UNIVERSITI PUTRA MALAYSIA

ADAPTIVE MODEL PREDICTIVE CONTROL BASED ON WAVELET NETWORK AND ONLINE SEQUENTIAL EXTREME LEARNING MACHINE FOR NONLINEAR SYSTEMS

DHIADEEN MOHAMMED SALIH

FK 2015 147
ADAPTIVE MODEL PREDICTIVE CONTROL BASED ON WAVELET NETWORK AND ONLINE SEQUENTIAL EXTREME LEARNING MACHINE FOR NONLINEAR SYSTEMS

By

DHIADEEN MOHAMMED SALIH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ADAPTIVE MODEL PREDICTIVE CONTROL BASED ON WAVELET NETWORK AND ONLINE SEQUENTIAL EXTREME LEARNING MACHINE FOR NONLINEAR SYSTEMS

By

DHIADEEN MOHAMMED SALIH

March 2015

Chair: Samsul Bahari Mohd Noor, PhD

Faculty: Engineering

Wavelet networks (WNs) have been introduced as an alternative method of the neural networks for nonlinear system identification and used with model predictive control (MPC) techniques in many applications. Recently, an online sequential extreme learning machine (OSELM) algorithm has been introduced based on extreme learning machine (ELM) theories for single hidden layer feedforward neural networks (SLFN) and has been applied for different online applications. It is well known that SLFN with OSELM (NN-OSELM) is based on random initialization method for the input weights and the hidden layer nodes parameters. This might result in ill-conditioning, hence instability responses in nonlinear system modeling and consequently preventing the model based controller to perform best performances.

In this thesis, the OSELM is introduced with wavelet network (WN-OSELM) and proposed for nonlinear system modeling and control applications. The ability of wavelets for localization in both time and frequency domain will help OSELM to train the WN in both uniform and non-uniform data sets. Moreover, the ability of initialization the hidden nodes parameters using density function and recursive algorithm will help WN-OSELM to perform useful generalization facility and modeling accuracy.

Furthermore, to develop WN-OSELM ability to learn the nonlinear system dynamics minimally, a linear term is added to the WN frame (LWN) so that it is enough to stabilize the open-loop unstable systems in the initial stages. This allowed also learning unmodeled or time-varying dynamics of the system and enhancing the modeling accuracy. An analytical analysis based on ELM theories presented to prove the capability of the LWN to support the OSELM algorithm (LWN-OSELM).
The proposed methods applied with simulations for system identification of different nonlinear systems and had shown well capability of the LWN-OSELM and WN-OSELM over NN-OSELM in terms of modelling accuracy and fast convergence performance.

On the other hand, an adaptive model predictive controller (WNMPC) based on LWN-OSELM modelling method is proposed for nonlinear system control applications. The WNMPC is developed by a proposed algorithm named adaptive updating rule (AUR) used with gradient descent optimization method to minimize a constrained cost function over the prediction and control horizons and to offer a robust control performances.

The AUR is established based on Lyapunov stability theorem to find the limits of the optimization step size that guarantee a stable path on the objective function trajectory. A comparison between the proposed controller and other common related controllers are carried out on different nonlinear systems. The results showed superiority of the proposed controller in both control performance and the robustness tests.

Moreover, the proposed LWN-OSELM and WNMPC applied to a real conveyor-belt grain dryer system for modeling and control applications. The results showed better modeling accuracy and control performance over an existing modelling methods and the simplified adaptive neuro-fuzzy inference system (S-ANFIS) controller respectively. The robustness analysis and validation are carried out to prove the proposed controller reliability.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL ADAPTIVE KAWALAN RAMALAN BERDASARKAN RANGKAIAN WAVELET DAN ONLINE BERURUTAN MESIN PEMBELAJARAN MELAMPAU

Oleh
DHIADEEN MOHAMMED SALIH

Mac 2015

Pengerusi: Samsul Bahari Mohd Noor, PhD

Fakulti: Kejuruteraan

Rangkaian Wavelets (WNs) didapati boleh digunakan sebagai alternative untuk Rangkaian Neural (NNs) dan diperkenalkan bersama Kawalan Ramalan Model (MPC) di dalam banyak aplikasi.

Baru-baru ini, berdasarkan melampau mesin pembelajaran (ELM) teori algoritma, berurutan mesin pembelajaran melampau (OSELM) algoritma dalam talian telah diperkenalkan dengan lapisan suap depan tersembunyi tunggal NN dan menunjukkan keupayaan pembelajaran sangat cepat dalam talian untuk aplikasi yang.

Di dalam tesis ini, kaedah diperkenalkan iaitu WN yang berasaskan OSELM (WN-OSELM) dicadang untuk membentuk model bagi sistem yang tidak linear. Keadaan ini berkebolehan untuk menangani masalah local minima yang sering dihadapi oleh NNs berasakan OSELM. Pembentukan model ini menunjukkan perbezaan bagi fungsi impulse atau fungsi step di dalam ruang yang sama dan data latihan yang sama.

