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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

 

 

NEW GEO-POLYMERIZATION PROCESS FOR HIGH STRENGTH 

ALKALI-ACTIVATED BINDER WITH PALM OIL FUEL ASH AND 

GROUND GRANULATED BLAST FURNACE SLAG 

 

By 

 

MOSLIH AMER SALIH 

 

March 2015 

 

Chairman: Professor Dato’ Ir Abang Abdullah Abang Ali,PhD 

 

Faculty: Engineering 

 

 

This study investigated a new geopolymerization process for the production of high 

strength alkali activated binder, using high volume palm oil fuel ash (POFA) mixed 

with ground granulated blast furnace slag (GGBS). The experimental work was 

designed for the geopolymer paste and mortar. In the paste, the optimum alkali 

activation parameters of POFA were identified. These parameters included Sodium 

Hydroxide concentration, Solid/Liquid ratio (S/L), and Sodium Silicate to Sodium 

Hydroxide ratio (SS/SH). The role of curing regime and its effect on the alkali 

activation of POFA was investigated at ambient and different temperatures. GGBS 

was introduced as a partial replacement of POFA in five percentages (10-50%) to study 

the role of Calcium ions and mechanisms to improve the load bearing capacity of the 

resulting gel to a high strength geopolymer binder.  

 

The production of high strength geopolymerized mortar cured at ambient temperature 

was initially targeted by applying the activation parameters with the same replacement 

levels of GGBS as in the paste. The durability of the proposed alkali activated binder 

was investigated by exposing the mortar to extreme environments, namely elevated 

temperatures and sulfate attack. The compressive strength test, microstructural and 

chemical tests such as Scanning Electron Microscopy/Energy-Dispersive X-Ray 

Spectroscopy (SEM/EDX), X-Ray Diffraction (XRD), Thermogravimetric 

Analysis/Derivative Thermogravimetry (TGA/DTG), Differential Scanning 

Calorimetry (DSC) and Fourier Transform Infra-Red (FTIR), were conducted to study 

the underlying mechanisms of strength development.  

 

The results showed that liquid Sodium Hydroxide at 12 Molarity, S/L ratio at 1.32, 

and SS/SH ratio at 2.5 were applicable to alkali activate 100% POFA and produce 

geopolymer paste with 32.84 MPa at the age of 28 days. One major finding was 

identifying the Calcium Silicate Hydrate gel (C-S-H) as the main binding phase; with 

no Calcium Hydroxide Ca(OH)2 detected in the system. The test results showed that 

100% POFA geopolymer paste can set and harden at ambient temperature with a 

comparable compressive strength to samples cured in the oven. Calcium ions dissolved 

from GGBS participated in increasing the binder strength by the formation of more C-
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S-H gel. Aluminum ions provided by GGBS led to a higher degree of polymerization 

and significant degree of crosslinking between C-S-H chains and shifting it to  

C-(A)-S-H gel. The compressive strength for binary geopolymer paste was 78.12 MPa 

at the age of 28 days. 

 

The alkali activated binder from the alkali activation of POFA as the only 

aluminosilicate material was able to produce geopolymer mortar with normal strength 

of 33.91 MPa at the age of 28 days. Inclusion of GGBS with POFA was effective to 

produce high strength geopolymer mortar with compressive strength of 70.25 MPa at 

the age of 28 days. Results from residual compressive test at elevated temperatures 

showed that samples maintained their dimensional stability at elevated temperatures 

due to the presence of evacuation routes (pore system) in the mortar which allowed 

water to be evaporated.  Moreover, glass transition was detected between 600 ºC and 

800 ºC which provided a relative increase in the strength of the geopolymer mortar. 

Test results showed that the proposed geopolymer mortar performed better than 

Portland cement mortar when exposed to sulfate attack. The results indicated that 

although Sodium sulfate and Magnesium sulfate had deterioration effect due to 

decomposing of Si and Ca ions from both C-S-H and C-A-S-H gels, the proposed 

geopolymer mortar experienced less strength depletion which can be related to the 

absence of calcium hydroxide in the matrix.   

