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Chair: Samsul Bahari Mohd Noor, PhD  
 
Faculty: Engineering 
 
Wavelet networks (WNs) have been introduced as an alternative method of the 
neural networks for nonlinear system identification and used with model 
predictive control (MPC) techniques in many applications. Recently, an online 
sequential extreme learning machine (OSELM) algorithm has been introduced 
based on extreme learning machine (ELM) theories for single hidden layer 
feedforward neural networks (SLFN) and has been applied for different online 
applications. It is well known that SLFN with OSELM (NN-OSELM) is based on 
random initialization method for the input weights and the hidden layer nodes 
parameters. This might result in ill-conditioning, hence instability responses in 
nonlinear system modeling and consequently preventing the model based 
controller to perform best performances. 

In this thesis, the OSELM is introduced with wavelet network (WN-OSELM) and 
proposed for nonlinear system modeling and control applications. The ability of 
wavelets for localization in both time and frequency domain will help OSELM to 
train the WN in both uniform and non-uniform data sets. Moreover, the ability of 
initialization the hidden nodes parameters using density function and recursive 
algorithm will help WN-OSELM to perform useful generalization facility and 
modeling accuracy. 

Furthermore, to develop WN-OSELM ability to learn the nonlinear system 
dynamics minimally, a linear term is added to the WN frame (LWN) so that it is 
enough to stabilize the open-loop unstable systems in the initial stages. This 
allowed also learning unmodeled or time-varying dynamics of the system and 
enhancing the modeling accuracy. An analytical analysis based on ELM theories 
presented to prove the capability of the LWN to support the OSELM algorithm 
(LWN-OSELM).   
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The proposed methods applied with simulations for system identification of 
different nonlinear systems and had shown well capability of the LWN-OSELM 
and WN-OSELM over NN-OSELM in terms of modelling accuracy and fast 
convergence performance.  

On the other hand, an adaptive model predictive controller (WNMPC) based on 
LWN-OSELM modelling method is proposed for nonlinear system control 
applications. The WNMPC is developed by a proposed algorithm named 
adaptive updating rule (AUR) used with gradient descent optimization method to 
minimize a constrained cost function over the prediction and control horizons and 
to offer a robust control performances. 

The AUR is established based on Lyapunov stability theorem to find the limits of 
the optimization step size that guarantee a stable path on the objective function 
trajectory. A comparison between the proposed controller and other common 
related controllers are carried out on different nonlinear systems. The results 
showed superiority of the proposed controller in both control performance and 
the robustness tests.  

Moreover, the proposed LWN-OSELM and WNMPC applied to a real conveyor-
belt grain dryer system for modeling and control applications. The results 
showed better modeling accuracy and control performance over an existing 
modelling methods and the simplified adaptive neuro-fuzzy inference system (S-
ANFIS) controller respectively. The robustness analysis and validation are 
carried out to prove the proposed controller reliability. 
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MELAMPAU 

 

Oleh 

DHIADEEN MOHAMMED SALIH 

Mac 2015 

 

Pengerusi: Samsul Bahari Mohd Noor, PhD 
 
Fakulti: Kejuruteraan 
 
Rangkaian Wavelets (WNs) didapati boleh digunakan sebagai alternative untuk 
Rangkaian Neural (NNs) dan diperkenalkan bersama Kawalan Ramalan Model 
(MPC) di dalam banyak aplikasi.   
 
Baru-baru ini, berdasarkan melampau mesin pembelajaran (ELM) teori 
algoritma, berurutan mesin pembelajaran melampau (OSELM) algoritma dalam 
talian telah diperkenalkan dengan lapisan suap depan tersembunyi tunggal NN 
dan menunjukkan keupayaan pembelajaran sangat cepat dalam talian untuk 
aplikasi yang. 
 
Di dalam tesis ini, kaedah diperkenalkan  iaitu WN yang berasaskan OSELM 
(WN-OSELM) dicadang untuk membentuk model bagi sistem yang tidak linear.  
Keadah ini berkebolehan untuk menangani masalah local minima yang sering 
dihadapi oleh NNs berasakan OSELM. Pembentukan model ini menunjukkan 
perbezaan bagi fungsi impulse atau fungsi step di dalam ruang yang sama dan 
data latihan yang sama.  
 
