
LIST OF TABLES xx
LIST OF FIGURES xxii
LIST OF ABBREVIATIONS xxiv

CHAPTER

I INTRODUCTION 1-10

II LITERATURE REVIEW
2.1 Colorectal carcinoma-General demographics 11
2.2 Risk factors of CRC 12
 2.2.1 Host factors 12
 2.2.1.1 Longitudinal Cohorts 12
 2.2.1.2 Race and ethnicity 13
 2.2.1.3 Personal history of colorectal neoplasia 13
 2.2.1.4 Insulin and insulin-like growth factor 14
 2.2.1.5 Cholecystectomy 15
 2.2.1.6 Ulcerative colitis 15
 2.2.2 Life-style factors 16
 2.2.2.1 Immigration 16
 2.2.2.2 Dietary factor 16
 2.2.2.3 Physical activity 17
2.3 Clinical manifestation 17
2.4 Diagnosis 18
2.5 Staging 18
2.6 Prognosis 18
2.7 Prevention 22
2.8 Treatment 23
 2.8.1 Surgery 23
 2.8.2 Chemotherapy 23
 2.8.3 Radiotherapy 24
 2.8.4 New strategies for CRC treatment 24
2.9 Vogelstein model colorectal tumorigenesis 25
2.10 Wnt signal transduction pathway 27
2.11 Components and alterations of the Wnt signaling pathway in human 30
cancer
2.11.1 Wnt 30
2.11.2 Frizzled 36
2.11.3 LRP 36
2.11.4 Frizzled related protein (FrzB), Wnt-inhibitory factor-1 (WIF-1) and Dickkopf (Dkk) 38
2.11.5 Dishevelled 39
2.11.6 β-catenin 41
2.11.7 APC 44
2.11.8 Axin 49
2.11.9 GSK-3 β 50
2.11.10 Frat/GBP 52
2.11.11 TCF/LEF 52
2.11.12 Target genes 54
2.11.12.1 Cyclin-D1 54
2.11.12.2 Survivin 54
2.11.12.3 WISP-1 55
2.12 TP53 56
2.13 K-ras 56
2.14 Deleted in colorectal cancer (DCC) 57
2.15 Phosphatidylinositol-3 kinase (PI3-Kinase)/Akt-signaling pathway 57
2.15.1 Involvement of the PI3K/Akt pathway in neoplasia 59
2.15.2 Phosphorylation targets of Akt/PKB 60
2.15.2.1 BAD 61

III MATERIALS AND METHODS 62

3.1 Tissue specimens for immunohistochemistry and laser capture microdissection 63
3.2 Tissue specimens for immunohistochemistry, realtime PCR and PCR 64
3.3 Immunohistochemistry 64
3.3.1 Preparation of sections 64
3.3.2 Standard procedures for immunohistochemical staining 64
3.3.2.1 Immunohistochemical staining of Wnt-1 protein 65
3.3.2.2 Immunohistochemical staining of β-catenin protein 66
3.3.2.3 Immunohistochemical staining of APC protein 66
3.3.2.4 Immunohistochemical staining of E-cadherin protein 66
3.3.2.5 Immunohistochemical staining of FRAT-1 protein 67
3.3.2.6 Immunohistochemical staining of WISP-1 protein 67
3.3.2.7 Immunohistochemical staining of cyclin-D1 protein 67
3.3.2.8 Immunohistochemical staining of survivin protein 68
3.3.2.9 Immunohistochemical staining of phospho-Akt-1 (Ser473) protein 68
3.3.2.10 Immunohistochemical staining of phospho-Akt1/2/3 (Thr308) protein 68
3.3.2.11 Immunohistochemical staining of phospho-GSK-3β (Ser9) protein 69
3.3.2.12 Immunohistochemical staining of phospho-BAD 69
(Ser136) protein

