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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Master of Sciences. 

AN IMPROVED RECOMMENDER SYSTEM BASED ON 

NORMALIZATION OF MATRIX FACTORIZATION AND 

COLLABORATIVE ALGORITHMS 

 By  

AAFAQ ZAHID 

February, 2015 

Chair: Nurfadhlina Mohd. Sharef, PhD  

Faculty: Computer Science and Information Technology 

Recommendation System (RS) came to lime light when the information on the 

internet started growing to the extent that it became time consuming to get the 

required information. There are different techniques used in RS. Some works 

are based on user past knowledge known as Content Based (CB) while more 

popular techniques referred to as neighborhood models (CF and MF) are based 

on finding similar users for recommendation. Existing techniques have certain 

drawbacks such as user getting the same information. This problem is known 

as stability versus plasticity (in CB). Another problem called cold start gives 

wrong recommendations amongst new users as data of new users is not 

enough for recommendation. Other limitations include too much dependence 

on other users or no consideration of user personal preferences (CF and MF). 

There is a technique known as normalization which develops models like user 

involvement in subject matter or user likeness according to the details of item 

to predict ratings to user. Normalization shows good results but it is truly 

personalized from single user perspective and lacks other user’s opinion for the 

recommendation. Some researchers combine different techniques into hybrid to 

overcome the problems in RS, but there is very limited work that has 

investigated the effect of hybridizing normalization technique on 

neighborhood models. Therefore, this research is dedicated to combining the 

normalization technique with neighborhood models (CF and MF) to produce 

CF+N (collaborative filtering and normalization) and MF+N (matrix 

factorization and normalization). The hypothesis is that the tendency of 

normalization technique to simplify the data combined with the accuracy of the 

neighborhood models can improve the accuracy of the RS. This hybrid 

technique rates user personal preferences more than other user’s 
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recommendation towards the final recommendation, while still considering 

user’s personal recommendation as important input in the process. Several 

experiments have been conducted on the movielens dataset where 80% of data 

is used as training set while 20% is used as test set. The experiments are 

designed to perform the comparisons with the existing works that target to 

solve the existing problems in RS. There are three categories of evaluation of RS 

predictive accuracy metrics, classification accuracy metrics and rank accuracy 

metrics. This study follows MAE and RMSE from predictive accuracy metrics 

for evaluation of results since the main focus of the study is to reduce errors in 

RS. Results show that MF+N unite well as hybrid technique where the gray 

sheep is handled by MF and normalization manages cold start, mood changes, 

stability versus plasticity and difference of opinion. On the contrary, CF+N 

technique requires some enhancements as the results were below expectations 

because of the tendency of CF to produce big differences in the prediction of 

raw data. It is concluded that the resultant hybrid techniques can perform well 

if the variables provided to normalization by neighborhood model (MF and 

CF) do not have big differences in order for the hybrid normalization model to 

outperform every algorithm in comparison.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

Sebagai memenuhi keperluan untuk ijazah  

SISTEM CADANGAN YANG DIPERTINGKATKAN BERDASARKAN 

NORMALISASI MATRIKS PEMFAKTORAN DAN ALGORITMA 

PENAPISAN KERJASAMA 

Oleh  

AAFAQ ZAHID 

Februari 2015 

Pengerusi: Nurfadhlina Mohd. Sharef, PhD  

Fakulti: Sains Komputer dan Teknologi Maklumat 

Sistem cadangan telah mendapat tumpuan apabila maklumat di dalam internet 

semakin bertambah, kerana dengan bertambahnya maklumat maka 

jangkamasa untuk mendapatkan maklumat yang berkaitan menjadi lebih 

panjang. Terdapat beberapa teknik yang digunakan di dalam sistem cadangan. 