 

 

Keywords: POFA, Geopolymer binder, Geopolymer cement, GGBS, Alkali 

activation, Geopolymer mortar.  
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PROSES GEO-POLIMERISASI BARU UNTUK PENGIKAT ALKALI 

TERAKTIF BERKEKUATAN TINGGI DENGAN ABU SISA BAHAN API 

KELAPA SAWIT DAN SANGA RELAU BAGAS BERBUTIR 
 

Oleh 

 

MOSLIH AMER SALIH 

 

Mac 2015 

 

 

Pengerusi: Professor Dato’ Abang Abdullah Abang Ali, PhD 

 

Fakulti: Kejuruteraan 

 

 

Kajian ini telah menyiasat proses geo-polimerisasi untuk penghasilan pengikat alkali 

teraktif berkekuatan tinggi menggunakan abu sisa bahan api kelapa sawit (POFA) 

berisipadu tinggi diadunkan dengan  sanga relau bagas berbutir (GGBS).  Ujian-ujian 

telah dirancang untuk adunan dan mortar geopolimer.  Dalam adunan, parameter-

parameter alkali teraktif optimum telah dikenalpasti. Parameter-parameter ini 

termasuk kepekatan Sodium Hidroksida (kemolaran), nisbah pepejal kepada cecair 

(S/L) dan nisbah Sodium Silika kepada Sodium Hidroksida (SS/SH). Peranan rejim 

pengawetan dan kesannya terhadap alkali teraktif POFA telah dikaji dengan 

menggunakan suhu ambien and suhu yang berlainan. GGBS telah diperkenalkan 

sebagai gantian separa POFA sebanyak  lima peratus (10-50%) untuk mengkaji 

peranan ion-ion kalsium dan mekanisma-mekanisma untuk memperbaiki kapasiti 

beban tahan galas gel yang terbentuk kepada pengikat geopolimer berkekuatan tinggi.   

Penghasilan mortar geopolimer berkekuatan tinggi pada yang terawet pada suhu 

ambien mulanya disasarkan dengan menggunakan parameter-parameter pengaktifan  

dengan aras-aras gantian GGBS yang sama seperti dalam adunan. Ketahanlasakan 

pengikat alkali teraktif yang dicadangkan telah dikaji selepas pendedahan mortar 

tersebut kepada sekitaran melampau seperti suhu ternaik dan serangan sulfat. Ujian 

kekuatan mampatan, ujian-ujian kimia dan mikrostruktur seperti XRD, SEM/EDX, 

TGA/DTG, DSC dan FTIR telah dijalankan untuk mengkaji mekanisma-mekanisma 

di sebalik perkembangan kekuatan. Hasil keputusan telah menunjukkan bahwa cecair 

Sodium Hidroksida pada kemolaran 12, nibah S/L pada 1.32 dan nisbah  SS/SH  pada 

2.5 telah digunakan  untuk aktif alkali 100% POFA dan menghasilkan 32.84 MPa 

kekuatan mampatan pada hari ke-28. Satu penemuan utama telah mengenalpasti 

struktur gel yang dominan – gel Kalsium Silika Terhidrat gel (C-S-H) – sebagai fasa 

pengikatan yang terhasil daripada 100% POFA alkali teraktif; lebih-lebih lagi tiada 

Kalsium Hidroksida Ca(OH)2 telah dikesan di dalam sistem. 

 

Keputusan ujian menunjukkan 100% POFA adunan geopolimer boleh set dan 

menhgeras pada suhu ambien dengan perbandingan kekuatan mampatan dengan 

sampel-sampel yang diawet di dalam ketuhar. Ion-ion kalsium terlarut daripada GGBS 
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yang terlibat dalam peningkatan kekuatan pengikat dengan pembentukan lebih banyak 

gel C-S-H. Ion-ion Aluminium yang juga terhasil daripada GGBS membawa kepada 

tahap yang lebih tinggi  polimerisasi dan  tahap sambung-silang yang ketara di antara 

rantaian C-S-H beralih kepada gel C-(A)-S-H. Kekuatan mampatan pada adunan 

geopolimer binari adalah 78.12 MPa pada umur ke-28 hari. 