Keadaan awal bagi pembolehubah WN dibuat menggunakan fungsi ketumpatan dan algoritma recursive di mana maklumat masukan diambil untuk membolehkan transformasi wavelet memproses data latihan secara menyeluruh. Selain itu, kaedah ini boleh juga menyelesaikan ketidakstabilan yang berlaku pada respon NN-OSELM yang disebabkan oleh masalah minima tempatan dan prosedur rawak bagi keadaan awal.

Justeru, untuk meningkatkan tahap prestasi penumpuan WN-OSELM, satu terma linear telah dimasukkan ke dalam rangka WN di mana ia membolehkan satu set persamaan linear diselesaikan melalui kaedah penyelesaian squares.
Sebagai pembuktian, teori analisis berasaskan ELM telah dipерsembahkan yang menunjukkan kebolehan linear wavelet Rangkaian (LWN) yang menyokong OSELM algoritma.

Keputusan simulasi menunjukkan tahap yang lebih baik bagi LWN berbanding model WN dan NN dari sudut prestasi best fit, ketepatan dan kebolehan convergence yang pantas, di mana sebab tersebut boleh dirujuk kepada penyelesaikan least square secara linear bagi LWN dan pada ketika pemulaan fasa latihan OSELM (LWN-OSLM).

Berdasarkan LWN-OSELM, satu MPC (WNMPC) dicadangkan atau dikemukakan bersama algoritma penambahbaikan dan berasaskan Keturunan kecerunan (GD) method yang mampu untuk menyelesaikan masalah constrained quadratic secara online dan aplikasi secara masa sebenar.

Bagi menjamin kestabilan tracking untuk model rujukan, analisis kestabilan iaitu algoritma Adaptive Kadar Update (AUR) telah dicadangkan untuk menentukan saiz yang paling optimum bagi GD untuk penumpuan yang pantas. Beberapa simulasi telah dilaksanakan bersama beberapa ujikaji untuk menilai tahap alat kawalan yang dikemukakan. Ujikaji menunjukkan tahap yang lebih baik bagi alat kawalan yang dikemukakan berbanding model NN berasaskan alat kawalan jangkaan iaitu dari sudut prestasi indeks ITAE, IAE and ISE. Tambahan pula, ujian robustness menunjukkan kebolehan alat kawalan yang dikemukakan untuk menangani kesan perubahan persekitaran yang boleh berlaku ketika kawalan proses sedang berlangsung.

Kaedah yang dikemukakan telah diaplikasikan kepada sistem Conveyor-Belt Grain Rambut, dan menunjukkan kebolehan untuk menghasilkan model dinamik yang tepat dan menunjukkan prestasi kawalan yang cemerlang di dalam keadaan awal yang berbeza-beza melalui penyingkiran ketidaktentuan dan isyarat gangguan yang mungkin berlaku.
ACKNOWLEDGEMENTS

My deepest gratitude goes to the Most Merciful Allah S.W.T. Who granted me a knowledge help me to pursue my PhD degree in Malaysia.

The completion of this thesis would not have been possible without the support of many people. I am so grateful to have enjoyed the support, encouragement, help and patience of so many people around me. My special thanks are due to my supervisor, Associate Prof. Dr. Samsul B M. Noor for all his words of encouragement, support and guidance through this long process.

I would also like to thank Assoc. Prof. Dr. Mohammed Hamiruc and Ir. Dr. Raja Mohd Kamil for sharing with me, their expertise in system identification and control. Your feedback was truly valuable to me. To my family and all my friends, thank you for your kind words and support.

I would like to extend my special thanks to my passed mother and father. I would not be where I am today if it weren’t for your love and support, Oh Allah, make their graveyard paradise. Finally I would like to dedicate this thesis to my lovely wife and daughters! Love you all.
I certify that a Thesis Examination Committee has met on 27 March 2015 to conduct the final examination of Dhiadeen - M - Salih on his thesis entitled “Adaptive Model Predictive Control Based on Wavelet Network and Online Sequential Extreme Learning Machine for Nonlinear Systems” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Norhisham bin Misron, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abd. Rahman bin Ramli, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Md Nasir bin Sulaiman, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

Bijnan Bandyopadhyay, PhD
Professor
Indian Institute of Technology Bombay
India
(External Examiner)

ZULKARNAIN ZAINAL, PhD
(E.g. XXXXX XXXX, PhD)
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 March 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Samul Bahari Mohd Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohammed Hamruce Marhaban, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Raja Mohd Kamil Raja Ahmed, PhD
Senior Lecturer, Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HuAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Dhiadeen Mohammed Salih, GS28248
Declaration by Members of Supervisory Committee