3.3.3 Evaluation of immunohistochemical staining 70
3.2.4 Statistical analysis 70

3.4 Detection of gene mutation using laser capture microdissection (LCM) 72
3.4.1 Immunohistochemical staining of β-catenin for LCM 72
3.4.2 Laser capture microdissection 73

3.5 Mutation analysis 73
3.5.1 Extraction of genomic DNA from LCM captured cells and fresh tissues 73
3.5.2 Amplification of the β-catenin gene 74
3.5.3 Amplification of the APC gene 74
3.5.4 Purification and sequencing of PCR products 75
3.5.5 Extraction of total RNA from fresh tissues 76
3.5.6 Semi-quantitative reverse transcription-PCR 77
 3.5.6.1 Reverse transcription 77
 3.5.6.2 Amplification of Wnt-1 mRNA 78
 3.5.6.3 Amplification of WISP-1 mRNA 78
 3.5.6.4 Amplification of FRAT-1 mRNA 79
 3.5.6.5 Negative and internal control 79
 3.5.6.6 Quantification 80

3.6 Real-time RT-PCR 80
3.6.1 Theoretical basis 80
3.6.2 Amplification of Wnt-1, WISP-1 and FRAT-1 mRNA by RTPCR 80
3.6.3 Relative quantification of gene expression using comparative C_T method 81

IV THE ELUCIDATION OF THE WNT SIGNALING PATHWAY TOWARDS UNDERSTANDING OF ITS ROLE IN COLORECTAL TUMORIGENESIS 82

4.1 Introduction 82
4.2 Results of the aberrant expression of the Wnt signaling pathway-related biomolecules 83
 4.2.1 Detection of Wnt-1 expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry 84
 4.2.2 Detection of β-catenin expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry 86
 4.2.3 Detection of mutation in exon-3 of β-catenin genes 87
 4.2.4 Detection of APC expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry 90
 4.2.5 Detection of mutations in mutation cluster region (MCR) of APC genes 91
 4.2.6 Detection of E-cadherin expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry 94
 4.2.7 Detection of FRAT-1 expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry 95
 4.2.8 Detection of WISP-1 expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry 96
4.2.9 Detection of cyclin-D1 expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry

4.2.10 Detection of survivin expression in apparently normal adjacent tissues and CRC tissues by immunohistochemistry

4.2.11 Detection of WISP-1, Wnt-1 and FRAT-1 expression in apparently normal adjacent tissues and CRC tissues by semi-quantitative, conventional RT-PCR and real-time quantitative PCR

