UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION OF NATURAL PEANUT BUTTER PRODUCED BY ONE-STAGE FINE GRINDING METHOD USING ULTRA-HIGH SPEED GRINDER

NORAZATUL HANIM BINTI MOHD ROZALLI

FK 2015 162
CHARACTERIZATION OF NATURAL PEANUT BUTTER PRODUCED BY ONE-STAGE FINE GRINDING METHOD USING ULTRA-HIGH SPEED GRINDER

By

NORAZATUL HANIM BINTI MOHD ROZALLI

Thesis Submitted to the school of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
To my beloved husband Muzaidi
and my wonderful kids Muaz & Mus’ab....
Thank you for your loving support.
CHARACTERIZATION OF NATURAL PEANUT BUTTER PRODUCED BY ONE-STAGE FINE GRINDING METHOD USING ULTRA-HIGH SPEED GRINDER

By

NORAZATUL HANIM BINTI MOHD ROZALLI

May 2015

Chairman : Assoc. Prof. Ir. Chin Nyuk Ling, PhD
Faculty : Engineering

Peanut butter is a major product of peanuts (Arachis hypogaea L.) consumed worldwide. The concerns with additives in food products attract the demands for alternative natural peanut butter in market. It is common in peanut butter production that two stages of size reduction are required to transform the peanuts into paste form. Little attempts had been made to minimize the grinding stage and producing natural peanut butter as well. This study focuses on producing natural peanut butter by single 1-stage fine grinding method using ultra-high speed grinder. An extensive study on interrelation of particle size and natural peanut butter properties were conducted. Comparisons were made with commercial peanut butter in quality aspects. The qualities of roasted peanuts were optimized in roasting process. The effect of hot-air roasting temperatures and time on quality attributes of two different types of peanuts (Virginia and Spanish variety) were investigated using response surface methodology (RSM). The optimum roasting parameters for the Virginia and Spanish peanuts was 152°C-60 minutes and 158°C-45 minutes, respectively. Roasted peanuts were ground in a commercial ultra-high speed grinder operated at 20000 rpm for 2.0-5.0 minutes for natural peanut butter production. Grinding characteristics of both peanuts were evaluated in terms of specific energy consumption, \(E_{sc} \) with respect to its grinding time and mean particle size. The specific energy consumption modeled to the size reduction ratio of Virgina and Spanish peanuts was predicted more accurately using a linear and exponential model respectively compared to the classical models by Bond, Rittinger and Kick. Bond’s working index, \(W_i \), the ultra-high speed grinder is said to be more energy efficient than other comminutors in terms of its capability to produce finer particle size in shorter time than the rest. The peanut butter was successfully produced by 1-stage fine grinding method using the ultra-high speed grinder. Particle size analysis of natural peanut butter exhibited statistically significant difference between the analyzed parameters \((d_{0.1}, d_{0.5}, d_{0.9}) \). Multimodal particle size distribution (PSD) was observed for all the samples. Particle size distribution is an inverse function of grinding time. All peanut butter samples exhibited elastic properties, adequately fitted to the Casson model and behaved as non-Newtonian shear-thinning food suspension with apparent yield stress. The storage modulus (\(G' \)) is a decreasing
function of grinding time and temperature. Grinding time and temperature show significant effect on all the responses ($p \leq 0.05$) while peanut origins only had impact on the particle size distribution. Identical trend was observed on all tests between natural peanut butter of Virginia and Spanish peanuts. The storage stability of natural peanut butter was evaluated for changes in physicochemical quality, microbiological properties, oxidative stability and textural quality. For storage study conducted over 16 weeks at 10, 25 and 35°C, products stored at 10°C exhibited similar textural quality with commercial product without appreciable loss in oxidative stability until the 12th whereas it was within 4 weeks for 25°C and 35°C storage. Storage temperature and time have more significant impact than other factors on quality changes of natural peanut butter during storage.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN MENTEGA KACANG SEMULAJADI DIHASILKAN OLEH SATU PERINGKAT KAEDAH PENGISARAN HALUS MENGGUNAKAN PENGISAR BERKELAJUAN ULTRA TINGGI

Oleh

NORAZATUL HANIM BINTI MOHD ROZALLI

May 2015

Pengerusi : Professor Madya Ir. Chin Nyuk Ling, PhD
Fakulti : Kejuruteraan

ACKNOWLEDGEMENT

During the years that it has taken to complete this degree, there have been many people that have contributed in one way or another to this work. I would like to express my gratitude to all of them.