This is to confirm that:

• The research conducted and the writing of this thesis was under our supervision;
• Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman of Supervisory Committee: Samsul Bahari Mohd Noor, PhD

Signature:

Name of Member of Supervisory Committee: Mohammed Hamiruce Marhaban, PhD

Signature:

Name of Member of Supervisory Committee: Raja Mohd Kamil Raja Ahmed, PhD
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION vi
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1
1.1 Introduction 1
1.1.1 System Identifications using Wavelet Network 1
1.1.2 Model Predictive Control with Wavelet Network 3
1.2 Problem Statement and Motivation 4
1.3 Research Objectives 5
1.4 Scope of Study 6
1.5 Thesis Outline 6

2 LITERATURE REVIEW 8
2.1 Introduction 8
2.2 Wavelet Network for Nonlinear System Modeling 9
2.2.1 Feed Foreword WN in Modeling 10
2.2.2 Linear Wavelet Networks 13
2.2.3 Recurrent WN in Modeling 14
2.2.4 Fuzzy and Wavelet Neural Network 15
2.3 The Online Training Algorithms 16
2.3.1 Neural Network-Online Training Algorithms 16
2.3.2 Wavelet Network-Online Training Algorithms 17
2.4 SLEFN and OSELEM(background) 18
2.5 Model Predictive Control 19
2.5.1 MPC based on Neural Network 21
2.5.2 MPC based on Wavelet Network 22
2.5.3 Self-Reccurrent WN and MPC 22
2.5.4 Fuzzy Wavelet Network and MPC 25
2.6 Summary 26

3 DESIGN AND METHODOLOGY 28
3.1 Introduction 28
3.2 Wavelet Network and OSELM 28
3.2.1 WN Initialization Phase 30
3.2.2 WN Sequential Learning Phase 31
3.3 Nonlinear System Identification Using WN based NARX models 33
3.4 Linear Wavelet Network and OSELM 34
3.4.1 System Identification using LWN based NARX and ARX Models 38
3.4.2 LWN Initialization Phase 39
3.4.3 LWN Sequential Learning Phase 39
3.5 Adaptive Model Predictive Control based on WN-OSelm 42
3.5.1 Control Law Formulation 44
3.5.2 Stability Analysis and Adaptive Updating Rate (AUR) 46
3.5.3 The WNMPC with AUR Algorithm 50
3.6 Summary 53

4 EVALUATION RESULTS OF THE WN-OSELM MODEL AND THE WN-MPC CONTROLLER 54
4.1 Introduction 54
4.2 System identification using WN-OSELM 54
4.2.1 Data preparation 54
4.2.2 Model order and architecture selection 55
4.2.3 Model validation 57
4.2.4 Magnetic Levitation 57
4.2.5 Continuous Stirred Tank Reactor 61
4.2.6 Robot Arm 64
4.3 Adaptive Model Predictive Control based WN-OSELM 66
4.3.1 Magnetic Levitation Control Results 67
4.3.2 CSTR Control Results 71
4.3.3 The Robustness and Disturbance Rejection Tests 74
4.4 Summary 78

5 WNMPC FOR CONVEYER BELT TYPE GRAIN DRYER 79
5.1 Introduction 79
5.2 Modeling of the Conveyor-belt Grain Dryer 80
5.2.1 LWN-OSELM for Grain Dryer 81
5.3 WNMPC Control of Grain Dryer 86
5.3.1 Robustness of WNMPC against disturbances 90
5.4 Summary 96

6 COMPARISON AND DISCUSSION 97
6.1 Introduction 97
6.2 LWN-OSELM in Nonlinear System Identification 97
6.3 LWN-OSELM for Grain Dryer System Modeling 99
6.4.1 Comparison of the WNMPC with other controllers 100
6.4.2 WNMPC and S-ANFIS with Conveyor-belt Grain Dryer 101
6.4 Summary 102

