UNIVERSITI PUTRA MALAYSIA

INvolvEMENT OF MITOCHONDRIA IN DICLOFENAC – AND IBUproFEN- INDUCED HEPATOTOXICITY

MOHANAMBAL MOORTHY

FPSK(M) 2008 1
IN Vol vEMENT OF MITOCHONDRIA in DICLOFENAC - AND IBUPROFEN- INDUCED HEPATOTOXICITY

By

MOHANAMBAL MOORTHY

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirement for the Degree of Masters Science

June 2008
Diclofenac and ibuprofen are commonly used non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of rheumatic diseases. However, these drugs are known to cause hepatotoxicity in patients. Recent in vitro studies indicated that the hepatotoxic effects of these NSAIDs are related to their ability to induce apoptosis by targeting the mitochondria. This study was carried out to investigate and to compare possible liver perturbation following diclofenac and ibuprofen administration to rats. Male Sprague-Dawley rats (n=144) were treated with 3mg/kg, 5mg/kg and 10mg/kg diclofenac and ibuprofen in normal saline, intraperitoneally at 500μl/rat/day for 15 days. The control group was administered with saline in a similar manner. Four rats from each group were euthanised every 3 consecutive days. While 200mg/kg diclofenac and ibuprofen-treated rats (n=4) were euthanised following a single dose 10 hours post-treatment. Upon euthanisation, the livers were removed and cleaned with normal saline. A section across the right lobe was taken and fixed in 10% (v/v %) formal saline and 4% (v/v) glutaraldehyde for light (H&E
staining and TUNEL assay) and transmission electron microscopy, respectively. The remaining samples were kept under -80°C for Western blotting analysis. The three mg/kg diclofenac administered group at day 15 showed significant presence of microvesicles and lymphocytic infiltration. The five mg/kg diclofenac-treated rats revealed significant presence of microvesicles, lymphocytic and neutrophilic infiltrations at day 15. Liver sections obtained from rats administered with 10 mg/kg diclofenac showed significant presence of microvesicles, mild lymphocytic and neutrophilic infiltration and inflammation. The five mg/kg and 10mg/kg ibuprofen-injected rats showed significant presence of microvesicles and mild focal lymphocytic and neutrophilic infiltrations. These observations were mainly seen around central veins (CVs). In TUNEL assay, 5mg/kg and 10mg/kg diclofenac and 10mg/kg ibuprofen administered rats, showed apoptotic cells around the CVs at day 15. Ultrastructural study revealed swollen and ruptured mitochondrial membranes in rats treated with 5mg/kg diclofenac, 10mg/kg diclofenac and 10mg/kg ibuprofen on day 15. Western blotting analysis showed constant expression of cytochrome c in liver homogenate and mitochondrial fraction on day 3, 6, 9, 12 and 15. However no cytochrome c expression was detected in the cytosolic fraction. In 200 mg/kg diclofenac and ibuprofen-treated rats, cytochrome c was detected in all 3 fractions; homogenate, mitochondrial and cytosol. The expression of cytochrome c is higher density in the cytosol from rats administered with diclofenac when compared to the expression in cytosol from rats treated with ibuprofen. It can be concluded that diclofenac is probably more potent in inducing changes in mitochondrial membrane leading to apoptosis. However, at therapeutic dosage both drugs did not induce prominent alteration in the mitochondria and the hepatocytes in general.