A really special thanks to Assoc. Prof. Ir. Dr. Chin Nyuk Ling, my supervisor, for giving me the opportunity of doing PhD under her great supervision, and for her helpful advices, generous guidance and time over the years, never-ending patience and her endless enthusiasm about discussing every new results and publishing papers. Thanks also to my supervisory committee members, Assoc. Prof. Dr. Yus Aniza Yusof and Assoc. Prof. Dr. Nor Ainy Mahyudin for their supportive advices, idea and comments.

My deepest gratitude to my beloved husband Muzaidi bin Sodex for his endless love, encouragement, patient and support, that I could find strength to continuously motivate myself to finish this degree. To my lovely sons Muaz and Mus’ab, the love and joy of my life.

Last but not least, I would like to express my heartfelt gratitude and love to my parents, my mother in law, family and friends for their love and prayers.

Thanks to other individuals whom I have not mentioned but have helped me in various possible ways.
I certify that a Thesis Examination Committee has met on 29 May 2015 to conduct the final examination of Norazatul Hanim binti Mohd Rozalli on her thesis entitled "Characterization of Natural Peanut Butter Produced by One-Stage Fine Grinding Method using Ultra-High Speed Grinder" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Desa bin Ahmad, PhD
Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Johari bin Endan, PhD
Associate Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Shamsul bin Anuar, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Keshavan Niranjan, PhD
Professor
University of Reading Whiteknights
United Kingdom
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 June 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Chin Nyuk Ling, PhD
Associate Professor. Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Yus Aniza Yusof, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Nor Ainy Mahyudin, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:

☐ this thesis is my original work;

☐ quotations, illustrations and citations have been duly referenced;

☐ this thesis has not been submitted previously or concurrently for any other degree at any other institutions;

☐ intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

☐ written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

☐ there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ________________

Name and Matric No.: ______________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

- □ the research conducted and the writing of this thesis was under our supervision;
- □ supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _____________________________
Name of Chairman of Supervisory Committee: _____________________________

Signature: _____________________________
Name of Member of Supervisory Committee: _____________________________

Signature: _____________________________
Name of Member of Supervisory Committee: _____________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem statements 2
1.3 Objectives of the study 4
1.4 Scope of work and thesis outlines 4

2 LITERATURE REVIEW

2.1 Classification of peanut butter 6
2.2 Peanut butter production 7
 2.2.1 Roasting 8
 2.2.2 Grinding 8
2.3 Quality responses of peanut butter 10
 2.3.1 Quantitative measurements of colour properties 10
 2.3.2 Quantitative measurements of rheological properties 11
 2.3.2.1 Linear viscoelastic region 11
 2.3.2.2 Frequency sweep test 12
 2.3.2.3 Time sweep test 14
 2.3.3 Quantitative measurement of textural properties 14
2.4 Shelf life of peanut butter 15
 2.4.1 Oxidative stability 16
 2.4.2 Microbial contamination 17
2.5 Moisture content and water activity during peanut processing and storage 17
2.6 Summary 18

3 MATERIALS AND METHODOLOGY

3.1 Materials 19
 3.1.1 Raw materials 19
 3.1.2 Chemicals 19
3.2 Experimental design 19
3.3 Sample preparation 22
 3.3.1 Roasting process 22
 3.3.2 Grinding process 23
 3.3.3 Storage condition and sampling procedure for storage study 23
3.4 Experimental design for roasting experiment 23
3.5 Analysis of specific energy consumption of ultra-high speed grinder 24
 3.5.1 Grinding equipment and operation 24
 3.5.2 Models for energy requirement prediction during a grinding process 26
3.6 Analysis of quality attributes of roasted peanuts 27
 3.6.1 Colour analysis 27
 3.6.2 Moisture content analysis 27
 3.6.3 Hardness and fracturability test 27
3.7 Analysis of natural peanut butter paste 28
 3.7.1 Particle size analysis 28
 3.7.2 Rheological property 28
 3.7.3 Textural quality analysis 29
 3.7.4 SEM and microstructure 29
 3.7.5 Colour analysis 29
 3.7.6 Density measurement 30
 3.7.7 Moisture content analysis 30
 3.7.8 Water activity analysis 30
 3.7.9 Microbial analysis 30
 3.7.10 Peroxide value analysis 30
 3.7.11 Oil separation analysis 31
3.8 Statistical analysis 31
 3.8.1 Optimization of roasting process 31
 3.8.2 Grinding study 32
 3.8.3 Rheological, textural and physicochemical characterization 32
 3.8.4 Storage study 32
3.9 Summary 33