7 CONCLUSIONS AND FUTURE WORK 103
7.1 Conclusions 103
7.2 Suggestions for Future Work 106

REFERENCES 107
APPENDICES 116
BIODATA OF STUDENT 119
LIST OF PUBLICATIONS 120

xii
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The recent research improvements for WN based MPC</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters of data sets for the three nonlinear plants</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameters of models structures of three Nonlinear plants</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>The RMSE of LWN, WN and NN with MagLev</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>The RMSE of LWN, WN and NN for CSTR</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>The RMSE of LWN, WN and NN with Robot Arm</td>
<td>66</td>
</tr>
<tr>
<td>4.6</td>
<td>Parameters of CSTR and MagLev for NARMA-L2 Controller</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Parameters of WNMPC, NNMPC controllers for MagLev</td>
<td>69</td>
</tr>
<tr>
<td>4.8</td>
<td>Parameters of WNMPC, NNMPC controllers for CSTR</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>The performance index of WNMPC, NNMPC and NARMA-L2 for MagLev</td>
<td>76</td>
</tr>
<tr>
<td>4.10</td>
<td>The performance index of WNMPC, NNMPC and NARMA-L2 for CSTR</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>The parameters of the WNMPC controller</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>The performance Index PI for the three Models</td>
<td>98</td>
</tr>
<tr>
<td>6.2</td>
<td>The NRMSE of LWN, WN and LWN Models</td>
<td>98</td>
</tr>
<tr>
<td>6.3</td>
<td>The PI and RMSE for the Models on the Grain Dryer System</td>
<td>99</td>
</tr>
<tr>
<td>6.4</td>
<td>The Performances Indexes of WNMPC, NNMPC and NARMA-L2 for MagLev system</td>
<td>100</td>
</tr>
<tr>
<td>6.5</td>
<td>The performance indexes of WNMPC, NNMPC and NARMA-L2 for CSTR</td>
<td>101</td>
</tr>
<tr>
<td>6.6</td>
<td>The WNMPC and S- ANFIS performance Tests for the Grain Dryer</td>
<td>101</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>The step (a) and the impulse (b) responses of the NN-OSELM model for the grain dryer plant</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>The flowchart of the literature review tree</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The wavelet network</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>The first and second derivative of the Gaussian mother function</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>The MPC control strategy</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Nonlinear adaptive wavelet predictive control</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>SRWNN architecture [27]</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>The recurrent wavelet neural networks (RWNNs) [27]</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>SPC control system</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Wavelet Fuzzy NN Predictive Controller</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>The outline of the main work</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>The single hidden layer feed-forward wavelet network</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Series-Parallel WN-NARX for WN-OSELM</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>The linear wavelet network structure</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Linear Wavelet Network based on NARX modeling</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>The proposed model predictive control base MPCWN</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>The proposed AUR algorithm for the WNMPC</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Selections of the delayed inputs and outputs of the WN for the Robot Arm system</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>The optimal number of the hidden nodes (a) WN (b) NN</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>The input and output trained data set of the MagLev</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>WN, NN, LWN based OS-ELM for Magnetic Levitation</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>The residuals of (a) NN, (b) WN, and (c) LWN</td>
<td>59</td>
</tr>
</tbody>
</table>
4.6 The RMSE curve of NN, WN, and LWN for MagLev 59
4.7 Auto and Cross-Correlation of NN, WN and LWN for MagLev 60
4.8 The CSTR Trained input/output (left) Tested input/output (right) data sets 61
4.9 The RMSE curve of NN, WN and LWN for CSRT 62
4.10 The residuals (a) WN, (b) NN and(c) LWN for CSRT 63
4.11 The input output data set of Robot Arm 64
4.12 The RMSE curve of NN, WN, and LWN for MagLev 64
4.13 The residuals of (a) WN (b) NN (c) LWN for Robot Arm 65
4.14 Nonlinear model of Magnetic levitation Simulink circuit 67
4.15 The WNMPC diagram for Magnetic levitation system 68
4.16 The multi-steps response of controllers for MagLev 69
4.17 The control signals of controllers for the MagLev 70
4.18 The Welch Mean-Square Spectrum Estimate of the control signals 70
4.19 The Cost function minimization curve of the controllers 71
4.20 The CSTR Simulink circuit 71
4.21 The multi-steps responses for CSTR controllers 73
4.22 The controllers output for CSTR system 73
4.23 The Cost function curve of the controllers for CSTR 74
4.24 The WNMPC scheme with the disturbance blocks 74
4.25 The Gaussian white noise 75
4.26 The step response and white noise added to the input flow 75
4.27 The tracking the reference after a white noise added to the input flow 76
4.28 The robustness test of WNMPC against disturbance for the CSTR system 77
4.29 The response of the WNMPC controller with the disturbance

5.1 The UPM laboratory-scale conveyor-belt grain dryer [19]

5.2 A schematic diagram of conveyor-belt dryer

5.3 The grain dryer input (a) output (b) experimentally measured data

5.4 WN-OSELM model structure of the grain dryer

5.5 The optimal number of hidden nodes of LWN for the grain dryer

5.6 The LWN parameters (a) translation (b) dilation matrices

5.7 The weights of LWN after the training process for the grain dryer

5.8 The LWN-OSelm output for the testing process for the grain dryer

5.9 The ANFIS output for the testing process for the grain dryer

5.10 The Schematic diagram of WNMPC controller for grain dryer

5.11 The WNMPC response with different number of hidden nodes

5.12 The WNMPC (a) control effort (b) the cost function

5.13 The WNMPC (a) output response (b) the control effort

5.14 The WNMPC system with adding the input and output disturbances

5.15 The WNMPC with AWGN disturbance (a) the plant output (b) the control signal (c) the cost function

5.16 The WNMPC (a) the robust response of (b) the control action against disturbance (c) effect of disturbance on the cost function