Diclofenac dan ibuprofen merupakan antara ubat non-steroidal anti-inflammatroy (NSAIDs) yang biasa digunakan untuk rawatan penyakit tulang dan sendi. Namun demikian, ubat-ubatan ini boleh menyebabkan kesan toksik pada hati di kalangan pesakit yang mengambilnya. Kajian in vitro yang terbaru mengaitkan kesan toksik tersebut dengan kebolehan ubat-ubatan ini untuk menyebabkan apoptosis terhadap sel-sel hepar dengan memberi kesan ke atas mitokondria. Kajian ini dijalankan dengan tujuan untuk menganalisa dan membandingkan kesan diclofenac and ibuprofen ke atas hati tikus. Tikus ‘Sprague Dawley’ (n=148) telah diberi 3mg/kg, 5mg/kg dan 10mg/kg diclofenac dan ibuprofen dalam normal saline melalui intraperitonium pada 500µl setiap hari sehingga hari ke 15. Kumpulan kawalan telah disuntik dengan normal saline sama seperti kumpulan yang diuji. Manakala, 200mg/kg diclofenac dan ibuprofen telah diberi secara intraperitonium pada tikus
(n=4) dan diautopsi selepas 10 jam. Empat tiks dari setiap kumpulan (kumpulan kawalan dan kumpulan ujian) telah diautopsi setiap 3 hari sehingga hari ke 15. Kemudian, organ hati dikeluarkan dan dibersihkan. Bahagian lobus kanan hati telah diletak dalam 10% (v/v) formalin dan 4% (v/v) glutaraldehyde untuk analisa di bawah mikroskop cahaya (celupan H&E dan ese TUNEL) dan mikroskop elektron. Sampel selebihnya telah disimpan pada suhu -80°C untuk ujikaji 'Western blotting'. Kajian menerusi pewarnaan ‘H&E’ pada 3mg/kg diclofenac menunjukkan kehadiran mikrovesikel dan serangan limfosit yang signifikan pada hari yang ke-15. Kumpulan yang diberi 5mg/kg diclofenac pula menunjukkan mikrovesikel, serangan limfosit and neutrofil yang signifikan pada hari yang ke-15 juga. Kumpulan yang disuntik 10 mg/kg diclofenac juga menunjukkan kehadiran mikrovesikel, serangan limfosit, neutrofil dan inflamasi yang signifikan pada hari yang ke-15 berbanding dengan normal saline. Kumpulan tikus yang diberi 5mg/kg dan 10mg/kg ibuprofen pula menunjukkan kehadiran mikrovesikel, limfosit dan neutrofil yang tertumpu selepas hari ke-15. Pemerhatian ini telah di buat terutamanya di sekitar kawasan PVs. Dalam ese TUNEL, 5mg/kg diclofenac, 10mg/kg diclofenac dan 10mg/kg ibuprofen telah menunjukkan kehadiran sel apoptosis di sekitar PV sahaja. Kajian ultrastruktur ke atas mitokondria menunjukkan kehadiran mitokondria yang membesar dan mitokondria dengan membran yang pecah pada 5mg/kg diclofenac, 10mg/kg diclofenac dan 10mg/kg ibuprofen pada hari ke 15. Analisa ‘Western blot’ menunjukkan kehadiran sitokrom c dalam homogenat hati dan fraksi mitochondria pada hari ke-3, 6, 9, 12 dan 15. Tetapi, tiada sitokrom c di kesan dalam fraksi sitosol pada semua masa. Kumpulan yang diberi 200mg/kg diclofenac dan ibuprofen, menunjukkan kehadiran sitokrom c dalam homogenat, fraksi mitokondria dan fraksi sitosol. Ekspresi sitokrom c dalam fraksi sitosol adalah lebih ketara dalam kumpulan
yang diberi 200mg/kg diclofenac berbanding ibuprofen. Kesimpulannya, diclofenac
mungkin menyebabkan perubahan yang lebih ketara terhadap mitokondria
berbanding ibuprofen dan seterusnya membawa kepada apoptosis sel-sel hepar.
Namun demikian, diclofenac dan ibuprofen tidak menyebabkan perubahan yang
mendadak terhadap mitokondria dan sel-sel hepar apabila diuji di bawah dos
terapeutik.
ACKNOWLEDGEMENTS