4.2.11.1 Isolation of total RNA from fresh tissues and reverse transcription

4.2.11.2 Amplification of Wnt-1, WISP-1 and FRAT-1 by conventional PCR method

4.2.11.3 Semi-quantification of Wnt-1, WISP-1 and FRAT-1

4.2.11.4 Real-time amplification of Wnt-1, WISP-1 and FRAT-1 mRNA

4.2.11.5 Relative quantification of mRNA expression using comparative C_T method

4.3 Discussion on the aberrant expression of the Wnt signaling pathway-related biomolecules

4.3.1 Wnt-1

4.3.2 FRAT-1

4.3.3 Adenomatous Polyposis Coli (APC)

4.3.4 β-catenin

4.3.5 E-cadherin

4.3.6 WISP-1

4.3.7 Cyclin-D1

4.3.8 Survivin

4.4 Conclusion on the aberrant expression of the Wnt signaling pathway-related biomolecules

4.5 Results of the correlation among the expression of Wnt signaling pathway-related biomolecules

4.5.1 Correlation between aberrant expression of β-catenin with other Wnt signaling-related biomolecules

4.5.1.1 Correlation between aberrant expression of β-catenin and its adhesion complex counterpart, E-cadherin

4.5.1.2 Correlation between aberrant expression of β-catenin and APC

4.5.1.3 Correlation between aberrant expression of β-catenin and FRAT-1

4.5.2 Elucidation of the role plays by Wnt-1 in the regulation of the Wnt signaling pathway

4.5.2.1 Correlation between expression of Wnt-1 and FRAT-1

4.5.2.2 Correlation between expression of Wnt-1 and cytoplasmic β-catenin/E-cadherin

4.5.2.3 Correlation between expression of Wnt-1 and WISP-1/cyclin-D1

4.5.3 Role of E-cadherin and APC as negative regulator of the Wnt-signalling pathway

4.6 Conclusion on the correlation among the expression of Wnt signaling pathway-related biomolecules
4.7 Results of the association between total biomolecule score with clinicopathological data
 4.7.1 Association between total biomolecule score with age, gender and race
 4.7.2 Association between total biomolecule score with histological grade, pathological stage and tumour side
4.8 Discussions on the association between total biomolecule score with clinicopathological data
 4.8.1 Association between total biomolecule score with age, gender and race
 4.8.2 Association between total biomolecule score with histological grade, pathological stage and tumour side
4.9 Conclusions on the association between total biomolecule score with clinicopathological data

V ELUCIDATION OF THE RELATIONSHIP BETWEEN THE BIOMOLECULES OF PHOSPHOINOSITIDE-3 KINASE (PI3K)/AKT SIGNALING PATHWAY IN COLORECTAL CARCINOMA

5.1 Introduction
5.2 Results of the aberrant expression of PI3K/Akt signaling pathway-related biomolecules
 5.2.1 Expression of p-Akt1 (Ser473) in apparently normal adjacent tissues and CRC tissues
 5.2.2 Expression of p-Akt1/2/3 (Thr308) in apparently normal adjacent tissues and CRC tissues
 5.2.3 Expression of p-GSK-3β (Ser9) in apparently normal adjacent tissues and CRC tissues
 5.2.4 Expression of p-BAD (Ser136) in apparently normal adjacent tissues and CRC tissues
5.3 Discussion on the aberrant expression of PI3K/Akt signaling pathway-related biomolecules
 5.3.1 Expression of Phospho-Akt1/2/3 (Thr308) and phosphor-Akt1(Ser473): indication of the activation of PI3K/Akt signaling pathway
 5.3.2 Detection of PI3K/Akt signaling pathway-targeted biomolecules
 5.3.2.1 Phospho-GSK-3β
 5.3.2.2 Phospho-BAD (Ser136)
5.4 Conclusion on the aberrant expression of PI3K/Akt signaling pathway-related biomolecules
5.5 Results of the elucidation of relationship between the biomolecules of PI3K/Akt signaling pathway
 5.5.1 Correlation between expression of p-Akt1/2/3 (Thr308), p-Akt1 (Ser473) and their downstream substrate p-BAD (Ser136) and p-GSK 3β (Ser9)
5.6 Discussion on the elucidation of relationship between the biomolecules of PI3K/Akt signaling pathway
VI POSSIBLE CROSS-TALK BETWEEN THE WNT SIGNALING PATHWAY AND PHOSPHOINOSITIDE-3 KINASE (PI3K)/AKT SIGNALING PATHWAY

6.1 Introduction 167
6.2 Results of the correlation among the expression of biomolecules 167
6.3 Discussion on the correlation among the expression of biomolecules 169
6.4 Conclusion 172

VII OVERALL CONCLUSION AND RECOMMENDATIONS 173

7.1 Clinical evidence of the involvement of the Wnt and Pi3K/Akt signaling pathway in colorectal tumourigenesis 173
7.2 The elucidation of the relationship between biomolecules in the Wnt signaling pathway and PI3K/Akt signaling pathway 174
7.3 Identification of potential targets for advance therapeutic intervention of CRC 176
7.4 Recommendation 177