5.17 The WNMPC with combined disturbances (a) the output response (b) the control action (c) the cost function
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WN</td>
<td>Wavelet network, Wavelet neural network</td>
</tr>
<tr>
<td>LWN</td>
<td>Linear wavelet network</td>
</tr>
<tr>
<td>LLWNN</td>
<td>Local linear wavelet neural network</td>
</tr>
<tr>
<td>RWNN</td>
<td>Recurrent wavelet neural network</td>
</tr>
<tr>
<td>HWNN</td>
<td>Haar wavelet neural network</td>
</tr>
<tr>
<td>FWNN</td>
<td>Fuzzy wavelet neural network</td>
</tr>
<tr>
<td>RWNFN</td>
<td>Recurrent wavelet-based neural fuzzy network</td>
</tr>
<tr>
<td>NN</td>
<td>Neural network</td>
</tr>
<tr>
<td>RNN</td>
<td>Recurrent neural network</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial base functions</td>
</tr>
<tr>
<td>RAN</td>
<td>Resource allocating network</td>
</tr>
<tr>
<td>SLFN</td>
<td>Single hidden layer feedforward neural networks</td>
</tr>
<tr>
<td>ELM</td>
<td>Extreme learning machine</td>
</tr>
<tr>
<td>NN-ELM</td>
<td>(SLFN) Neural network –ELM</td>
</tr>
<tr>
<td>WN-ELM</td>
<td>Wavelet network-ELM</td>
</tr>
<tr>
<td>SW-ELM</td>
<td>Sigmoid and wavelet function with ELM</td>
</tr>
<tr>
<td>NN-SELM</td>
<td>Neural network –OSELM</td>
</tr>
<tr>
<td>WN-SELM</td>
<td>Wavelet network-SELM</td>
</tr>
<tr>
<td>LWN-SELM</td>
<td>Linear wavelet network-SELM</td>
</tr>
<tr>
<td>CFWNN</td>
<td>Composite function wavelet neural networks</td>
</tr>
<tr>
<td>LDWNN</td>
<td>Lattice dynamical wavelet neural network</td>
</tr>
<tr>
<td>AUR</td>
<td>Adaptive updating rate</td>
</tr>
<tr>
<td>GD</td>
<td>Gradient descent</td>
</tr>
<tr>
<td>EKF</td>
<td>Extended Kalman filter</td>
</tr>
</tbody>
</table>
NARX Nonlinear auto regressive with eXternal input
SVM Support vector machines
WSVR Wavelet support vector regression
PSO particle swarm optimization
DE Differential evolution
PIDBP PID back-propagation (BP) algorithm
ANAOVA Analysis of variance
WBFNN Wavelet basis function neural network
LMS Least mean square
OLS Orthogonal least squares
OPP Orthogonal projection pursuit
ADLA Annealing dynamical learning algorithm
ART Adaptive reasoning theory
ERR Error reduction ratio
BF Best fit model performance
Waveleons Wavelet network hidden nodes
FPEC Final prediction error criteria
SQFS Sequential forward search
SQP Sequential quadratic programming
RMSE Root mean square error
NMSE Normalized Mean Square Error
PI Performance index
ISE Integral square error
IAE Integral absolute error
ITAE Integral of time absolute error
SQLA Sequential learning algorithm
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS</td>
<td>Adaptive neuro-fuzzy inference system</td>
</tr>
<tr>
<td>RPROP</td>
<td>Resilient back propagation</td>
</tr>
<tr>
<td>BP</td>
<td>Back propagation</td>
</tr>
<tr>
<td>MPC</td>
<td>Model predictive control</td>
</tr>
<tr>
<td>DMC</td>
<td>Dynamic matrices control</td>
</tr>
<tr>
<td>GMP</td>
<td>Generalized predictive control</td>
</tr>
<tr>
<td>NGPC</td>
<td>Neural network and generalized predictive control</td>
</tr>
<tr>
<td>NMPC</td>
<td>Nonlinear MPC</td>
</tr>
<tr>
<td>MRC</td>
<td>Model reference control</td>
</tr>
<tr>
<td>WNMPC</td>
<td>LWN-OSLM based Model predictive controller</td>
</tr>
<tr>
<td>NNMPC</td>
<td>Neural network based MPC</td>
</tr>
<tr>
<td>NARMA-L2</td>
<td>Feedback linearization control</td>
</tr>
<tr>
<td>WPSE</td>
<td>Welch Mean-Square Spectrum Estimate</td>
</tr>
<tr>
<td>CSTR</td>
<td>Continuous stirred-tank reactor</td>
</tr>
<tr>
<td>MagLev</td>
<td>Magnetic Levitation</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data acquisition device</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture content</td>
</tr>
<tr>
<td>FIS</td>
<td>Fuzzy inferred structure</td>
</tr>
<tr>
<td>PEM</td>
<td>Prediction error minimization</td>
</tr>
<tr>
<td>QFT</td>
<td>Quantitative feedback theory</td>
</tr>
<tr>
<td>OS</td>
<td>Overshoot percentage</td>
</tr>
<tr>
<td>S-ANFIS</td>
<td>Simplified ANFIS</td>
</tr>
<tr>
<td>St</td>
<td>Settling time</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive white Gaussian noise</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Wavelet neural networks (WNs) have been found in many applications with model predictive control (MPC) during the past years [1], [2], [3]. In general, there are typically two stages involved when using wavelet networks with MPC algorithms, the system identification and the predictive control design. Accordingly this introduction will be discussed in two parts.