 

Pengikat geopolimer yang terhasil daripada 100% POFA alkali teraktif  sebagai bahan 

aluminosilikat sahaja dapat menghasilkan mortar geopolimer dengan kekuatan normal 

33.91 MPa pada umur ke-28 hari.  Kemasukan GGBS ke dalam POFA telah 

menunjukkan keberkesanan  dalam penghasilan mortar geopolimer berkekuatan tinggi  

dengan kekuatan mampatan sebanyak 70.25 MPa telah tercapai pada umur  ke-28 hari. 

Keputusan-keputusan daripada baki ujian mampatan pada suhu ternaik menunujukkan 

sampel-sampel mengekalkan kestabilan dimensi pada suhu-suhu ternaik disebabkan 

kehadiran laluan pemindahan yang sedia ada (sistem liang) dalam mortar di mana ia 

membenarkan air disejat. Tambahan pula, transisi kaca telah dikesan di antara 600 ºC 

dan 800 ºC yang menyediakan peningkatan relatif dalam kekuatan.  Ujian-ujian 

menunjukkan bahawa mortar geopolimer yang dicadangkan lebih baik daripada mortar 

simen Portland apabila didedahkan kepada serangan sulfat. Keputusan menunjukkan 

walaupun Sodium Sulfat dan Magnesium Sulfat telah merosot kesan akibat penguraian 

ion-ion Si dan Ca daripada kedua-dua gel C-S-H dan C-A-S-H, geopolimer mortar 

dicadangkan mengalami susutan kekuatan di mana boleh dikaitkan dengan kehadiran 

Kalsium Hidroksida di dalam matriks.  

 

 

Kata Kunci: POFA, pengikat Geopolimer, Simen Geopolimer, GGBS, Alkali teraktif, 

mortar geopolymer 
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CHAPTER ONE 

 

 

INTRODUCTION 

 

 

1.1    Background  

 

The development of alkali activated materials has been addressed by many researchers 

as a competitive friendly alternative to ordinary Portland cement (OPC) (Provis and 

Van Deventer, 2009; Provis and Van Deventer, 2014; Van Deventer et al., 2010; Li et 

al., 2010). Alkali activated binders are classified as the third generation cements in 

addition to lime and ordinary Portland cement (Shi et al., 2011; Li et al., 2010; Van 

Davidovits, 2011). The alkali activation process is gaining a great recognition and 

interest because of its low CO2 emissions where carbon footprint is of concern (Provis, 

2014a). Recently, scientific and technological development being made at a rapid pace 

due to their low energy consumption and qualities (Provis, 2014a; Villa et al., 2010; 

Provis et al., 2012; Chindaprasirt et al., 2007; Provis and Van Deventer, 2009). 

According to a recent rigorous and useful definition “Alkali activated materials are 

produced through the reaction of an aluminosilicate-normally supplied in powder form 

as an industrial by-product or other inexpensive martials-with an alkaline activator, 

which is usually a concentrated aqueous solution of alkali hydroxide, silicate, 

carbonate or sulfate” (Provis and Van Deventer, 2014; Provis, 2014a; Provis, 2009).  

 

However, these materials, as new alternative binder to OPC in concrete technology, 

are still at the beginning stages of development and need more investigations related 

to the mechanisms of geopolymerization process (Pacheco-Torgal et al., 2012; Yip et 

al., 2008). The activation methods, the type and dosage of alkali activators, curing 

regime at the fresh state, and role of calcium in geopolymerization process are major 

factors and still subjects of discussions for the researchers in this field (Nath and 

Sarker, 2014; Nath and Kumar, 2013; Bernal et al., 2012; Bilim and Atiş, 2012; Yang 

et al., 2012a; Liew et al., 2012a; Somna et al., 2011; Hajimohammadi et al., 2011).  

