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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

LYOT-FILTER-BASED MULTIWAVELENGTH FIBER LASER USING 

A SEMICONDUCTOR OPTICAL AMPLIFIER ASSISTED BY 

NONLINEAR POLARIZATION ROTATION EFFECT 

 

By 

ABDUL HADI SULAIMAN 

February 2015 

Chair: Professor Mohd. Adzir Mahdi, PhD  

Faculty: Engineering 

 

Research works based on multiwavelength fiber laser (MWFL) were realized by utilizing 

several types of comb filter such as Lyot filter, Mach-Zehnder interferometer and Sagnac 

loop mirror interferometer. The generation of MWFL based on Lyot filter is highly 

interesting to be explored due to its advantage of narrow linewidth, low power loss and 

simple structure. The multiwavelength generation based on Lyot filter has several issues 

that need to be focused such as narrow wavelength range and hardly explored of 

bidirectional configuration. This doctoral research focuses on both issues, where they are 

closely related to the research objective that is wavelength range improvement and a new 

design of bidirectional configuration within the Lyot filter scope. 

 

In this doctoral research, an ability of intensity equalizer is utilized to flatten the 

spectrum, and it is obtained from an effect of nonlinear polarization rotation (NPR) 

which is induced from a combination of semiconductor optical amplifier (SOA) and 

polarizer. This NPR effect induces two mechanisms of intensity dependent transmission 

(IDT) or intensity dependent loss (IDL), which depends on the adjustment of polarization 

controller (PC). To obtain a flat multiwavelength spectrum, the adjustment of the PC and 

the intensity is very important in order to achieve high cavity loss in the IDT and IDL 

mechanisms. 

 

The first main finding in this study is about a wide wavelength range of 30.7 nm based 

on a unidirectional Lyot filter. The best performance has 307 number of lines within 5 

dB bandwidth. The channel spacing for the most data is 0.1 nm due to the length of 

polarization maintaining fiber of 53.2 m. The highest extinction ratio and peak power is 

12 dB and -43 dBm, respectively. The flatness deteriorates with intensity increment due 

to the IDT mechanism in the cavity. Without the use of polarizer in the experimental 

structure, no multiwavelength spectrum is generated because the polarizer is an 

important component in inducing the IDT mechanism.  
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The next main finding is a new design of bidirectional Lyot filter. This filter is unique 

because the incoming lights to the filter can propagate simultaneously in two different 

directions of clockwise and counter clockwise. This advanced filter can has two 

simultaneous constructive interferences, where it can give an advantage of light 

reshaping for a flat spectrum generation. The best multiwavelength performance based 

on this new filter produces 96 number of lines within 5 dB bandwidth, with high peak 

power of -34 dBm. This design can be simply changed to a unidirectional configuration, 

but the spectrum flatness is deteriorated because the occurrence of constructive 

interference is only once. The multiwavelength performance is also deteriorated when 

the laser structure is modified into different coupling ratio of optical coupler, different 

SOA type, configuration of bidirectional SOA and without polarizer in the laser 

structure. 

 

In conclusion, this doctoral research has successfully solved the issues of 

multiwavelength performance based on Lyot filter. The wavelength range is wider as 

compared to the previous works, while a new structure of bidirectional Lyot filter is 

successfully designed.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

LASER GENTIAN BERBILANG SALURAN BERDASARKAN  

PENAPIS LYOT MENGGUNAKAN SEBUAH PENGGANDA  

OPTIK SEMIKONDUKTOR DIBANTU OLEH EFEK  

PUTARAN POLARISASI TIDAK LURUS 

 

Oleh 

ABDUL HADI BIN SULAIMAN 

Februari 2015 

Pengerusi: Profesor Mohd. Adzir Mahdi, PhD 

 

Fakulti: Kejuruteraan 

 

Kerja-kerja penyelidikan berdasarkan laser gentian saluran berbilang (MWFL) telah 

banyak direalisasikan menggunakan pelbagai jenis penapis sisir seperti penapis Lyot, 

interferometer Mach-Zehnder dan interferometer cermin gelung Sagnac. Penghasilan 

MWFL berdasarkan penapis Lyot amat menarik untuk diterokai disebabkan oleh 

kelebihan penapis Lyot yang mempunyai kelebaran garisan yang sempit, kehilangan 

kuasa yang rendah dan struktur yang ringkas. Penghasilan saluran berbilang 

berdasarkan penapis Lyot mempunyai beberapa isu-isu yang perlu difokuskan seperti 

julat saluran yang sempit dan konfigurasi dwihala yang jarang diterokai. Penyelidikan 

doktoral ini memfokus pada kedua-dua isu tersebut, dimana ianya berkait rapat dengan 

objektif penyelidikan ini iaitu meningkatkan julat saluran dan mereka konfigurasi 

dwihala yang baharu dalam skop penapis Lyot.  