1.1.1 System Identifications using Wavelet Network

Wavelet network is a combination of wavelet analysis and neural network (NN), where the wavelet functions are used at the hidden nodes instead of the traditional activation functions of NNs [4]. The architecture of WN can be similar to that of the radial basis functions (RBF) in single hidden layer feedforward neural networks (SLFNs), where both of them showed the capabilities of function learning and nonlinear system identifications [5].

The training methods for WNs commonly are gradient-based with batch-mode learning algorithms. These types of the training algorithms, the data involved through much iteration and the weight matrices are tuned iteratively to minimize the error function. However, these methods faced with many difficulties such as learning rate, number of epochs, stopping criteria, and slow convergences which are usually consume time and memory for large training samples [6].

In the past few years, an extreme learning machine (ELM) has been introduced as a batch learning algorithm for SLFNs with RBF or additive activation functions (NN-ELM) and have been considered as a very fast training algorithm that able to estimate the network output weights in a single step without need for any lengthy learning procedure that uses learning rate, epochs, etc. [7]. The input weights, biases, and the hidden nodes parameters of NN-ELM are initialized randomly and assigned within the region \([0, 1]\). The method has been applied successfully in different applications and has shown a good generalization performance at high learning speed compared to the other well-known batch mode learning algorithms [8].

Recently, a feed forward wavelet networks (WNs) with composite activation functions in a single hidden layer have been presented through ELM (WN-ELM) and showed better generalization performance over NN-ELM [9], [10]. The superiority was due to the time–frequency localization and multi-resolution properties of the wavelet functions. Moreover, the initialization procedure of the WN parameters which takes into account the input-output information of the plant, guarantee the covering of all the trained data by the wavelets properly [4], [9], [10].
However, in the industrial field there are many applications that online sequential learning algorithms are preferred over batch learning algorithms [11]. The online learning algorithms do not require retraining whenever a new data is received unlike the batch learning method which uses the past data together with the new data, and then implement retraining [12] [13]. Moreover, the reason that online learning is faster than batch learning especially on large training sets, is because online learning takes many steps per epoch which can follow curves in the gradient [14].

Based on ELM theories, an online sequential extreme learning machine (OS-ELM) algorithm was developed for SLFN neural network (NN-OSELM) to deal with data that comes chunk by chunk or one by one [15]. The method, showed better generalization capability, and fast training compared to the other well-known sequential learning algorithms applied on real world benchmarks for regression, classification, and time-series problems [15].

However, investigating NN-OSELM in nonlinear system modeling for control application, it is found that the random initialization of network parameters have instable result on the identified model responses. In another word, there are different impulse and step function responses of the identified model by NN-OSELM after each new training process for same training data. For example Figure 1.1. shows the Grain Dryer identified model open loop impulse and step function responses for three training trials with the same training data, even where the model best fit (BF) performance [16] are close to each other.

![Step Response of NN-OSELM with 8 hidden nodes for Grain Dryer Plant](image)

![Impulse response with NN-OSELM for Grain Dryer Plant](image)

Figure 1.1 The step (a) and impulse (b) responses for the NN-OSELM model of the grain dryer plant

The reason possibly can be referred to the random initialization of the NN parameters, which may change the initial start point of the training on the non-convex curve where the learning scheme starts. Therefore, the NN-OSELM in each trial hits different local minima in the same solution space for the same training data which cause different open loop responses. Note that, repeating the training algorithm for several times may hit the global minima coincidently. This procedure is not acceptable in modeling nonlinear systems for control application especially when the system dynamics are involved.
In this regard, WN-OSELM has been proposed using NARX model structure for nonlinear system modeling to overcome the instability of NN-OSELM caused by local minima problems and the random initialization procedure. The WN parameters namely the dilations and translations are initialized using density function and recursive algorithm [4], while the optimal number of the hidden nodes (waveleons) was found using final prediction error criteria (FPEC). In addition, the number of the input regressors (the delayed inputs and outputs) was selected using sequential forward search (SQFS) method [17]. From the simulations results, WN-OSELM was able to overcome the NN-OSELM problems and showed better generalization, and fast training capability.