REFERENCES 180
APPENDIX 219
BIODATA OF THE AUTHOR 225
MANUSCRIPTS AND ABSTRACT PUBLISHED
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of colorectal cancer</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>TNM staging system for colorectal cancer</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Prognostic markers in colorectal cancer</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Gene nomenclature of key Wnt components</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Overall of mutations of the Wnt signaling pathway in selected human cancer</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Mutations in exon 3 of β-catenin (CTNNB1) in various types of cancers</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Clinicopathological data of patients</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Semi-quantitative scoring system for immunohistochemical staining</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Immunohistochemical staining for the expression of various biomolecules</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Sum of score for the expression of various biomolecules in apparently normal adjacent tissues and CRC tissues</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>APC gene mutations of CRC</td>
<td>93</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlation among the total scores of biomolecules</td>
<td>124</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlation between age and total scores of biomolecules in apparently normal adjacent tissues</td>
<td>135</td>
</tr>
<tr>
<td>4.6</td>
<td>Correlation between age and total scores of biomolecules in CRC tissues</td>
<td>136</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlation between gender and total scores of biomolecules in apparently normal adjacent tissues</td>
<td>137</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation between gender and total scores of biomolecules in CRC tissues</td>
<td>138</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlation between race and total scores of biomolecules in apparently normal adjacent tissues</td>
<td>139</td>
</tr>
</tbody>
</table>
4.10 Correlation between race and total scores of biomolecules in CRC tissues

4.11 Correlation between histograde and total scores of biomolecules in CRC tissues

4.12 Correlation between pathological stage and total scores of biomolecules in CRC tissues

4.13 Correlation between tumor side and total scores of biomolecules in CRC tissues

5.1 Immunohistochemical staining for the expression of various biomolecules

5.2 Sum of score for the expression of various biomolecules

5.3 Correlation among the total scores of biomolecules

5.4 Correlation between age and total scores of biomolecules in apparently normal adjacent tissues

5.5 Correlation between age and total scores of biomolecules in CRC tissues

5.6 Correlation between gender and total scores of biomolecules in apparently normal adjacent tissues

5.7 Correlation between gender and total scores of biomolecules in CRC tissues

5.8 Correlation between race and total scores of biomolecules in apparently normal adjacent tissues

5.9 Correlation between race and total scores of biomolecules in CRC tissues

5.10 Correlation between histograde and total scores of biomolecules in CRC tissues

5.11 Correlation between pathological stage and total scores of biomolecules in CRC tissues

5.12 Correlation between tumor side and total scores of biomolecules in CRC tissues

6.1 Correlation among the total scores of biomolecules
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A schematic representation of the Wnt signalling pathway</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>A schematic representation of the PI3K/Akt pathway</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Overall scheme of key genetic events in colorectal tumorigenesis</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>General structure and interaction motif of some important components in the Wnt signaling pathway</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Representative slides showing the immunohistochemical staining of Wnt-1</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Representative slides showing the immunohistochemical staining of β-catenin</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Cells from CRC tissues that expressed nuclear β-catenin were captured by using the laser capture microdissection (LCM) method.</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Electropherogram of β-catenin sequence</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Representative slides showing the immunohistochemical staining of APC</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Amplification of APC gene</td>
<td>91</td>
</tr>
<tr>
<td>4.7</td>
<td>Electropherogram of APC sequence</td>
<td>92</td>
</tr>
<tr>
<td>4.8</td>
<td>Representative slides showing the immunohistochemical staining of E-cadherin</td>
<td>94</td>
</tr>
<tr>
<td>4.9</td>
<td>Representative slides showing the immunohistochemical staining of FRAT-1</td>
<td>95</td>
</tr>
<tr>
<td>4.10</td>
<td>Representative slides showing the immunohistochemical staining of WISP-1</td>
<td>96</td>
</tr>
<tr>
<td>4.11</td>
<td>Representative slides showing the immunohistochemical staining of cyclin-D1</td>
<td>97</td>
</tr>
</tbody>
</table>
4.12 Representative slides showing the immunohistochemical staining of survivin