 

The alkali activation process for an aluminosilicate source involves different 

parameters. One of the governing factors on properties of the binding gel and its 

formation is the type and dosage of alkali activators (Juenger et al., 2011). It has been 

reported that different single activators were used in the activation process, such as 

sodium hydroxide and sodium silicate (Somna et al., 2011; Rashad and Zeedan, 2011). 

Combination of two different activators were also used in the alkali activation process 

by using different liquid solutions (Luo et al., 2012; Altan and Erdoğan, 2012). 

 

So far, a mix of liquid sodium silicate which is known as water glass and liquid sodium 

hydroxide were the most used activating solutions in the geopolymers (Ryu et al., 

2013). This combination of activators were reported to have better performance in the 

activation process comparing to single alkaline activators (Papa et al., 2014; Nath and 

Sarker, 2014). The alkali hydroxide is required for dissolution of aluminosilicate 

source while water glass solution acts as a binder, alkali activator and dispersant of 

plasticizer (Komnitsas and Zaharaki, 2007). So far, different approaches have been 

reported to measure the dosage of activators such as using sodium as a percentage of 

the source material, or adding the total activator as a percentage of the binder (Bernal 
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et al., 2012; Bilim and Atiş, 2012; Yang et al., 2012a). Nevertheless, previous works 

have shown that solid to liquid (S/L) ratio and sodium silicate to sodium hydroxide 

(SS/SH) ratio have tremendous effect on mechanical properties (Palomo et al., 1999; 

Hardjito and Rangan, 2005a; Hardjito et al., 2004; Van Jaarsveld et al., 2002).  

 

It has been reported that different factors affect the solid to liquid ratio and sodium 

silicate to sodium hydroxide ratio in the alkali activation process. Firstly the shape and 

particle size, and type of aluminosilicate precursor has an important effect on the 

required quantity of the activator by which results in advanced dissolution (Kong et 

al., 2007; Hardjito and Rangan, 2005a; Wang et al., 2005; Xu and Van Deventer, 

2000b). The second factor affecting the geopolymerization process is the curing 

regime at the fresh state of activation. In most cases the curing for alkali activated 

materials is curried out at elevated temperatures ranging from 40 ºC to 90 ºC for a 

period of 4 to 48 hours which is a limiting factor in construction industry (Lemougna 

et al., 2013; Ryu et al., 2013; Rangan et al., 2005; Temuujin et al., 2009b). In order to 

overcome the liming factors in geopolymerization process such as low reactivity, low 

setting and slow strength development; calcium bearing materials or materials rich in 

calcium oxide like GGBS were used to alter the reactivity of aluminosilicate precursors 

(Oh et al., 2010; Guerrieri and Sanjayan, 2010; Yip et al., 2008; Nath and Sarker, 2014; 

Kumar et al., 2010).  

 

So far, different types of aluminosilicate materials such as Metakaolin (Yunsheng et 

al., 2010; Liew et al., 2012b; Rashad, 2013; Pacheco-Torgal et al., 2011; Rovnaník, 

2010), fly ash (Hardjito and Rangan, 2005b; Thomas et al., 2012; Provis et al., 2012) 

and slag (Němeček et al., 2011; Luo et al., 2012; Fu et al., 2011; Bernal et al., 2011; 

Bernal et al., 2010) were applied as alkali-activated cements.  

 

Recently, researchers have incorporated palm oil fuel ash (POFA) as another potential 

aluminosilicate source that can be used as an alkali activated cement. POFA is an agro-

waste produced in massive amounts from palm oil industry in South East Asia. POFA 

has been used with a low content in binary mixes with other aluminosilicate materials 

such as ground granulated blast furnace slag (GGBS), rice husk ash (RHA), and fly 

ash in order to produce geopolymer paste, mortar and concrete while curing at oven 

was the dominant regime in most of the studies.  

 

This study intended to investigate the mechanisms by which calcium ions and 

aluminum ions participate in the system in order to produce a high strength binder at 

ambient temperature. It also studied the mechanism that governs the strength, chemical 

composition, and microstructural change in the matrix after exposure to elevated 

temperatures and sulfate attack.   