Beberapa karya berkaitan pengetahuan pengguna yang lepas dikenali sebagai 

berasaskan kandungan (CB) manakala kaedah yang lebih popular adalah 

berdasarkan pencarian pengguna yang sama untuk dicadangkan kadang-kala 

dirujuk sebagai model kejiranan. Contoh teknik-teknik di dalam model 

kejiranan adalah Penapisan Bekerjasama (CF) dan Pemfaktoran Matriks (MF). 

Kaedah-kaedah ini mempunya beberapa kelemahan seperti pengguna selalu 

mendapat maklumat yang sama dikenali sebagai kestabilan lawan plasticity (di 

dalam CB). Mereka juga mempunya keterhadan di kalangan pengguna baru 

yang mana data tidak mencukupi untuk cadangan lalu memberikan cadangan 

salah dan maklumat ini dikenali sebagai masalah mula sejuk. Kekangan-

kekangan lain termasuk kebergantungan kepada pengguna secara berlebihan 

atau kadang-kala tidak menimbangkan pilihan pengguna (CF dan MF). 

Terdapat juga teknik-teknik seperti penormalan yang membangunkan model 

seperti penglibatan pengguna di dalam perihalan atau kesukaan pengguna 

terhadap perincian perkara untuk meramal penilaian pengguna. Penormalan 

menunjukkan keputusan yang baik tetapi ia adalah terlalu personalisasi bagi 

perspektif pengguna tunggal dan kekurangan dalam pengalaman pengguna 

yang sama bagi cadangan. Beberapa penyelidik telah menggabungkan teknik-

teknik ini secara gabungan bagi mengatasi beberapa masalah seperti mula 

sejuk. Teknik gabungan masih mempunyai cadangan pengguna-pengguna lain 

dengan menetapkan lebih pemberat tetapi dengan ketepatan yang lebih 

rendah. Penyelidikan ini menggabungkan penormalan dengan model 

kejiranan bagi mengatasi kekurangan personalisasi dan mengeksploitasi 
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pilihan pengguna di dalam model kejiranan. MF+N (Pemfaktoran Matriks dan 

Penormalan) dan CF+N (Penapisan Bekerjasama dan Penormalan) adalah 

digabungkan di dalam teknik cadangan hybrid yang mana telah meminimakan 

masalah seperti lambat mula dan kestabilan lawan plasticity. Teknik gabungan 

ini menilai pilihan pengguna peribadi lebih daripada cadangan pengguna lain 

kepada cadangan akhir, manakala masih menimbangkan cadangan pengguna 

lain sebagai input penting di dalam proses keseluruhan. Eksperimen ke atas 

dataset movielens telah dijalankan dan keputusan menunjukkan bahawa MF+N 

dan CF+N menaikkan ketepatan sistem cadangan berbanding model kejiranan. 

Dapat disimpulkan bahawa jika parameter yang diberikan kepada normalisasi 

oleh model kejiranan (MF dan CF) tidak mempunyai perbezaan yang besar 

sepertimana MF, model gabungan normalisasi dapat mengatasi algoritma lain 

yang dibandingkan. 
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CHAPTER I 

INTRODUCTION 

1.1. Background 

The information overload in recent times has formulated recommender 

systems (RS) as an important tool to handle this problem. The RS has been an 

active research area since 90’s and a lot of methods and techniques have been 

used in the process of making it more reliable. The RS usually work by storing 

the information of the user in a user profile. The user profile contains the 

interests of the user which help the system to recommend the user about the 

appropriate places of interest. 

There is a wide range of RS like news recommendation (Frasincar, IJntema, 

Goossen and Hogenboom, 2011), e-commerce (Schafer, Konstan, and Riedl, 

1999), restaurant recommender (Burke, 2002a), and many others. These 

recommenders use different techniques for their recommendation process such 

as Content-based (CB), Collaborative Filtering (CF), Matrix Factorization (MF), 

demographic, semantic, etc. (Montaner, López, and Rosa, 2003). 

These techniques provide different ways to do recommendation, but there are 

lots of hitches. The RS mostly works on saving user profile which updates over 

time as the user uses different items and provides the feedback to the system. 