However, to maintain the initial stability and allowed the nonlinear WN weights to learn unmodeled or time-varying dynamics of the open-loop system, a linear term (nominal linear model) has been added to the WN frame (LWN) and called linear-wavelet networks (LWN) [18]. This will enable a set of linear equations to be solved using least squares solution [19]. In addition, for many open-loops unstable systems, it helps to take the WN to learn dynamics minimally so that enough to stabilize the plant and improve the prediction ability [19] [18]. Moreover, and from control perspective, the use of LWN for predictive control, the linear term at each step will be hired to produce an initial solution for the sequence of control actions [19]. This solution will then be used as a starting point for the optimization algorithm which takes later the entire model into account. The optimizer algorithm with such warm of initialization may potentially save computation time, and allow for a better solution within a stable time frame [18].

The LWN with OS-ELM algorithm was able perform better generalization property and modeling capability where a theoretical analysis based on ELM theories presented to prove the capability of the linear-wavelet network (LWN) to support OSELM algorithm (LWN-OSELM) for online applications. The simulation carried out using different nonlinear systems to validate the proposed methods and compare it with WN-OSELM and NN-OSELM. The performance of LWN-OSELM model was superior in both modeling accuracy and learning performance. The LWN-OSELM evaluated by a real experimental data of the grain drier system and compared the results with the ANFIS model that obtained by Lutfy [20];

1.1.2 Model Predictive Control with Wavelet Network

In most model predictive control (MPC) applications, linear models are used to predicting the process behavior over the prediction horizon [21]. But, because of a wide range of the real nonlinear processes that is not easy to describe the nonlinear dynamic by using linear models or linearization techniques, using the linear models becomes unfeasible. Therefore, the predictive control performance required to be extended to combine the nonlinear models.

A number of researchers successfully applied the WNs as a system identifier for the generalized predictive control (GPC) algorithm to identify and control the real systems [3] [22] [23] [24]. However, the WN-based GPC method that has been used is hard to promise a good performance for controlling the real-time
industrial process that data is available in sequential version. Moreover, the optimization methods that they used, didn't take in consideration the input and output constraints and the system uncertainties with disturbances. Also, the learning algorithms that has been used by the authors in [3], [22], [23], and [24] to train WN was incapable to be use of online so it can update the network weights when the system parameters changes. The weight updating is necessary for adaptive MPC controller algorithm so it can be robust against any sudden changes in the system or any interfering of the input and output disturbances.

Therefore, this work proposed a method for developing an adaptive model predictive control system coupled with WN-OSLMM to solve the optimal control problem online with constraint and be robust by keeping the ability to deal efficiently with system uncertainties and the input output disturbances. For the reason of online learning and stochastic gradient descent methods are closely related and interchangeable [25]. An adaptive gradient descent (AGD) method introduced to solve online the optimal control problem with constraints. The conventional gradient descent with online search algorithms has drawbacks of the slow convergence because of the step size values which is updated proportionally to the gradient size not to the gradient direction (mathematically the sign of the gradient) [26].

On this regard, an adaptive updating rate (AUR) algorithm developed to find the optimal step size based on Resilient Back Propagation (RPROP) algorithm. In order to determine the upper and lower limits of the step size, the Lyapunov stability theorem applied to find the conditional limits that grantee a stable path to minimize the objective function.

The proposed wavelet network based model predictive controller (WNMPC) applied to different nonlinear systems and evaluated in terms of control accuracy, generalization ability, and robustness against uncertainties. These evaluations conducted as a comparative study with other common related controllers, namely an NNMPC controller [27] [3] and NARMA-L2 [28].

1.2 Problem Statement and Motivation

In a model predictive control design, the first concern is how to design an accurate control-oriented model for the plant that is able to capture the most significant dynamics of the system. Later on is how to design a proper predictive controller that generates an optimal control signals with robust performance. However, in this regard a list of problems is relevant:

1. The conventional gradient descent based learning algorithms (including BP) that has been used with wavelet networks based MPC approaches are not proper for online learning process, because it may involve many iterations through the updated data sets, and this may be computationally expensive, especially when the inversion of Hessian matrix needed [19].
2. The linearization process on the identified WN model by dividing into several local operating identifiers [3], [22], [29], may lead the prediction for the future process behavior in MPC scheme to be insufficient and causes inaccurate result.