I owe my first and foremost profound gratitude to God, the source of all inspiration and help and without his assistance this study would have not come into existence.

Deep obligation and indebtedness and most sincere gratitude are offered to my supervisor, Dr Sharida Fakurazi for her continuous guidance during all my stages of research work and for her willingness to help, listen and assist in every way, amidst heavy responsibilities. I also record my sincere appreciation to the committee members: Associate Professor Dr Fauziah Othman and Associate Professor Dr Hairuszhah Ithnin for their guidance, valuable advice and precious evaluation and comments.

I sincerely appreciate and acknowledge staffs, laboratory assistance and graduate students of Department of Biomedical Sciences, Human Anatomy, Nutrition and Health Sciences and Unit of Microscopy and Microanalysis of Institute Bioscience for their kind help and co-operation. Finally, I deeply obliged and thankful to my family members and friends for their great help, patience, support and encouragement over the course of this research and thesis writing.
I certify that an Examination Committee has met on 6 June 2008 to conduct the final examination of Mohanambal a/p Moorthy on her Master of Science thesis entitled “Involvement of Mitochondria in Diclofenac- and Ibuprofen-Induced Hepatotoxicity” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Arifah Abdul Kadir, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Roslida Abd. Hamid, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Noordin Mohamed Mustapha, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Md Anuar Osman, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 August 2008
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Sharida Fakurazi, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauziah Othman, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Hairuszah Ithnin, MD, MPath, AM
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

AINI IDEHIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11th September 2008
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHANAMBAL MOORTHY

Date: 6/10/2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABSTRAK</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROVAL</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECLARATIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xii</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF ABBREVIATIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTERS

1 INTRODUCTION
1.1 General introduction 1
1.2 Problem statement 3
1.3 Research objectives 6

2 LITERATURE REVIEW
2.1 Gross liver anatomy
 2.1.1 Gross morphology of the liver 7
 2.1.2 Blood supply to the liver 10
 2.1.3 Bile passageways 11
 2.1.4 Mitochondria 11
 2.2 Non-steroidal anti-inflammatory drugs
 2.2.1 Mechanism of action 15
 2.2.2 Classes of NSAIDs 16
 2.2.3 Uses of NSAIDs 16
 2.2.4 Adverse effects 16
 2.2.5 Diclofenac 19
 2.2.6 Metabolism of diclofenac 20
 2.2.7 Diclofenac-induced hepatotoxicity 21
 2.2.8 Hypersensitivity 24
 2.2.9 Genetic factors 25
 2.2.10 Ibuprofen 25
 2.2.11 Metabolism of ibuprofen 27
 2.2.12 Ibuprofen-induced hepatotoxicity 27
 2.3 Mode of cell death
 2.3.1 Necrosis 29
 2.3.2 Apoptosis 29
 2.3.3 Death ligand and death receptor 30
 2.3.4 The mitochondrial apoptotic pathway 31
 2.4 Cytochrome c 33
Summary 36
3 METHODOLOGY
3.1 Animal study
3.2 Histological analysis
3.3 TUNEL assay
3.4 Electron microscopy
3.5 Subcellular fractionation
3.6 Protein assay
3.7 Western blotting analysis

4 RESULTS
4.1 Lesion scoring of liver morphology
4.2 Detection of apoptotic cells in paraffin embedded liver sections using Colorimetric TUNEL assay
4.3 Ultrastructural study for the detection of changes in mitochondria
4.4 Western blotting analysis to detect cytochrome c expression in liver samples

5 DISCUSSION

6 CONCLUSIONS

REFERENCES
APPENDICES
BIODATA OF THE STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Lesion scoring table for morphological analysis of H&E stained liver sections</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Lesion scoring mean value of 3, 5 and 10 mg/kg diclofenac, 3, 5, and 10 mg/kg ibuprofen and saline-administered groups on day 3, 6, 9, 12 and 15.</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Lesion scoring mean value of 200 mg/kg diclofenac and ibuprofen-treated groups compared to saline 10 hours post-treatment.</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>The location of liver in relation to other organs in human body</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2</td>
<td>The classic lobule. The classic lobule has a central vein at the center of the lobule and portal triads at the peripheral angles of the lobule</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3</td>
<td>The liver acinus. The liver acinus is a functional interpretation of the liver organization. The zones, marked 1, 2 and 3 are supplied with blood that is most oxygenated and richest in nutrients in zone 1 and least in zone 3. The central vein is located at the edges of the acinus instead of the center as in the classic lobule. The portal triad consisting of portal vein, hepatic artery and bile ducts are shown at the corner of the hexagon</td>
<td>10</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Schematic representation of internal structure of mitochondria</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1</td>
<td>The chemical structure of diclofenac</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Pathways of diclofenac metabolism in humans. Figure shows both hydroxylation and glucuronidation processes. A significant portion of the glucuronide undergoes secondary hydroxylation</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3</td>
<td>The chemical structure of ibuprofen</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Receptor-mediated caspase activation at the death-inducing signaling complex (DISC). Following ligation a ligand (FasL) to the death receptor (Fas), the death receptor will recruit adaptor molecules via its cytoplasmic death domain (DD). The adaptor molecules then will recruit procaspase 8 through their death effector domain (DED) and now it is called the DISC. Procaspase 8 is activated by autoproteolytic cleavage and form active caspase 8. The initiator caspase 8 cleaves and thereby, activates effector caspases for the execution of apoptosis</td>
<td>31</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Schematic representation of mitochondrial apoptotic pathway. (1) death stimuli causes translocation of bax from cytosol to outer mitochondrial membrane and forms high-conductance channels or pores; (2) cytochrome c released from mitochondrion through the pores and forms the apoptosome with Apaf-1, dATP, and procaspase-9, and then procaspase is activated; (3) caspase-9 activates procaspase-3, which, in turn, activates downstream executioner caspases, and leads to cell death</td>
<td>32</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Mitochondria-mediated caspase activation at the apoptosome. (A) Apoptotic stimuli trigger release of cytochrome c which induces</td>
<td>35</td>
</tr>
</tbody>
</table>
the formation of apoptosome and the activation of procaspase 9. (B) Following the release of cytochrome c and in the presence of dATP, Apaf-1 adopts a conformation that allows the formation of apoptosome. Procaspase 9 molecules can bind to the inner ‘hub’ region of the apoptosome and are activated into active caspase 9. Caspase 9 then further activates other effector caspasers.