 

Di dalam penyelidikan doktoral ini, suatu keupayaan iaitu penyama kerataan telah 

digunakan untuk meratakan spektrum, dan ianya diperolehi daripada kesan putaran 

polarisasi tidak lurus (NPR) yang dirangsang daripada kombinasi pengganda optik 

semikonduktor (SOA) dan pengutub. Kesan NPR ini merangsang dua mekanisma 

samada penghantaran bersandarkan keamatan (IDT) atau kehilangan bersandarkan 

keamatan (IDL), bergantung pada pengubahan terhadap pengubah polarisasi (PC). 

Untuk mendapatkan spektrum saluran berbilang yang rata, pengubahan pada PC dan 

keamatan amatlah penting supaya dapat memperoleh kehilangan kaviti yang tinggi 

dalam mekanisma IDT mahupun mekanisma IDL. 

 

Penemuan utama yang pertama dalam pengajian ini ialah berkenaan julat saluran yang 

luas selebar 30.7 nm berdasarkan penapis Lyot sehala. Prestasi yang paling baik 

mempunyai jumlah saluran sebanyak 307 dalam lingkungan jalur lebar berkeluasan 5 

dB. Selang saluran untuk kebanyakan data ialah 0.1 nm berdasarkan panjang fiber 
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pengekal polarisasi yang panjangnya 53.2 m. Nisbah pemadaman yang paling tinggi 

ialah 12 dB dan kuasa puncak tertinggi ialah -43 dBm. Kerataan menjadi semakin teruk 

dengan kenaikan pada keamatan disebabkan oleh mekanisma IDT di dalam kaviti. 

Tanpa menggunakan pengutub pada struktur eksperimen, tiada spektrum saluran 

berbilang dapat dihasilkan kerana pengutub merupakan komponen yang penting dalam 

merangsang mekanisma IDT. 

 

Penemuan utama yang seterusnya ialah rekaan baharu penapis Lyot dwihala. Penapis 

ini unik kerana kemasukan cahaya-cahaya ke penapis tersebut boleh merambat secara 

serentak dalam dua haluan berbeza iaitu mengikut arah jam dan melawan arah jam. 

Penapis termaju ini boleh mempunyai dua interferens konstruktif yang berlaku secara 

serentak, dimana ianya dapat memberikan kelebihan dalam pembentukan cahaya untuk 

penghasilan spektrum yang rata. Prestasi saluran berbilang yang terbaik berdasarkan 

penapis baharu ini menghasilkan jumlah saluran sebanyak 96 dalam lingkungan jalur 

lebar 5 dB, dengan kuasa puncak setinggi -34 dBm. Rekaan ini boleh diubah kepada 

konfigurasi sehala dengan mudah, akan tetapi kerataan pada spektrum menjadi lebih 

teruk kerana interferens konstruktif hanya berlaku sekali. Prestasi saluran berbilang 

juga didapati semakin teruk apabila struktur laser ini dimodifikasikan kepada nisbah 

pencantuman yang berbeza pada pencantum optik, jenis SOA yang berlainan, 

konfigurasi SOA dwihala dan ketiadaan pengutub pada struktur laser. 

 

Sebagai kesimpulan, penyelidikan doktoral ini telah berjaya menyelesaikan isu-isu 

berkenaan prestasi saluran berbilang berdasarkan penapis Lyot. Julat saluran didapati 

lebih lebar berbanding kerja-kerja sebelum ini, manakala sebuah struktur baharu 

berkenaan penapis Lyot dwihala telah berjaya direka.  
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CHAPTER I 

 

INTRODUCTION 

 

This chapter serves as an introduction to this doctoral work on multiwavelength fiber 

laser (MWFL) based on semiconductor optical amplifier (SOA), revolving around 

nonlinear polarization rotation (NPR) effect and Lyot filter. In Section 1.1, a brief 

introduction of MWFL will be discussed. Next discussion looks into the problem 

statement relevant to the research scope and followed by motivation behind the work. 

Subsequently, the objective of research will be elaborated. The scope of research as well 

as the thesis organization will then be detailed prior to the summary of the whole chapter. 

 

Overall, this chapter has covered the first step of the doctoral research before going fur-

ther to the extensive theories and reviews as well as the experimental discussion. It is 

important to understand the flow of the research starting from the introduction, the prob-

lem statement, the motivation of research, the objective of research, the scope of research 

and the thesis organization.  