3. Using WN-ELM with MPC as control-oriented plant model may allow facing problems of high memory size when large training samples are involved. That because of its batch training mode, which may impose the nonlinear quadratic programming problem of the MPC to face a real challenge to find an efficient solution online.

4. Despite of fast and accurate facility using NN-OSELM as control-oriented plant model with MPC algorithms may produce an inaccurate open loop responses because of the network initialization procedure as mentioned in the above sections, and this may deranged all the MPC schemes.

5. Moreover, there is a need for an online plant identifier that capable to combine with MPC algorithm and guarantee system stability by solving the optimization problem with constraints online adaptively with better computational time.

1.3 Research Objectives

In general, the aim of this work is to model nonlinear system accurately using a system identification procedure that allows updating its parameters sequentially online in association with adaptive model predictive control scheme for real-time control application. Moreover, the approaches attempt to cover all these objectives;

1. Design LWN-OSELM nonlinear system identifier by first designing WN-OSLM which will be able to perform useful generalization facility and modeling accuracy by using wavelet functions properties and inceptive initialization technique. Second by embedding a linear term to the WN-OSLM frame to help identifying both linear and nonlinear characteristics of the nonlinear dynamic systems also to help the learning algorithm to start with a stable beginning using linear weights initially. Furthermore, this may help to produce minimally an initial solution for the sequence of control actions of MPC scheme when the plant has an open loop unstable response.

2. Design an adaptive MPC scheme based on the designed LWN-OSLM model by developing an adaptive updating rule (AUR) algorithm using Lyapunov stability analysis so it guarantees the robustness and optimal performance.
3. To use LWN-OSELM with adaptive modelling predictive controller and apply this method for implementation on laboratory based conveyor-belt type grain dryer system using experimentally collected real data. The expected performance is better accuracy and robust control performances.

1.4 Scope of Study and The contributions

In this work, a WN-OSELM is introduces for nonlinear system modeling and control application to overcome the NN-OSELM problems. The architecture of WN-OSELM is embedded with a linear term to construct LWN-OSELM that enhances the convergence speed and stabilizes the learning algorithm, hence helps the MPC scheme to find initial solution at the beginning of control. The theoretical analysis need to be carried out to prove the adoption of OSELM with WN and LWN architectures.

On the other hand, a constrained quadratic optimization problem needs to be solved by stochastic gradient descent (GD) method adaptively using Lyapunov stability analysis. Therefore, an adaptive AUR algorithm based on stability conditions is designed for optimal step size to guarantee stability and fast convergence. However, utilizing the LWN-OSELM in nonlinear system modeling and then conjoining it with adaptive MPC can construct the proposed WNMPC controller that is able to deal with real time application. In this work, an experimental data for actual nonlinear system namely, conveyor-belt type grain dryer was handled to perform real data modeling using LWN-OSELM and then applying the WNMPC controller to evaluate of the optimal control performance and the capability of dealing with uncertainties robustly.

1.5 Thesis Outline

This thesis is organized according to the following plan; after the general introduction presented in this chapter, Chapter 2 introduces general concepts of two major parts of the work. The first part is on nonlinear system identification techniques using wavelet networks and the second part is on model predictive control schemes based on neural networks and wavelet networks models.

Chapter 3 presents the detailed methodologies of the proposed methods to achieve the objectives of the present work, namely, the WN and LWN based OSELM as well as WNMPC controller. These methods through theoretical analysis and design by driving the control law formulas, the stability analysis of the proposed WNMPC is carried out to develop an adaptive updating rule for the step size of the GD optimization problem.

Chapter 4 presented in two parts, the first is simulations for modeling using WN-OSELM, LWN-OSELM, and NN-OSELM applied on three different types of nonlinear dynamic systems then evaluation the results with model validation tests and learning feasibility using root mean square error.
The second part is the WNMPC controller simulations carried on two nonlinear systems to evaluate the ability of the proposed controller to control different nonlinear systems in terms of control accuracy, generalization ability, and robustness. In addition, a comparison using the performance index criteria are detailed between the proposed controller and other common related controllers, namely an NNMPC controller and NARMA-L2.

Chapter 5 focuses on the 6th objective of this work, which is modeling a laboratory based grain dryer type conveyor-belt using LWN-OSELM with an experimentally collected input output data set. Well after, the WNMPC controller is applied to evaluate the performances of modeling and the robustness of the controller. In particular, this chapter also presents the works related to the cross-flow conveyor-belt type grain dryers with basic information on grain drying system modeling and control. Furthermore, the simulations will perform with a comparative study between the proposed method and both the NN-OSELM and ANFIS models. Moreover, the results of controlling the drying system by the WNMPC introduced and compared with the simplified ANFIS controller.

To finish, Chapter 6 conducted for comparisons and discussion on Chapter 4 and 5 results while Chapter 7 for conclusions and future work.
REFERENCES