3.1 Distribution of 148 rats into 3, 5, 10mg/kg (each containing 20 rats) and 200mg/kg (each containing 4 rats) diclofenac and ibuprofen groups, saline-treated rats each with 20 rats and a pre-dosed group containing 4 rats.

4.1.1 Photomicrograph shows liver section of rat treated with 3mg/kg diclofenac at day 15. Arrow shows microvesicles around central vein (CV). Magnification: 200x. H&E staining.

4.1.2 Photomicrograph shows liver section of 3mg/kg diclofenac-treated rat. Arrow indicates mild focal infiltration by lymphocytes around CV at day 15. Magnification: 200x. H&E staining.

4.1.3 Photomicrograph shows liver section of rat treated with 3mg/kg diclofenac at day 15. Arrow indicates mild focal infiltration by lymphocytes at PT. Magnification: 400x. H&E staining.

4.1.4 Photomicrograph shows liver section of rat treated with 5mg/kg diclofenac at day 15. Arrow indicates presence of microvesicles around CV. Magnification 200x. H&E staining.

4.1.5 Photomicrograph shows liver section of rat administered with 5mg/kg diclofenac at day 15. Arrow indicates mild lymphocytic and neutrophilic infiltration around CV. Magnification 400x. H&E staining.

4.1.6 Photomicrograph shows liver section of rat treated with 5mg/kg diclofenac at day 15. Arrow indicates mild focal infiltration by lymphocytes and neutrophils around PT. Magnification: 400x. H&E staining.

4.1.7 Photomicrograph shows liver section of rat treated with 10mg/kg diclofenac at day 15. Arrow indicates presence of microvesicles around CV. Magnification 200x. H&E staining.

4.1.8 Photomicrograph shows liver section of rat treated with 10mg/kg diclofenac at day 15. Arrow indicates mild focal infiltration by lymphocytes and neutrophils around PT. Magnification 400x. H&E staining.

4.1.9 Photomicrograph shows liver section of rat administered with 10mg/kg diclofenac at day 15. Arrow indicates inflammation around CV. Magnification 400x. H&E staining.
4.1.10 Photomicrograph shows liver section of rat treated with 200mg/kg diclofenac 10 hours post-treatment. Arrow indicates microvesicles around CV. Magnification 200x. H&E staining.

4.1.11 Photomicrograph of liver section from 200mg/kg diclofenac-treated rat 10 hours post-treatment. The section reveals presence of normal hepatocytes around PT. Magnification: 200x. H&E staining.

4.1.12 Photomicrograph shows liver section of rat treated with 5mg/kg ibuprofen at day 15. Arrow indicates the presence of microvesicles around CV. Magnification 200x. H&E staining.

4.1.13 Photomicrograph shows liver section of rat treated with 10mg/kg ibuprofen at day 15. Arrow indicates microvesicles around CV. Magnification 200x. H&E staining.

4.1.14 Photomicrograph shows liver section of rat administered with 5mg/kg ibuprofen at day 15. Arrow indicates mild focal lymphocytic and neutrophilic infiltration around CV. Magnification 400x. H&E staining.

4.1.15 Photomicrograph shows liver section of rat treated with 5mg/kg ibuprofen at day 15. Arrow indicates mild focal infiltration by lymphocytes around PT. Magnification 200x. H&E staining.

4.1.16 Photomicrograph shows liver section of rat administered with 10mg/kg ibuprofen at day 15. Arrow indicates lymphocytic and neutrophilic infiltration around CV. Magnification 1000x. H&E staining.