4 SIMULTANEOUS MULTIPLE RESPONSES MODELLING, OPTIMISATION AND CORRELATION OF ASIAN TYPE PEANUTS (Arachis hypogaea L.) ROASTING USING RESPONSE SURFACE METHODOLOGY 34
Copyright permission 51

5 GRINDING CHARACTERISTICS OF ASIAN ORIGINATED PEANUTS (Arachis hypogaea L.) AND SPECIFIC ENERGY CONSUMPTION DURING ULTRA-HIGH SPEED GRINDING FOR NATURAL PEANUT BUTTER PRODUCTION 52
Copyright permission 70

6 PARTICLE SIZE DISTRIBUTION OF NATURAL PEANUT BUTTER AND ITS DYNAMIC RHEOLOGICAL PROPERTIES 71
Acceptance letter 81
<table>
<thead>
<tr>
<th>7</th>
<th>EFFECT OF GRINDING TIME AND TEMPERATURE ON RHEOLOGICAL, TEXTURAL AND PHYSICAL PROPERTIES OF PEANUT BUTTER</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>QUALITY CHANGES OF STABILIZER-FREE NATURAL PEANUT BUTTER DURING STORAGE</td>
<td>107</td>
</tr>
<tr>
<td>9</td>
<td>SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH</td>
<td>127</td>
</tr>
</tbody>
</table>