 

 

1.2 Research Problem 

 

The concept of alkali activated materials has been studied extensively as a promising 

alternative to ordinary Portland cement (Provis, 2014a). However, the alkali activated 

materials are still a complex class of binders (Provis and Van Deventer, 2009) and 

there is still an increasing interest to improve the properties and microstructure of the 

alkali activated binders. This is generated from the great need that is required to 
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optimize the activation conditions in order to produce stronger, and more stable binder 

(Bernal et al., 2014).  

 

Furthermore, results from recent studies on the activation methods that being used in 

alkali activation of different aluminosilicate sources have addressed the adverse effect 

of oven curing as the dominant regime by which the production will be limited in the 

real life situations comparing to Portland concrete.  

 

There is also a consensus from some researchers regarding the use of Calcium bearing 

materials or Calcium rich materials in binders with low calcium intake which results 

in a better performance in terms of setting, hardening and also improving the load 

bearing capacity of the gel; however, the mechanism of Calcium ion coupled with 

Aluminum ion and their role in the system is still a complex subject.   

 

Moreover, paucity has been noticed in the published studies and researches regarding 

the behavior and degradation mechanism of alkali activated materials when exposed 

to severe conditions such as heat exposure or sulfate attack. In this trend it is crucial 

to investigate the change in compressive strength mechanism after exposure to such 

environments.  

 

Palm oil fuel ash (POFA) is one of the agricultural waste materials from the palm oil 

industry in South East Asia. Malaysia is considered as the leading and the largest 

producer of palm oil. It was estimated that only in Malaysia the wastes generated from 

palm oil industry is 24.99 million tons per year (Hosseini and Wahid, 2013). The huge 

amount of POFA is still a subject of wide criticisms and endless complaints because it 

poses health hazard leading to various health problems. POFA needs large area to be 

disposed which arising an environmental problem; in addition to the financial lost on 

transportation of the waste and allocating hectares of lands for disposal. So far, some 

studies have been conducted on low content POFA geopolymers although still a 

comprehensive study on activation parameters, curing regime, its underlying 

mechanism of geopolymerization, and its compatibility with other sources of 

aluminosilicate is indispensable.  

 

Recently, palm oil fuel ash (POFA) has been recognized as an aluminosilicate material 

to be utilized in alkali activation technology. POFA was used as a supplementary 

material in mixes with other aluminosilicate materials to produce geopolymer cement 

paste, mortar and concrete. In all researches, a low content of POFA was kept to be 

mixed with slag, fly ash and rice husk ash or other aluminosilicate materials to alter 

POFA and increase its reactivity. Moreover, oven curing was associated to the 

production process. Still, no study investigated the activation mechanism and the 

microstructure of the resulted geopolymer binder from the activation of POFA as the 

only aluminosilicate material source. Moreover, no study investigated the potential of 

high volume of POFA to be activated with GGBS to produce high strength Geo-

polymerized paste and mortar at ambient temperatures.  
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1.3 Hypothesis of the Research 

 

The hypothesis that this study was built on is the role of calcium ions provided by 

GGBS in developing the chemical composition and the microstructure of the gel. The 

abundant quantity of calcium ions has the ability to develop the load bearing capacity 

of the formed binding phase of POFA. This will lead to enhance the compressive 

strength of the geopolymer binder to higher strength. Furthermore, Calcium ions will 

participate in changing the setting and the hardening of the developed binder to 

ambient temperature. In other words, calcium ions will develop the binding phase 

structure to be stronger and eliminate the need for higher temperature for curing and 

hardening.  

 

 

1.4 Research Objectives 

 

The main aim of this research was to study the ability of alkali activated materials to 

produce high strength binder at ambient temperature from high volume POFA blended 

with GGBS. This was assimilated by studying the mechanical and microstructural 

properties of alkali activated paste and mortar through the following four objectives: 

 

1. To identify activation parameters, Sodium Hydroxide concentration 

(Molarity), Solid to Liquid ratio (S/L) and Sodium Silicate to Sodium 

Hydroxide ratio (SS/SH) in production of a geopolymer binder with POFA as 

a single aluminosilicate source.  