Keadaan awal bagi pembolehubah WN dibuat menggunakan fungsi 
ketumpatan dan algoritma recursive di mana maklumat masukan diambil untuk 
membolehkan transformasi wavelet memproses data latihan secara 
menyeluruh. Selain itu, kaedah ini boleh juga menyelesaikan ketidakstabilan 
yang berlaku pada respon NN-OSELM yang disebabkan oleh masalah minima 
tempatan dan prosedur rawak bagi keadaan awal.  
 
Justeru, untuk meningkatkan tahap prestasi penumpuan WN-OSELM, satu 
terma linear telah dimasukkan ke dalam rangka WN di mana ia membolehkan 
satu set persamaan linear diselesaikan melalui kaedah penyelesaian squares.  
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Sebagai pembuktian, teori analisis berasaskan ELM telah dipersembahkan 
yang menunjukkan kebolehan linear wavelet Rangkaian (LWN) yang 
menyokong OSELM algoritma. 
 
Keputusan simulasi menunjukkan tahap yang lebih baik bagi LWN berbanding 
model WN dan NN dari sudut prestasi best fit, ketepatan dan kebolehan 
convergence yang pantas, di mana sebab tersebut boleh dirujuk kepada 
penyelesaian least square secara linear bagi LWN dan pada ketika pemulaan 
fasa latihan OSELM (LWN-OSELM). 
 
Berdasarkan LWN-OSELM, satu MPC (WNMPC) dicadangkan atau 
dikemukakan bersama algaritma penambahbaikan dan berasaskan Keturunan 
kecerunan (GD) method yang mampu untuk menyelesaikan masalah 
constrained quadratic secara online dan aplikasi secara masa sebenar.   
 
Bagi menjamin kestabilan tracking untuk model rujukan, analisis kestabilan 
iaitu algoritma Adaptive Kadar Update (AUR) telah dicadangkan untuk 
menentukan saiz yang paling optimum bagi GD untuk penumpuan yang 
pantas. Beberapa simulasi telah dilaksanakan bersama beberapa ujikaji untuk 
menilai tahap alat kawalan yang dikemukakan. Ujikaji menunjukkan tahap yang 
lebih baik bagi alat kawalan yang dikemukakan berbanding model NN 
berasaskan alat kawalan jangkaan iaitu dari sudut prestasi indeks ITAE, IAE 
and ISE. Tambahan pula, ujian robustness menunjukkan kebolehan alat 
kawalan yang dikemukakan untuk menangani kesan perubahan persekitaran 
yang boleh berlaku ketika kawalan proses sedang berlangsung.  
 
Kaedah yang dikemukakan telah diaplikasikan kepada sistem Conveyor-Belt 
Grain Rambut, dan menunjukkan kebolehan untuk menghasilkan model 
dinamik yang tepat dan menunjukkan prestasi kawalan yang cemerlang di 
dalam keadaan awal yang berbeza-beza melalui penyingkiran ketidaktentuan 
dan isyarat gangguan yang mungkin berlaku. 
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  CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Introduction  
 
Wavelet neural networks (WNs) have been found in many applications with 
model predictive control (MPC) during the past years [1], [2], [3]. In general, 
there are typically two stages involved when using wavelet networks with MPC 
algorithms, the system identification and the predictive control design. 
Accordingly this introduction will be discussed in two parts. 
 
 
1.1.1 System Identifications using Wavelet Network  
 
Wavelet network is a combination of wavelet analysis and neural network (NN), 
where the wavelet functions are used at the hidden nodes instead of the 
traditional activation functions of NNs [4]. The architecture of WN can be similar 
to that of the radial basis functions (RBF) in single hidden layer feedforward 
neural networks (SLFNs), where both of them showed the capabilities of 
function learning and nonlinear system identifications [5].  
 
The training methods for WNs commonly are gradient-based with batch-mode 
learning algorithms. These types of the training algorithms, the data involved 
through much iteration and the weight matrices are tuned iteratively to minimize 
the error function. However, these methods faced with many difficulties such as 
learning rate, number of epochs, stopping criteria, and slow convergences 
which are usually consume time and memory for large training samples [6].  
 