This ever updating profile helps the system to update the user’s preference and 

provide suitable feedback to the user. User profile way of recommendation is 

accurate and mostly techniques use profiles in altered forms. However, the 

problem arises if the user has just joined the system and his profile is empty. 

Then these recommendation techniques cannot recommend items to the user. 

This problem is called cold start problem (Son, 2015). 

In order to deal with cold start problem the literature divides different 

techniques in 3 groups: (i) using user additional data; (ii) putting the new user 

in most prominent groups; (iii) combining hybrid methods to give predictions. 

The first group requires additional data about the user. This additional data 

can contain user’s demographic information, social information or some 

starting questionnaire to place user in appropriate cluster. The data is then 

mapped using fuzzy algorithms such as suggested by Son and Thong (2015). 

The second group uses the global preferences of the new users to combine 
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them in the clusters (Liu et al., 2014). The third group combines different 

methods for calculation of the ratings. Leung, Chan, and Chung (2008) infuse 

fuzzy sets in to association rule mining to overcome the cold start problem.  

The algorithms discussed to solve the cold start problem have their drawbacks. 

They require demographic data or ratings to solve the cold start problem and if 

that data is not given then algorithm behavior is incorrect. Secondly, they all 

rely on pearson distance which has its own limitations in terms of large noisy 

data in order to transform users into clusters (Toledo, Mota, and Martínez, 

2015).  

From the analysis of the cold start problem, the idea behind this study was to 

consider the effect of cold start problem in the proposed algorithms. Variables 

in the algorithms are introduced which are not directly involved with user 

profile and have enough significance towards the final prediction that the new 

user problem can be minimized. The variables are as follows 

a) Average ratings of the items 

b) Average ratings of the global user for this item 

c) Average rating of the cluster user is assigned after initial few ratings. 

Cold start problem is not the only problem that occurs because of profiling. 

Some recommender techniques rely more on the user profile than the others. 

Although cold start has been there constantly, other scenarios also can occur, 

e.g. a user went to a western restaurant and enjoyed the food and thus, rated 

the restaurant very high. The RS implies that if user likes western restaurant, 

he likes western food. It is somehow true, but the problem is that currently 

there is one item in the user profile so system would always recommend 

western food from which he eventually gets tired of. This problem is discussed 

in literature as stability versus plasticity (Wu, Chang, and Liu, 2014). 

To avoid these problems, some techniques have divided users into groups. The 

flow goes like this. If two users namely A and B have gone to see a movie and 

liked it, then they are placed in the same group. A recommendation is given to 

B if A likes some other movie and vice versa. The stability versus plasticity 

problem is thought to have been completely overcome with the use of groups. 

However, if nobody watches the movie of specific group in the cluster, the 

movie would still not be suggested to the cluster users. 
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The proposed algorithm overcomes this deficiency by reducing the effect of 

cluster over the proposed ratings. 

The groups give rise to dependency factor, and the division of the groups 

which is known as clusters but that also has few drawbacks. Those groups are 

made on similar items rated with almost similar ratings. Consider two groups 

who rated an item. There are three members in each group. Group A members 

rated some item 1, 1 and 5 while group B members rated same item 6, 10, 10. 

Here the users who rated that item 5 and 6 are on the border. Although they 

come in these groups, but their opinion in their respective group is not as 

consistent. So they might not get good recommendation and might be shifted 

into different groups because they always exist on the margin. These users are 

called gray-sheep (Ghazanfar and Prügel-Bennett, 2014). 

The gray sheep issue has a direct impact on the accuracy of the RS (Ghazanfar 

and Prügel-Bennett, 2014). Ghazanfar and Prügel-Bennett (2014) tried to solve 

the gray sheep problem with switching hybrid RS (Burke, 2002b). The existing 

approaches try to divide each user in the clusters and then try the error 

detection on the clusters to solve the gray sheep problem. There is a deficiency 

in this solution if the user is divided while he is new or has rated fewer items to 

be placed in appropriate group or his new ratings are different than the 

training rating. In such cases, the users get stuck into the wrong group.  