REFERENCES 130
BIODATA OF STUDENT 142
LIST OF PUBLICATIONS 143
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of spreadable products from peanut butter (Source: USDA, 2006)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Food crushing and grinding equipment (Source: Saravacos et al., 2002b)</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Terminology used in comminution (Source: Martin, 1998)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Identification of viscoelastic behaviour with frequency sweep test in food suspensions</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Texture attributes in descriptive sensory analysis of spreadable products</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling plan during peanut butter storage study</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>The experimental design for the optimization of the roasting process of peanuts of China and India origins</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical properties of raw peanut of China and India</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Regression coefficients and the associated probability (p value) for each response</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Pearson’s Correlation coefficients between various properties of roasted peanuts</td>
<td>47</td>
</tr>
<tr>
<td>5.1</td>
<td>Value of work index for different agricultural materials from literature</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Physical properties of roasted peanut of China and India</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>The effect of grinding duration on the range of particle size distribution of peanut butter produced from China and India peanuts</td>
<td>60</td>
</tr>
<tr>
<td>5.4</td>
<td>Parameters of three models for grinding of roasted peanuts in ultra-high speed grinder</td>
<td>66</td>
</tr>
<tr>
<td>6.1</td>
<td>Parameters of particle size distribution of natural peanut butter samples of two peanuts varieties, Virginia from China and Spanish from India</td>
<td>75</td>
</tr>
<tr>
<td>7.1</td>
<td>The effect of grinding duration on the characteristics of particle size distribution of peanut butter produced from China and India peanuts</td>
<td>86</td>
</tr>
<tr>
<td>7.2</td>
<td>Coefficients of Casson model for natural peanut butter at all grinding time and temperature</td>
<td>91</td>
</tr>
<tr>
<td>7.3</td>
<td>Parameters of power law model to describe dependency of peanut butter samples on frequency</td>
<td>100</td>
</tr>
<tr>
<td>8.1</td>
<td>Sampling plan during peanut butter storage study</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flow diagram of conventional peanut butter processing</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow diagram of new peanut butter processing</td>
</tr>
<tr>
<td>2.1</td>
<td>Flow diagram of peanut butter production</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of crossover point in mechanical spectra of 1% tara gum (Caesalpinia spinosa) solutions (Source: Wu et al., 2015)</td>
</tr>
<tr>
<td>2.3</td>
<td>Difference in trend for material characterization using frequency sweep test (Source: Steffee, 1996)</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of experimental design of natural peanut butter research in terms of factors investigated and responses measured</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Front view, (b) top view, (c) serrated blades and (d) separate compartments of ultra-high speed grinder Model: SL0173-CE, M-PLAN Sdn. Bhd., Malaysia)</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram for power measurement of ultra-high speed grinder during grinding operation</td>
</tr>
<tr>
<td>4.1</td>
<td>Effects of temperature (°C) and time (min) of roasting on colour (L*) for (a) China peanuts, and (b) India peanuts</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of temperature (°C) and time (min) of roasting on moisture content (% d.b.) for (a) China peanuts, and (b) India peanuts</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of temperature (°C) and time (min) of roasting on peanut hardness (N) for (a) China peanuts, and (b) India peanuts</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of temperature (°C) and time (min) of roasting on the fracturability (mm) of peanut for (a) China peanuts, and (b) India peanuts</td>
</tr>
<tr>
<td>4.5</td>
<td>Response behaviour of colour, moisture content, hardness and fracturability predicted from a) the observed optimum condition and b) feasible experimental condition for China peanuts</td>
</tr>
<tr>
<td>4.6</td>
<td>Response behaviour of colour, moisture content, hardness and fracturability predicted from a) the observed optimum condition and b) feasible experimental condition for India peanuts</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic diagram for power measurement of ultra-high speed grinder during grinding operation</td>
</tr>
<tr>
<td>5.2</td>
<td>Particle size distribution of peanut particles in peanut butter produced from a) China peanuts and b) India peanuts</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of grinding time on mean particle size ($d_{0.5}$)</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of grinding time on specific energy consumption during grinding process of roasted China and India peanuts</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of grinding time on generated temperature during grinding process of roasted China and India peanuts</td>
</tr>
<tr>
<td>5.6</td>
<td>Temperature-E_{sc} ratio as a function of grinding time</td>
</tr>
<tr>
<td>5.7</td>
<td>Specific energy consumption as a function of size reduction ratio</td>
</tr>
<tr>
<td>6.1</td>
<td>The particle size distribution indicated by span value of natural peanut butter at different grinding time</td>
</tr>
<tr>
<td>6.2</td>
<td>The mode of particle size distribution of natural peanut butter at different grinding time</td>
</tr>
<tr>
<td>6.3</td>
<td>The specific surface area (SSA) obtained from the measurement of particle size distribution of natural peanut butter at different grinding time</td>
</tr>
</tbody>
</table>
6.4 Particle size distribution of ground natural peanut butter for 2.0 and 5.0 minutes from (a) China and (b) India peanuts in comparison with commercial peanut butter.

6.5 Stress sweeps for natural peanut butter produced from (a) China and (b) India.

7.1 Identified peaks in particle size distribution of produced natural peanut butter with (a) four peaks; tetramodal for the shorter grinding time and (b) three peaks; trimodal for the longer grinding time.

7.2 Photomicrograph of solid peanut particle in natural peanut butter samples produced at from grinding time of (a) 2.5 minutes (b) 3.0 minutes from Virginia and Spanish varieties and (c) commercial peanut butter samples.

7.3 Flow curves of natural peanut butter produced from peanuts originated from China and commercial peanut butter tested at (a) 10, (b) 25 and (c) 35°C.

7.4 G' as Function of strain sweeps for natural peanut butter produced from (a) China and (b) India peanuts, at different grinding time.

7.5 Differences in G' and G'' between temperatures for peanut butter of (a) Virginia, (b) Spanish and (c) commercial as function of strain sweeps. The data from 2.5 minutes grinding time were used for natural peanut butter. The G' and G'' are indicated using black and transparent symbols respectively.

7.6 Comparison of changes in G' and G'' during time sweep test between commercial peanut butter with natural peanut butter produced from (a) Virginia and (b) Spanish peanuts at 25°C. The G' and G'' are indicated using black and transparent symbols respectively.

7.7 Effect of frequency on G' and G'' of natural peanut butter produced from (a) Virginia and (b) Spanish peanuts, from different grinding time in comparison with the natural peanut butter at 25°C. The G' and G'' are indicated using black and transparent symbols respectively.

7.8 Work of shear as function of grinding time for peanut butter from (a) China and (b) India peanuts at different temperature.