2. To investigate the appropriate curing temperature in geopolymerization of 

100% POFA. 

3. To investigate the production of high strength geopolymer binder by using 

binary mixing of GGBS and POFA. 

4. To assess the durability performance of the proposed geopolymer mortar when 

exposed to elevated temperatures and sulfate attack.  

 

 

1.5 Research Questions 

 

This study focused on the compressive strength, microstructural, chemical and thermal 

characteristics of POFA geopolymer paste and POFA geopolymer mortar produced 

from a binary mixture of POFA and GGBS in order to answer the following questions: 

 

 How do the solid to liquid ratio and sodium silicate to sodium hydroxide ratio 

affect the geopolymerization process? 

 What is the mechanism by which calcium ions available in the aluminosilicate 

material affect geopolymerization process and help the geopolymer binder to 

set at ambient temperature and produce high strength binder and high strength 

mortar? 

 How do thermal and microstructural analysis differentiate between C-S-H and 

C-A-S-H as the main binding phases in alkali activated materials? 

 How do elevated temperatures and sulfate attack deteriorate the C-S-H, and C-

A-S-H in mortar?  

 

 



© C
OPYRIG

HT U
PM

5 
 

1.6 Research Contribution 

 

Palm oil fuel ash (POFA) is designated with a moderate content of silicate and a low 

content of aluminum which reportedly can produce a low strength geopolymer binder 

(less than 18 MPa) when POFA is the only alkali activated material. In the same time 

oven curing at 65 ºC to 75 ºC for 24 hours was associated as a curing regime in the 

production process of this binder.  

 

The aim of this study is to produce a high strength geopolymer binder using high 

volume of palm oil fuel ash at ambient temperature. This study exploits the role of 

calcium ions coupled with aluminum ions provided by GGBS to investigate the 

mechanisms by which the strength of binding phase can be improved and allow to the 

binder to harden without oven curing. Investigating the degradation mechanisms 

governing the alkali activated mortar after exposure to elevated temperatures and 

sulfate attack is another major contribution of the present study. 

 

 1.7 Significance of the Study 

 

The overarching purpose of this study is to activate POFA albeit its very low content 

of aluminum. The finding of this research will also explain the mechanism by which 

aluminosilicate with low aluminum content are involved in the geopolymerization 

process.  Also, the results of this study may encourage and promote further research 

on the use of POFA in geopolymer technology in mortar and concrete as well as the 

use of other aluminosilicate materials with low aluminum content which will 

ultimately lead to development of more environmentally friendly products with low 

energy consumption and very low CO2 emissions. 

 

Furthermore, there is no comprehensive study on the effect of curing temperature on 

alkali activation of mixes with 100% POFA. So, the other purpose of this study is to 

investigate the microstructure and chemical composition of POFA geopolymer paste 

binder cured at ambient temperature (25-30) ºC and oven cured at 60 ºC, 70 ºC, and 

80 ºC. This study proposes the applicability of ambient temperature as a curing regime 

in POFA geopolymer binders. Investigating the use of ambient temperature to produce 

a geopolymer binder from agro waste materials such as POFA will contribute to a 

development of mix design to be used in structural sector. It can lower the cost and 

energy consumption; meanwhile enhances construction pace.  

 

Moreover, ground granulated blast furnace slag was used as a partial replacement of 

POFA in order to enhance the load bearing quality (capacity) of the binder. The 

purpose is to produce high strength binder as an alternative to ordinary Portland 

cement in high strength concrete using ambient temperature curing regime. The 

finding of this work may facilitate the development of high strength geopolymer 

concrete using higher calcium alkali activated materials at ambient temperature.  