The algorithm proposed in this research tries to solve the gray-sheep problem 

by following methods. 

a) Every time a user is inserted into the cluster the centroid of the cluster 

changes accordingly and the average distance of each user is changed 

to centroid. 

b) After each rating entered by the user, its distance with the centroids is 

recalculated and is adjusted to the other clusters if necessary. 

c) The cluster rating given by the CF is not taken as final rating as they 

are being adjusted by other variables since it only has the 20% 

weightage in the final ratings predicted by the proposed algorithm. 

Apart from the factors described above, there is another very strong factor in 

the recommendation process. This factor is user mood (Winoto and Tang, 

2010). To analyze this factor, consider an example. How often this happens that 

sometimes people are in a mood of slow music while desiring to listen to rock 

or jazz on other times? The ‘mood change’ factor is inside every human being. 
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So if RS always depends on other users’ recommendation and even if they say 

that they have the same taste, RS cannot predict when the mood will swing. 

The literature shows the impact of the user mood is high in the final outcome of 

the rating it provides for a certain item (Shan et al., 2009). The effect of mood 

changes can be more complicated in terms of RS. The proposed algorithm only 

tries to handle certain aspect of the mood changes in RS instead of going deep 

in the topic. The mood changes are handled in certain aspects by using user 

personal rankings in the final predicted ratings. 

1.2. Problem Statement 

The techniques used to solve the issues in RS including difference of opinion, 

mood changes, gray sheep, cold start and stability versus plasticity (Toledo, 

Mota, and Martínez, 2015) are CB, CF, MF and Hybrid. CB (Pera and Ng, 2013) 

is the very old technique which was used in late 80’s and early 90’s as a 

standalone system in RS. It uses the user’s previous ratings to give the 

prediction for the items. CB mainly depends on the previous ratings given by 

the users to predict the next items. It has few prominent drawbacks such as 

cold-start problem (Vizine, Luiz and Hruschka, 2015) and stability versus 

plasticity. 

CF is most commonly used technique in RS which implements the word of 

mouth (Shardanand and Maes, 1995). CF is more reliable as it divides the users 

in groups. CF solves the problem of stability versus plasticity, which is 

common in CB. However by solving those problems it gives rise to problems 

like gray sheep (Ghazanfar and Prügel-Bennett, 2014). 

MF is another RS technique which follows neighborhood models as CF (Luo, 

Yunni, and Qingsheng, 2012). MF is more compact than CF but the problem in 

MF is that it rates the neighbors more while giving the ratings for the system 

which resultantly ignores the mood change factor in final ratings. 

Some researchers have combined different techniques in hybrid. The 

combination of CB and CF is powerful in itself (Kant and Bharadwaj, 2012). 

Most of the literature combines these methods in hybrid to overcome the 

problems like stability versus plasticity and cold start problems. The 

combination still holds its drawbacks like gray sheep problems. 
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A relatively less used technique in RS is normalization (Bell and Koren, 2007b). 

Normalization is a data correction technique but typically requires additional 

information for the achievement of the results. The tendency of normalization 

to reduce the huge data into specific range helps to control the gray-sheep 

problem because normalization rescales the values (Bell and Koren, 2007a). 

Literature mostly focuses on the sophisticated algorithms but the effects of 

normalization are as significant as any algorithm (Bell et al., 2007). 

Existing works that combine normalization with neighborhood models (CF and 

MF) performed the normalization of data before the process of neighborhood 

models. The process used is very general and is not targeting any problem in 

the RS. These methods use the normalization to avoid the big difference in the 

final rating of RS. These methods also overlook the effect of the ratings of the 

clusters in which user is. While these techniques improve the predictions to 

some extent but still rely mainly on the neighborhood models (CF and MF) and 

in turn also bring their own short comings as discussed above. 