7.9 Effect of grinding time on colour indicates by L-value of natural peanut butter from China and India peanuts, in comparison with commercial peanut butter.

7.10 Effect of grinding time on density of natural peanut butter from China and India peanuts, in comparison with commercial peanut butter.

8.1 Moisture content changes in natural peanut butter samples produced at 2.5 and 3.0 minutes grinding time and commercial peanut butter during storage at a)10°C, b) 25°C and c)35°C.

8.2 Water activity changes in natural peanut butter samples produced at 2.5 and 3.0 minutes grinding time and commercial peanut butter during storage at a) 10°C, b) 25°C and c) 35°C.

8.3 Microbial presence in peanut butter samples during 16 weeks storage at a) 25°C and b) 35°C.

8.4 Changes in peroxide values (PV) (milliequivalents of peroxide per kilogram sample) of peanut butter during storage at a)10°C, b) 25°C and c)35°C.

8.5 Oil separation (%) of peanut butter during storage at a) 10°C, b) 25°C and c) 35°C.
8.6: Work of shear (g.sec) of natural and commercial peanut butter stored at a) 10°C, b) 25°C and c) 35°C

8.7 Penetration force (g) of natural and commercial peanut butter stored at a) 10°C, b) 25°C and c) 35°C
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Analytical Chemists</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>d.b.</td>
<td>Dry basis</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning colorimeter</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>HVO</td>
<td>Hydrogenated vegetable oil</td>
</tr>
<tr>
<td>LVR</td>
<td>Linear viscoelastic region</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture content</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean squared error</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PCA</td>
<td>Plate count agar</td>
</tr>
<tr>
<td>PV</td>
<td>Peroxide value</td>
</tr>
<tr>
<td>PSD</td>
<td>Particle size distribution</td>
</tr>
<tr>
<td>pf</td>
<td>Power factor</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SAOS</td>
<td>Small amplitude oscillatory stress</td>
</tr>
<tr>
<td>Sdn. Bhd.</td>
<td>Sendirian Berhad</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>TFA</td>
<td>Trans fatty acid</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic soy agar</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agricultural</td>
</tr>
</tbody>
</table>
NOMENCLATURE

A Current (ampere)
a_w Water activity
d_1 Initial particle size diameter (mm)
d_2 Final particle size diameter (mm)
$d_{0.1}$ Particle size at which 10% of the particle size distribution fall below
$d_{0.5}$ Particle size at which 50% of the particle size distribution fall below
$d_{0.9}$ Particle size at which 90% of the particle size distribution fall below
E Energy (kJ)
E_{sc} Specific energy consumption (kJ/kg)
G' Storage modulus (Pa)
G'' Loss modulus (Pa)
K_k Kick’s law constant (kJ/kg)
K_R Bond’s law constant (kJ/kg)
K_R Rittinger’s law constant (kJ/kg.m)
M_{H_2O} Weight of sample loss after drying (g)
M_{solids} Weight of sample before drying (g)
P Power (kWatt)
R^2 Correlation coefficient
t Grinding time (second)
V Voltage
W_i Bond’s working index (kJ/kg)
CHAPTER 1

INTRODUCTION

1.1 Introduction

Peanut butter is one of the most important products prepared from peanuts (*Arachis hypogaea* L.) where in the U.S. alone as example over 50% of the peanuts produced are processed into peanut butter (Suchoszek-XNDQLXN et al., 2011). Its high protein (27-30%) and polyunsaturated fatty acid content (45-50%) makes it an excellent source of energy (581 kCal/kg) (Woodroof, 1983). Peanut butter is a household staple and is usually consumed as spread on bread or cracker. It is also widely used in the food industry for flavour variety especially in confectionery and dessert products. The principal quality parameters for consumer acceptance of peanut butter are the appearance, flavour and aroma, as well as the spreadability and texture, which are dependent on the processing conditions during the production of peanut butter.