 

1.1 Introduction of MWFL 

 

Research on MWFL has been a major attraction to researchers due to its potential appli-

cation in optical communications, dense wavelength division multiplexing (WDM) sys-

tem, WDM passive optical network, precise spectroscopy and optical sensing [1]. Many 

articles on MWFL have been published leading to the contribution of various significant 

discoveries in multiwavelength characteristics such as number of lines, channel spacing, 

extinction ratio, wavelength tunability and full band coverage [2]. 

 

In recent years, most of MWFL researches are based on the use of erbium-doped fiber 

amplifier (EDFA) due to its many advantages such as low polarization sensitivity and 

high saturation power. Owing to the EDFA lesser sensitivity to polarization, good stabil-

ity can be achieved because temperature and environmental perturbation will not affect 

the overall multiwavelength laser system. Another popular gain mechanism for MWFL 

is Raman amplification [3], [4], which is particularly attractive due to low noise and its 

ability to be generated at any wavelength (dependent on pump wavelength) without the 

need for a specialized gain medium but high pump power is required to operate this laser 

[5]. 

 

A common method of generating multiple lasers is through the use nonlinear effects such 

as stimulated Brillouin scattering (SBS) [6], four-wave mixing (FWM) [7] and NPR [8]. 

NPR has emerged as an interesting choice due to its advantages of performing changea-

ble operating regimes of multiwavelength lasing [9] as well as passively mode locked at 

adjustment of polarization state [10]. A simpler technique of producing MWFL is by 

deploying a comb filter within the laser structure. Several types of comb filter have been 

investigated for this purpose such as Fabry-Perot [11], Mach-Zehnder interferometer 

(MZI) [12], [13] and Lyot filter [14]. Lyot filter is coveted due to its simple structure and 

output variability, which is done simply by varying the chosen polarization maintaining 

fiber (PMF) parameter [15]. 
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1.2 Problem Statement 

 

Lyot filter-based MWFL is an attractive choice for multiple laser generation due to its 

many qualities such as low optical loss and simple structure. Most of MWFL based on 

the Lyot filter use EDFA as gain medium [9], [16]. However, the existence of mode 

competition in EDFA-based MWFL limits the number of laser lines produced by the 

system. Since the erbium-doped fiber (EDF) gain medium characteristic is naturally ho-

mogeneous, this leads to high mode competition and unstable lasing lines. This condition 

should be evaded in MWFL system that targets high number of lines, unless an additional 

device is inserted into the configuration setup to reduce the mode competition. The de-

vice is either piezo-electric transducer [17], highly nonlinear fiber [16] or polarization 

dependent isolator (PDI) [18], [19], which inadvertently increases the complexity and 

loss of the system. Although the inhomogeneous broadening of Raman amplification is 

a viable alternative, the high pump power required to induce the effect is a stumbling 

block in producing an efficient MWFL system. Additionally, previous researches on 

Lyot filter-based MWFL operated solely in unidirectional configuration, thus raising the 

opportunity to explore the potential of Lyot filter in bidirectional operation. Another co-

nundrum that has yet to be solved is the limited wavelength range in a simple comb filter 

such as Lyot filter, which is a very crucial aspect in MWFL for WDM application.  

 

1.3 Motivation of Research 

 

Other popular gain medium in MWFL setup is SOA, instead of EDFA. The SOA is ex-

tremely beneficial in providing better multiwavelength generation due to its low mode 

competition and simpler setup. The low mode competition from SOA is attributed to its 

inhomogeneous gain broadening characteristic [20], [21], which allows the generation 

of stable MWFL with high number of lines at room temperature. SOA also requires no 

external optical pump and since no additional device to reduce mode competition is nec-

essary, the laser has a simpler setup compared to its EDFA-based counterpart. With the 

SOA as gain medium, the generation of multiple laser lines can be performed through 

the use of a nonlinear effect and a comb filter such as NPR and Lyot filter, respectively. 

The combination of those three elements is never realized before, and became one of the 

motivations in completing this doctoral work.  

 

The NPR effect induces mechanism of intensity dependent loss (IDL) or intensity de-

pendent transmission (IDT). In this work, the mechanisms are utilized as assistance in 

flattening the multiwavelength generation. The discussion of both mechanisms based on 

SOA is hardly reported, and essential to be discovered. Meanwhile, from the previous 

study, the Lyot filter is usually in unidirectional configuration and the wavelength range 

is limited. Operating the filter bidirectionally could provide better filter performance and 

utilize the device to its maximum potential. 

 

1.4 Objective of Research 

 

1.) To improve the wavelength range in an MWFL based on Lyot filter. 