The normalization which is well known in standard data mining tasks on 

averaging user’s ratings can be used more than just to avoid big difference in 

the final rating of RS. Therefore, this research addresses the effect of employing 

normalization technique in combination with CF and MF to solve the existing 

problems in RS. While the average ratings of items and users are important in 

normalization, the research also considers the cluster averaging and item group 

averages in order to further normalize the ratings to target cold start problem, 

gray sheep problem, stability versus plasticity problem and mood changes. 

1.3. Hypothesis 

The proposed algorithms in this research combine the normalization with 

neighborhood models (CF and MF). The data scaling simplification by the 

normalization technique and its tendency to have lesser errors combined with 

the better accuracy of neighborhood models (CF and MF) can produce more 

accurate results by removing the errors in the RS. 

1.4. Objectives 

The objectives of this research are  

a) To develop normalizations of MF algorithm for improving the RS. 
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b) To develop normalizations of CF algorithms for improving the RS. 

1.5. Scope and Relevance 

The thesis has proposed solutions to the problems in RS for gray sheep and 

cold start besides solving the mood changes factor. These problems have 

caused past research solutions to reach low average and mean average error 

(MAE). The devised method is based on the hybrid of normalization and 

neighborhood models. The performance has been tested on a dataset sourced 

from the MovieLens which is validated based on the reduced MAE of the 

predicted preferred items. The scope of this thesis is limited in the problems of 

RS discussed in Section 1.1. 

1.6. Contribution 

The problems discussed in RS in Section 1.1 are affecting the accuracy of the 

RS. Two novel algorithms which utilize the distance between user average 

ratings and the global average ratings, combined with neighborhood model’s 

cluster’s average ratings and the difference between global average ratings are 

devised. The main focus of these algorithms is to solve the problems explained 

in Section 1.1 in neighborhood models with the help of normalization. Based on 

the results of the CF (neighborhood models, and MF), a prediction component 

is derived which helps to find the final rating for the user. The result shows 

that MF+N and CF+N improve the accuracy of the RS. 

1.7. Organization of Thesis 

The rest of the thesis is organized as follows. 

Chapter II describes the history of RS and various techniques used in the 

recommendation process. The comparison across the techniques are also 

presented and concluded by highlighting the limitations in the techniques. 

These explanations led to the justification of the new approach based on 

normalization application on CF and MF.  

Chapter III describes the methodology used during this research. The design of 

the algorithms is given in this chapter including the combination process. 
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Chapter IV describes the proposed RS algorithms called CF+N and MF+N. The 

framework and the flowchart of both algorithms are described.   

Chapter V discusses the results of proposed algorithms as compared to other 

methods described in the literature to solve the problems in RS.  

Chapter VI discusses the contributions of the research towards RS and the 

suggestion of future works. 

1.8. Summary 

This chapter includes the introduction of RS and common problems which are 

affecting the accuracy of the RS. The discussion of proposed algorithms is given 

along with the ways these algorithms can help improve the accuracy of the RS 

by solving these problems. Different techniques used in the RS and their 

related problems are specified followed by how normalization can affect the 

neighborhood models in the improvement of the results. The main objectives of 

the research are described as developing normalizations of MF and CF. The 

scope of the research is limited to solving problems of gray sheep, cold start, 

and stability versus plasticity, mood changes and difference of opinion. 

Towards the end of the chapter the contributions have been highlighted as two 

algorithms to solve existing problems in RS. Chapter ends by describing the 

organization of thesis. 
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Table 1: RS Challenges and Existing Solutions 

Techniques 

 CF MF CB Hybrid Normalization 

P 

R 

O 

B 

L 

E 

M 

S 

Cold start      

Gray sheep      

Plasticity versus 

Stability 

     

Difference of 

Opinion 

     

Mood Changes      
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