The production of peanut butter is relatively simple, consisting of roasting, blanching the peanuts followed by fine grinding. It is during the grinding stage that differentiates the textural quality among type of peanut butters. In commercial peanut butter manufacturing, peanuts have to undergo two steps of grinding in order to obtain the finest particle size of peanut butter. The initial milling reduces the peanuts into coarse or medium grind. It is then followed by second grinding in a high speed grinder operating at ~3000 rpm, to produce ultrafine particle size reaching to 2-PDQG KRPRJHQLJDWLRQ (Anyang General International Co., 2010). The peanuts have to be ground in two different grinders since the required clearance between plates of the grinder is different at each stage. The use of ultrasonification to substitute fine grinding in the second stage with do not give peanut paste particle sizes much smaller than conventional sizes (Dzurik et al., 1971). It is interesting to investigate if these two steps procedure can possibly done using single size reduction apparatus by applying the ultra high speed grinding. The implementation of single stage step grinding process in peanut butter production would be beneficial in terms of time and cost reduction. Besides it could ensure proper hygiene due to reduce chance of handling the product from one machine to another.

In commercial peanut butter production, various stabilizer and additives are added to serves various purposes. The use of hydrogenated vegetable oil (HVO) as stabilizer in peanut butter has arisen many health concern issues as it contains trans fatty acid (TFA) which associate with cardiovascular disease. Most peanut butter brands in Malaysia fell within a range of 0.02–0.67 g TFA kg⁻¹ and are LGHQWLILHG DV ORZ 7) but a range of 1.6–6.7 g TFA kg⁻¹ was reported ZKLFLVFRQVGLHUHGDVKLJK 7) (Karupaiah et al., 2014). It is suggested that TFA in peanut butter is varied between manufacturers (Karupaiah et al., 2014). Although this issue has been constantly overcame by reducing the HVO content to less than 1% or with better stabilizer and modification of hydrogenation process, it could not evade the demand for natural peanut butter. The increasing demands and consciousness among consumers suggest that fewer natural additives or no additives added in food are
preferable. 59% of the respondents in a study of peanut butter preference favour the ‘old fashioned’ peanut butter due to its flavour, aroma, texture and absence of additives (How et al., 1985). The addition of HVO in peanut butter succeed to prevent oil separation but the resulting peanut butter has the disadvantage where it is difficult to spread and tends to cling to the palate when eaten (Gills et al., 2000b). Various attempts had been made to find the suitable stabilizer which satisfies all quality attributes of peanut butter such as by replacing HVO with palm oil (Gills and Resurreccion, 2000b; Hinds et al., 1994). However, the oxidative stability of palm oil-stabilised peanut butter is less susceptible than HVO-stabilised peanut butter. Sensory analysis showed that the natural peanut butter is more preferable than the palm oil-stabilised peanut butter in texture, oiliness, spreadability and overall liking (Gills et al., 2000a).

Oil separation is the major problems in natural peanut butter production. It leads to peroxidation of oil which results in rancidity of the product. To regain the terms of natural peanut butter, it is a challenge that no stabilizer should be added. By means, the capability of ultrahigh speed grinding to improve the fine particle size would provide some useful research area in mechanically controlling the oil separation thus improve the other quality attributes. Controlling particle size distribution (PSD) was proved to be the most prominent factor to obtain a desirable product (Lima et al., 2000).

1.2 Problem statements

In conventional peanut butter processing, two steps of grinding are required to achieve the finest possible particle size to ensure a smooth spread is achievable. Therefore, it is the main focus of this research to reduce the 2-steps to a 1-step grinding process in peanut butter production. The difference between conventional and new peanut butter processing are illustrated in Figure 1.1 and 1.2, respectively. In conventional peanut butter production, stabilizers such as hydrogenated vegetable oil (HVO) and additives are added to prevent oil separation. Due to various health concerns on the usage of HVO, it is the interest of this research to produce natural peanut butter as an alternative to the current range of peanut butter. The information and literature on natural food product particularly peanut butter is scarce. Therefore, the characterization and storage study on natural peanut butter would provide knowledge in structure-rheological interrelationship particularly in plant-based food suspension and also in stability evaluation of preservative-free food products.
Figure 1.1. Flow diagram of conventional peanut butter processing

Figure 1.2. Flow diagram of new peanut butter processing
1.3 **Objectives of the study**

The main objective of this study is to evaluate the performance and capability of ultra high speed grinding in producing a reasonably stable natural peanut butter shelf life without stabilizer. Since the stability and quality of the product depends on the organoleptics, textural and microstructure properties, it is important to achieve desire characteristics to support the main objective. The study was carried out in comparison with commercial peanut butter in order to compare the quality between commercial and natural product. The specific objectives of the research were therefore:

1. To assess the influence of roasting parameters on the textural and organoleptic attributes of roasted peanuts. It is during roasting that determine the aroma, flavour and colour of final products. The determination of roasting parameters on quality parameters of roasted peanuts are reported in **Paper I**.