4.1.17 Photomicrograph shows liver section of rat administered with 10mg/kg ibuprofen at day 15. Arrow indicates mild focal infiltration by lymphocytes around PT. Magnification 400x. H&E staining.

4.1.18 Photomicrograph of liver section from 200mg/kg ibuprofen-administered rat. The section reveals normal liver architecture. Magnification: 200x. H&E staining.

4.1.19 Photomicrograph shows liver section of rat treated with 200mg/kg ibuprofen 10 hours post-treatment. Arrow indicates microvesicles around CV. Magnification 200x. H&E staining.

4.1.20 Photomicrograph of liver section from 200mg/kg ibuprofen-treated rat 10 hours post-treatment. The section reveals the presence of normal hepatocytes around PT. Magnification: 200x. H&E staining.
4.1.21 Photomicrograph of liver section from saline-treated rat at day 15. The section reveals normal liver architecture. Magnification: 400x. H&E staining.

4.1.22 Photomicrograph of liver section from saline-treated rat at day 15. The section reveals presence of normal hepatocytes around portal tract (PT). Magnification: 400x. H&E staining.

4.2.1 Photomicrograph shows liver section of 5mg/kg diclofenac-treated rat at day 15. Arrow indicates presence apoptotic cells around CV. Magnification: 200x

4.2.2 Photomicrograph shows liver section of 10mg/kg diclofenac-treated rat at day 15. Arrow indicates the presence of apoptotic cells around CV. Magnification: 200x

4.2.3 Photomicrograph shows liver section from 200mg/kg diclofenac-administered rat 10 hours post-treatment. Normal architecture of hepatocytes is preserved around CV. Magnification: 200x

4.2.4 Photomicrograph shows liver section of 10mg/kg ibuprofen-treated rat at day 15. Arrow indicates the presence of apoptotic cells around CV. Magnification: 40x

4.2.5 Photomicrograph shows liver section of 10mg/kg ibuprofen-treated rat at day 15. Arrow indicates presence the of apoptotic cells around CV. Magnification: 400x

4.2.6 Photomicrograph shows liver section from 200mg/kg ibuprofen-administered rat 10 hours post-treatment. Normal architecture of hepatocytes is preserved around CV. Magnification: 200x

4.2.7 Photomicrograph shows liver section from saline-treated rat at day 15. Normal architecture of hepatocytes is preserved around CV and PT. Magnification: 100x

4.3.1 Electron micrograph of liver section from rats treated with 5 mg/kg diclofenac at day 3. Figure indicates presence of normal mitochondria (M) with intact mitochondrial membranes. N-Nucleus. Magnification: 16500x

4.3.2 Electron micrograph of the liver section from 5 mg/kg diclofenac-treated rat at day 9. Figure indicates presence of normal mitochondria (M) with intact mitochondrial membranes. N-Nucleus. Magnification: 16500x
4.3.3 Electron micrograph of the liver section from 5 mg/kg diclofenac-treated rat at day 12. Figure indicates presence of normal mitochondria (M) with intact mitochondrial membranes. N-Nucleus. Magnification: 16500x

4.3.4 Electron micrograph of the liver section from 10 mg/kg diclofenac-treated rat at day 3. Figure indicates presence of normal mitochondria (M). Magnification: 16500x

4.3.5 Electron micrograph of the liver section from 10 mg/kg diclofenac-treated rat at day 9. Figure indicates presence of normal mitochondria (M). N-Nucleus. Magnification: 16500x

4.3.6 Electron micrograph of the liver section from 10 mg/kg diclofenac-treated rat at day 12. Figure indicates presence of normal mitochondria (M). N-Nucleus. Magnification: 16500x

4.3.7 Electron micrograph of liver section from 5 mg/kg diclofenac-treated rat at day 15. Figure indicates presence of swollen mitochondria (SM). N-Nucleus. Magnification: 8000x

4.3.8 Electron micrograph of the liver section from 5 mg/kg diclofenac-treated rat at day 15. Arrow indicates presence of irregular mitochondrial membrane. Magnification: 20,000x

4.3.9 Electron micrograph of the liver section from 5 mg/kg diclofenac-treated rat at day 15. Arrow indicates ruptured mitochondrial membrane. Magnification: 20,000x

4.3.10 Electron micrograph of the liver section from 10 mg/kg diclofenac-treated rat at day 15. Figure indicates presence of swollen mitochondria (SM). Magnification: 8000x