 

The last but not least, this study investigates the durability of alkali activated binder 

using the binary mix of POFA and GGBS after exposure to severe environment namely 

elevated temperatures and sulfate attack. The findings of this study assess the 

acceptability of the binder in terms of durability and also clarify on the deterioration 

mechanism.  
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1.8 Scope and limitations of the study 

 

The main purpose of this study is to investigate new geopolymerization process to 

produce high strength alkali activated binder from high volume of POFA cured at 

ambient temperature. In order to achieve the established objectives, the scope and 

limitations of this study are summarized as follows: 

 

In this study, activation parameters are limited to Sodium Hydroxide concentration 

(NaOH molarity), Solid to Liquid ratio (S/L), and Sodium Silicate to Sodium 

Hydroxide ratio (SS/SH). Furthermore, a combination of liquid Sodium Silicate 

(Na2SiO3) mixed with liquid Sodium Hydroxide (NaOH) was chosen as alkaline 

activators and represented by SS/SH ratio.  As for the curing regime only for 

temperatures were assigned in the second objective which are namely; ambient 

temperature at (25-30) ºC, and oven curing at three different temperatures of 60 ºC, 70 

ºC, and 80 ºC. In order to study the effect of Ca ions and to develop a high strength 

binder, GGBS was chosen and replaced with POFA at different levels of 10%, 20%, 

30%, 40% and 50%.  

 

The durability of geopolymer mortar produced from 100% POFA and POFA-GGBS 

geopolymerized mortar was limited to the performance of the geopolymerised mortar 

at elevated temperatures and in sulfate environments. The heat exposure was for one 

hour within the rates of 100 ºC, 200 ºC, 300 ºC, 400 ºC, 500 ºC, 600 ºC, 700 ºC, and 

800 ºC. Furthermore; the durability of geopolymer mortar were investigated by 

exposing the mortars to Sodium sulfate and Magnesium sulfate. Geopolymer mortars 

were exposed for 6 months to three different concentrations 3%, 5%, and 8%.  

All the tests were conducted on geopolymer paste and mortars and aggregate with size 

bigger than 4.75 mm were excluded from this study in order to eliminate the effect of 

the volume concentration factor in the matrix and to minimize the effect of the thermal 

conductivity and specific heat of the resulted matrix.  

 

In this study, X-Ray fluorescence spectrometry scanning (XRF), setting time, flow 

table test, compressive strength, X-Ray diffraction (XRD), Scanning Electron 

Microscope (SEM) coupled with Energy-dispersive X-Ray spectroscopy analysis 

(EDX), Thermogravimetric Analysis/Derivative Thermogravimetric Analysis 

(TGA/DTG), Differential scanning calorimetry (DSC), and Fourier transform Infra-

Red (FTIR) were the main tests conducted to trace properties of the materials before 

and after alkali activation in geopolymer paste and mortar.  

 

 

1.9 Thesis Layout 

 

In this study, an experimental work has been carried out to achieve the required 

objectives. The work presented in this thesis is spread across five chapters. 

 

Chapter one includes a general introduction about the alkali activated materials and 

geopolymer technology as an alternative binder to ordinary Portland cement. The 

studied objectives were illustrated in general in this chapter. Chapter two initially 

illustrated the definition of alkali activated materials and the term geopolymer. 

History, geopolymerization mechanisms, activation methods, activators, 

aluminosilicate materials and tests that have been used in this technology were all 
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illustrated. Chapter two is considered as a reference that can give all the required 

information and details about alkali activation technology and geopolymers. Figures 

and images were used to explain the way that the required tests were used in identifying 

the changes before and after alkali activation, and the changes in the paste and mortar 

with different parameters in the study. In chapter three, the methodology that used in 

the experimental work was illustrated. This chapter showed the applied method for 

alkali activation; moreover, the approach as a step by step method that being used to 

identify the required parameters in alkali activation of an aluminosilicate material. The 

designed methodology is considered as a reference for studying the alkali activation 

for any aluminosilicate precursor.  Chapter four discussed the test results for the used 

method in alkali activation of POFA and POFA blended with GGBS. This chapter 

tended to introduce the most effective parameters in the activation process. The 

behavior of POFA geopolymer mortar and POFA blended with GGBS geopolymer 

mortar after exposure to elevated temperatures and sulfate attack was also discussed. 

Chapter five illustrated the conclusions of the study and recommendations for further 

research.     
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