4.13 The purity of RNA isolated from the fresh CRC and adjacent normal tissues

4.14 Amplification of WISP-1 mRNA

4.15 Amplification of Wnt-1 mRNA

4.16 Amplification of FRAT-1 mRNA

4.17 Amplification of 18S gene

4.18 Semi-quantitative method for comparison of Wnt-1, FRAT-1 and WISP-1 mRNA in CRC vs normal adjacent tissues

4.19 Representative real-time PCR cycling profile of Wnt-1, FRAT-1 and WISP-1 amplification.

4.20 Representative melting curve for Wnt-1, FRAT-1 and WISP-1 gene.

4.21 Relative quantification of Wnt-1, FRAT-1 and WISP-1.

4.22 The outlines of results from (A) previous studies in comparison to the (B) present study on the relationship between the biomolecules in the Wnt signalling pathway

5.1 Representative slides showing the immunohistochemical staining of p-Akt1 (Ser473)

5.2 Representative slides showing the immunohistochemical staining of p-Akt1/2/3 (Thr308)

5.3 Representative slides showing the immunohistochemical staining of p-GSK 3β (Ser9)

5.4 Representative slides showing the immunohistochemical staining of p-BAD (Ser136)

5.5 The outlines of results from (A) previous studies in comparison to the (B) present study on the relationship between the biomolecules in the PI3K/Akt signalling pathway

6.1 The cross-talk between the Wnt signalling pathway and PI3K/Akt signalling pathway
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-Fluorouracil</td>
</tr>
<tr>
<td>AAPC</td>
<td>Attenuated adenomatous polyposis coli</td>
</tr>
<tr>
<td>APC</td>
<td>Adenomatous polyposis coli</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CKIC</td>
<td>Casein kinase I epsilon</td>
</tr>
<tr>
<td>Cox</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CRC</td>
<td>Colorectal carcinoma/cancer</td>
</tr>
<tr>
<td>DCC</td>
<td>Deleted in colorectal cancer</td>
</tr>
<tr>
<td>Dkk</td>
<td>Dickkopf</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Dideoxynucleotide triphosphates</td>
</tr>
<tr>
<td>Dsh/Dvl</td>
<td>Dishevelled</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>FAP</td>
<td>Familial adenomatous polyposis</td>
</tr>
<tr>
<td>FOBT</td>
<td>Faecal occult blood test</td>
</tr>
<tr>
<td>FRAT</td>
<td>Frequently rearranged in advance T-cell lymphocytes</td>
</tr>
<tr>
<td>FrzB</td>
<td>Frizzled-related protein</td>
</tr>
<tr>
<td>Fz</td>
<td>Frizzled</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GBP</td>
<td>Glycogen synthase kinase binding protein</td>
</tr>
<tr>
<td>GSK3β</td>
<td>Glycogen synthase kinase 3β</td>
</tr>
<tr>
<td>HNPPC</td>
<td>Hereditary non-polyposis colorectal cancer</td>
</tr>
<tr>
<td>IAP</td>
<td>Inhibitor of apoptosis protein</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun kinase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase pair</td>
</tr>
<tr>
<td>LCM</td>
<td>Laser capture microdissection</td>
</tr>
<tr>
<td>LEF</td>
<td>Lymphoid enhancer factor</td>
</tr>
<tr>
<td>LRP</td>
<td>Low density lipoprotein-receptor-related protein</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamperre</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium Chloride</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleic acid</td>
</tr>
<tr>
<td>MUC1</td>
<td>Mucin antigen 1</td>
</tr>
<tr>
<td>nM</td>
<td>Nano molar</td>
</tr>
<tr>
<td>NHS</td>
<td>Nurses' health study</td>
</tr>
<tr>
<td>Nkd</td>
<td>Naked cuticle</td>
</tr>
<tr>
<td>p-Akt</td>
<td>Phosphorylated Akt</td>
</tr>
<tr>
<td>p-BAD</td>
<td>Phosphorylated BAD</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
</tbody>
</table>