4.3.11 Electron micrograph of the liver section from 10 mg/kg diclofenac-treated rat at day 15. Arrow indicates ruptured mitochondrial membrane. Magnification: 20,000x

4.3.12 Electron micrograph of the liver section from 10 mg/kg diclofenac-treated rat at day 15. Arrow indicates ruptured mitochondrial membrane. Magnification: 20,000x

4.3.13 Electron micrograph of the liver section from 10 mg/kg ibuprofen-treated rat at day 15. Arrows indicates presence of irregular mitochondrial membrane. Magnification: 8000x

4.3.14 Electron micrograph of the liver section from 10 mg/kg ibuprofen-treated rat at day 15. Arrow indicates ruptured mitochondrial membrane. Magnification: 16500x
4.3.15 Electron micrograph of the liver section from 10 mg/kg ibuprofen- treated rat at day 15. Arrow indicates ruptured mitochondrial membrane. N- Nucleus. Magnification: 16500x

4.3.16 Electron micrograph of the liver section from 10 mg/kg ibuprofen- treated rat at day 3. Figure indicates presence of normal mitochondria (M). Magnification: 16500x

4.3.17 Electron micrograph of the liver section from 10 mg/kg ibuprofen- treated rat at day 9. Figure indicates presence of normal mitochondria (M). N-Nucleus. Magnification: 16500x

4.3.18 Electron micrograph of the liver section from 10 mg/kg ibuprofen- treated rat at day 12. Figure indicates presence of normal mitochondria (M). N-Nucleus. Magnification: 16500x

4.3.19 Electron micrograph of the liver section from saline-treated rat at day 3. Figure indicates presence of normal mitochondria (M). N-Nucleus. Magnification: 8000x

4.3.20 Electron micrograph of the liver section from saline-treated rat at day 9. Figure indicates presence of normal mitochondria (M). N-Nucleus. Magnification: 8000x

4.3.21 Electron micrograph of the liver section from saline-treated rat at day 15. Figure indicates presence of normal mitochondria (M). Magnification: 8000x

4.3.22 Electron micrograph shows intact hepatocyte containing nucleus (N) with prominent nucleoli (NL). Cytoplasm contains copious and intact mitochondria as indicated by the arrow in saline-treated rat after day 15. Magnification: 12500x

4.3.23 Electron micrograph indicates hepatocyte containing a nucleus (N) with condensed chromatin (➔) at the nuclear membrane in 5mg/kg diclofenac administered rats after day 15. The cell contains very few mitochondria (➔). Magnification: 12500x

4.3.24 Electron micrograph indicates hepatocyte containing a nucleus (N) with condensed chromatin (➔) at the nuclear membrane in 10mg/kg diclofenac-treated rats after day 15. The cell contains very few mitochondria (➔). Magnification: 16500x

4.3.25 Electron micrograph indicates hepatocyte containing a nucleus (N) with condensed chromatin (➔) at the nuclear membrane in 10mg/kg ibuprofen-injected rats after day 15. The cell contains very few mitochondria (➔). Magnification: 16500x
4.4.1 Figure indicates the expression of cytochrome c in liver homogenate on day 3 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.2 Figure indicates the expression of cytochrome c in liver homogenate on day 6 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.3 Figure indicates the expression of cytochrome c in liver homogenate on day 9 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.4 Figure indicates the expression of cytochrome c in liver homogenate on day 12 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.5 Figure indicates the expression of cytochrome c in liver homogenate on day 15 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.6 Figure 4.4.6: Figure indicates the expression of cytochrome c in mitochondrial fraction on day 3 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.7 Figure indicates the expression of cytochrome c in mitochondrial fraction on day 6 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.8 Figure indicates the expression of cytochrome c in mitochondrial fraction on day 9 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.9 Figure indicates the expression of cytochrome c in mitochondrial fraction on day 12 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg...
ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

diclofenac

4.4.10 Figure indicates the expression of cytochrome c in mitochondrial fraction on day 15 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.11 Figure indicates absence of cytochrome c expression in liver cytosolic fraction on day 3 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.12 Figure indicates absence of cytochrome c expression in liver cytosolic fraction on day 6 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.13 Figure indicates absence of cytochrome c expression in liver cytosolic fraction on day 9 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.14 Figure indicates absence of cytochrome c expression in liver cytosolic fraction on day 12 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.15 Figure indicates absence of cytochrome c expression in liver cytosolic fraction on day 15 in saline (S), 3 mg/kg ibuprofen (I3), 5 mg/kg ibuprofen (I5), 10 mg/kg ibuprofen (I10), 3 mg/kg diclofenac (D3), 5 mg/kg diclofenac (D5), 10 mg/kg diclofenac (D10). Std: standard marker.