2.) To investigate a new phenomenon in an MWFL based on NPR effect. 

3.) To design a new bidirectional of Lyot filter that can be applied to other comb 

filter. 
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1.5 Scope of Research 

 

Many articles have been published using several types of gain medium, nonlinear effect 

and comb filter in the generation of MWFL. The gain media that have been utilized in 

the MWFL setup are SOA [22], EDFA [23], ytterbium-doped fiber amplifier (YDFA) 

[10] and Raman amplifier [4]. On the other hand, the type of comb filters that have been 

used for multiwavelength generation are Sagnac loop mirror (SLM) [24], Fabry-perot 

[25], MZI [12], Lyot filter [26] and array waveguide grating (AWG) [21]. Meanwhile, 

the nonlinear effect is also the main element in generating the MWFL. Several published 

articles are based on the nonlinear effect of NPR [27], FWM [7], SBS [28] and stimulated 

Raman scattering (SRS) [29]. In this work, the SOA, the Lyot filter and the NPR effect 

are preferred as the gain medium, the comb filter and the nonlinear effect, respectively. 

Figure 1.1 illustrates the scope of research that will be studied in this doctoral work which 

is narrowed down from three major fields of gain media, nonlinear effect and comb filter. 

The specific topics are related to each other and are preferred due to various advantages 

and several gaps that were filled and explored.  
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Figure 1.1: The scope of the research. 

 

1.6 Thesis Organization 

 

Overall, the research work that reported in this thesis contains five chapters. The first 

chapter discusses the introduction of MWFL for the application of optical telecommuni-

cations and WDM systems. This chapter also elaborates the problem statement, the mo-

tivation, the objective and the scope of research, as well as thesis organization. Chapter 

2 will cover the theoretical background and the description of the involved devices in the 

experimental setup. In the SOA section, the discussion is about the introduction, the prin-

ciple of operation, the material and structure as well as the research contribution in the 

SOA area. Subsequently, the background and the theory of PMF and birefringence will 

be explained. PMF is a device that responsible for the phenomenon of constructive in-

terference, whilst the birefringent device is the PMF and it is an important component in 

Lyot filter. Next discussion is about the NPR effect, which introduces the IDT and the 

IDL mechanisms. Further on, the description and the theory of polarization device in 
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polarization controller (PC) and polarizer will also be elaborated. The important topic in 

Lyot filter will also be covered. Also in this section, several reviews are made on MWFL 

based on the Lyot filter as well as its theoretical background. Then, the discussion con-

tinues with the review on MWFL based on the SOA, which covers from the earliest 

research to the current work. Chapter 2 finally discusses the critical review on the NPR 

effect and the Lyot filter. In this section, the gaps and the weakness of the previous work 

will also be discussed. 

 

Chapter 3 will cover the experimental results of the doctoral work. In this chapter, the 

main contribution is the flatness investigation at intensity dependence. The flat and high 

lasing line of multiwavelength spectrum is obtained at low intensity. Then, other param-

eter changes will also be investigated and discussed. The relationship of the IDT mech-

anism to the flatness variations will be explained extensively. The flatness performance 

of MWFL will also be discussed at variation of intensity, throughput port ratio and po-

larization state. Chapter 3 will also investigate an adjustable extinction ratio value when 

half wave plate (HWP) rotation or PMF length is changed. Other discussion is regarding 

to the performance of multiwavelength spectrum with the removal of PDI and the laser 

stability. 

 

Chapter 4 will discuss the experimental results on bidirectional Lyot filter. The entire 

results will be investigated, analyzed and then compared with the best multiwavelength 

spectrum. In the first part of this chapter, the lasing threshold, the transmission spectra 

and the stability regarding the best multiwavelength spectrum will be discussed. Next, 

the experimental results are discussed regarding the variation of SOA current, HWP po-

sition and temperature. The decrement of SOA current reduces the number of lines, while 

the rotation of HWP position can deteriorate the flatness of multiwavelength spectrum. 

The experimental work on different temperature is also done to investigate the channel 

spacing tunability. The second part of Chapter 4 discusses the multiwavelength perfor-

mance on the modification of experimental setup. The modification investigates the laser 

output based on different coupling ratio, polarizer removal, unidirectional configuration, 

different SOAs, two segments of PMF and bidirectional SOA. With the modifications, 

different phenomena of multiwavelength spectrum were observed.  

 

The final chapter, Chapter 5 will conclude the works of this doctoral research. The other 

discussion is recommendation of future work which obtained from the experimental 

work based on the performance investigation of the SOA-based MWFL.  
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