2. To evaluate the performance of ultra high speed grinder in terms of specific energy consumption. It is described in **Paper II**.

3. To study the influence of grinding on the textural, rheological and physicochemical properties of natural peanut butter. It is reported in **Paper III and IV**.

4. To study the behaviour and oxidative stability of peanut butter during storage at different temperatures. It is reported in **Paper V**.

1.4 **Scope of work and thesis outlines**

The work conducted in this research focused on production of natural peanut butter using ultra-high speed grinder. Quantitative characterization and evaluation were conducted on the production which are roasting and grinding as well as on the product which is natural peanut butter. Chapter 2 begins by introducing the classification of peanut butter and process flowchart of peanut butter production with detail description on roasting and grinding stage. Elaborate discussions were also presented on quality responses of peanut butter and other nut butters as well. The applications of instrumental analyses for quantitative measurements in previous studies are extensively discussed. The storage stability of peanut butter and other nut butter are also presented in terms of oxidative stability and microbial contamination.

The materials and methods, equipment used and procedures for analyses conducted in the experiments are described in Chapter 3. The works started with preparation of the peanuts for roasting process, followed by grinding process, and characterization of peanut butter, and storage study. The experimental design of roasting process is presented with aims to evaluate the effect of roasting time and temperature on four quality responses for roasted peanuts which are colour, moisture content, hardness and fracturability. This chapter also describes the experimental design of grinding process at five levels of grinding time and two levels of peanut origin where grinding
characteristics including particle size distribution, energy consumption and temperature generated were evaluated. The characterizations of natural peanut butter properties were also presented which includes physicochemical, rheological and textural properties. The properties of natural peanut butter were also compared with commercial peanut butter as benchmark of its characteristics. The effect of grinding time and storage temperature on oxidative stability, microbial count and changes in physicochemical, rheological and textural properties of natural peanut butter in comparison with commercial peanut butter are also described in this chapter.

Chapter 4 is a published paper of work on optimization of roasting process. It details the experimental design of roasting process and the application of response surface methodology (RSM) for simultaneous multiple responses modelling and optimization of peanuts roasting process in this study. The optimization was obtained by defining the goals and boundaries of each measured responses and later combined them into a single measure. The correlations between the responses are also reported.

Chapter 5 is a published paper of work on grinding process of roasted peanuts using ultra-high speed grinder. It discusses the grinding characteristics of roasted peanuts for natural peanut butter production. It covers the energy consumption and heat generated during grinding and particle size distribution obtained after grinding. The energy consumption and particle size were fitted to the three classical grinding laws and the correlations between the responses are also reported.

In Chapter 6, the preliminary study of rheological properties of natural peanut butter is presented. This chapter compared the dynamic rheological properties of natural peanut butter with commercial peanut butter at 25°C. The stress sweep test was performed in the work of this chapter. Comparisons were made between natural peanut butter produced at different grinding time and also with commercial peanut butter by comparing the linear viscoelastic region (LVR) of the products.

Chapter 7 discusses the effect of grinding time and temperature on rheological, textural, colour and density of natural peanut butter in comparison with commercial peanut butter. Dynamic rheological properties are extensively discussed which includes results from oscillatory strain sweep test, time sweep test and frequency sweep test. The flow behaviours of peanut butters are also presented in this chapter. The SEM and particle size analysis were also assessed to understand particle size and structure influence on the peanut butter properties.

Chapter 8 elaborates the storage related changes in quality changes on natural peanut butter. It reports the effects of storage temperature and time, peanut variety and grinding time on storage stability of natural peanut butter. The quality attributes monitored were moisture content, water activity, microbial count, peroxide value, oil separation and spreadability. Subsequently, comparisons of quality changes during storage were compared with those of commercial peanut butter.

Finally, Chapter 9 concludes the overall findings and contributions of the works. Recommendations are listed for further research.
REFERENCES