4.4.16 Figure indicates presence of cytochrome c in liver homogenate (Hi), cytosolic fraction (CyI) and mitochondrial fraction (MtI) in a single dose of 200 mg/kg ibuprofen-treated rats and in liver homogenate (HD), cytosolic fraction (CyD) and mitochondrial fraction (MtD) in a single dose of 200 mg/kg diclofenac-treated groups 10 hours post-treatment. Std: standard marker.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acyl-CoA</td>
<td>Acyl Coenzyme A</td>
</tr>
<tr>
<td>ANT</td>
<td>Adenine Nucleotide Transporter</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Tri-Phosphate</td>
</tr>
<tr>
<td>ADR</td>
<td>Adverse Drug Reaction</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis Inducing Factor</td>
</tr>
<tr>
<td>Apaf-1</td>
<td>Apoptosis Protease Activating Factor-1</td>
</tr>
<tr>
<td>(CARD)</td>
<td>Caspase Recruitment Domain</td>
</tr>
<tr>
<td>CV</td>
<td>Central Vein</td>
</tr>
<tr>
<td>COX-1</td>
<td>Cyclooxygenase-1</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase-2</td>
</tr>
<tr>
<td>CsA</td>
<td>Cyclosporine A</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome</td>
</tr>
<tr>
<td>DD</td>
<td>Death Domain</td>
</tr>
<tr>
<td>DED</td>
<td>Death Effector Domain</td>
</tr>
<tr>
<td>DISC</td>
<td>Death-Inducing Signaling Complex</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DPPIV</td>
<td>Dipeptidyl Peptidase IV</td>
</tr>
<tr>
<td>fasL</td>
<td>Fas Ligand</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-Associated Death Domain</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>H&E staining</td>
<td>Haemotoxylin and Eosin</td>
</tr>
</tbody>
</table>
HO-I Hemeoxygenase-1
LDH Lactate Dehydrogenase
MPT Mitochondrial Permeability Transition
MPTP Mitochondrial Permeability Transition Pore
DMTU N,N-Dimethylthiurea
NADH Nicotinamide Adenine Dinucleotide
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NSAIDs Non-Steroidal Anti-Inflammatory Drugs
OTC Over The Counter
PV Perivenular Region
PT Portal Triad/tract
ROS Reactive Oxygen Species
rER Rough Endoplasmic Reticulum
sER Smooth Endoplasmic Reticulum
O²⁻ Superoxide Anions
SOD Superoxide Dismutase
TNF Tumor Necrosis Factor
UDPGT UDP-Glucuronosyltransferase
VDAC Voltage- Dependent Anion Channel
CHAPTER 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

Drug-induced liver injury is conceived as a major health problem affecting patients and therefore a major concern to health care professionals and pharmaceutical industry (Holt and Ju, 2006) and it is the most common cause for withdrawal of drugs from the market (Brind, 2006). The pivotal role of liver in drug metabolism often predisposes the liver to injury due to accumulation of drugs or formation of toxic metabolites. The most common cause of hepatotoxicity in United States has been attributed to drug-induced liver injury (Lee, 2003) of which non-steroidal anti-inflammatory drugs (NSAIDs) are the major class (Talley et al, 1995; Laine, 2001; Galati et al, 2002).

NSAIDs are a group of widely used drugs for the treatment of rheumatoid diseases and relief pain and inflammation (Galati et al, 2002). Occurrence of NSAIDs-induced hepatotoxicity is identified to result in 2.2 hospitalisation per 100 000 population per year (Fry and Seeff, 1995). Hepatic injury due to NSAIDs became a central focus following introduction of benoxaprofen in 1982, which killed almost seventy patients worldwide (Jurima-Romet et al, 1994). This causes withdrawal of the drug from the market within few months of its introduction (Lewis, 1984). Besides benoxaprofen, NSAIDs such as pirprofen, sudoxicam and bromfenac were also withdrawn from the market due to unacceptable level of hepatic injury (Tolman, 1998). Following review by the United States Food and Drug Administration (FDA)