In the past few years, an extreme learning machine (ELM) has been introduced 
as a batch learning algorithm for SLFNs with RBF or additive activation 
functions (NN-ELM) and have been considered as a very fast training algorithm 
that able to estimate the network output weights in a single step without need 
for any lengthy learning procedure that uses learning rate, epochs, etc. [7]. The 
input weights, biases, and the hidden nodes parameters of NN-ELM are 
initialized randomly and assigned within the region [0, 1]. The method has been 
applied successfully in different applications and has shown a good 
generalization performance at high learning speed compared to the other well-
known batch mode learning algorithms [8].  
 
Recently, a feed forward wavelet networks (WNs) with composite activation 
functions in a single hidden layer have been presented through ELM (WN-
ELM) and showed better generalization performance over NN-ELM [9], [10]. 
The superiority was due to the time–frequency localization and multi-resolution 
properties of the wavelet functions. Moreover, the initialization procedure of the 
WN parameters which takes into account the input-output information of the 
plant, guarantee the covering of all the trained data by the wavelets properly 
[4], [9], [10].  
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However, in the industrial field there are many applications that online 
sequential learning algorithms are preferred over batch learning algorithms 
[11]. The online learning algorithms do not require retraining whenever a new 
data is received unlike the batch learning method which uses the past data 
together with the new data, and then implement retraining [12] [13]. Moreover, 
the reason that online learning is faster than batch learning especially on large 
training sets, is because online learning takes many steps per epoch which can 
follow curves in the gradient [14].  
 
Based on ELM theories, an online sequential extreme learning machine (OS-
ELM) algorithm was developed for SLFN neural network (NN-OSELM) to deal 
with data that comes chunk by chunk or one by one [15]. The method, showed 
better generalization capability, and fast training compared to the other well-
known sequential learning algorithms applied on real world benchmarks for 
regression, classification, and time-series problems [15].  
 
However, investigating NN-OSELM in nonlinear system modeling for control 
application, it is found that the random initialization of network parameters have 
instable result on the identified model responses. In another word, there are 
different impulse and step function responses of the identified model by NN-
OSELM after each new training process for same training data. For example 
Figure 1.1. shows the Grain Dryer identified model open loop impulse and step 
function responses for three training trials with the same training data, even 
where the model best fit (BF) performance [16] are close to each other. 
 

 
(a)                                                     (b) 

Figure 1. 1 The step (a) and impulse (b) responses for the NN-OSELM 
model of the grain dryer plant 

 
The reason possibly can be referred to the random initialization of the NN 
parameters, which may change the initial start point of the training on the non-
convex curve where the learning scheme starts. Therefore, the NN-OSELM in 
each trial hits different local minima in the same solution space for the same 
training data which cause different open loop responses. Note that, repeating 
the training algorithm for several times may hit the global minima coincidently. 
This procedure is not acceptable in modeling nonlinear systems for control 
application especially when the system dynamics are involved. 
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In this regard, WN-OSELM has been proposed using NARX model structure for 
nonlinear system modeling to overcome the instability of NN-OSELM caused 
by local minima problems and the random initialization procedure. The WN 
parameters namely the dilations and translations are initialized using density 
function and recursive algorithm [4], while the optimal number of the hidden 
nodes (waveleons) was found using final prediction error criteria (FPEC). In 
addition, the number of the input regressors (the delayed inputs and outputs) 
was selected using sequential forward search (SQFS) method [17]. From the 
simulations results, WN-OSELM was able to overcome the NN-OSELM 
problems and showed better generalization, and fast training capability. 
 
However, to maintain the initial stability and allowed the nonlinear WN weights 
to learn unmodeled or time-varying dynamics of the open-loop system, a linear 
term (nominal linear model) has been added to the WN frame (LWN) and 
called linear-wavelet networks (LWN) [18]. This will enable a set of linear 
equations to be solved using least squares solution [19]. In addition, for many 
open-loops unstable systems, it helps to take the WN to learn dynamics 
minimally so that enough to stabilize the plant and improve the prediction ability 
[19] [18]. Moreover, and from control perspective, the use of LWN for predictive 
control, the linear term at each step will be hired to produce an initial solution 
for the sequence of control actions [19]. This solution will then be used as a 
starting point for the optimization algorithm which takes later the entire model 
into account. The optimizer algorithm with such warm of initialization may 
potentially save computation time, and allow for a better solution within a stable 
time frame [18]. 
 
The LWN with OS-ELM algorithm was able perform better generalization 
property and modeling capability where a theoretical analysis based on ELM 
theories presented to prove the capability of the linear-wavelet network (LWN) 
to support OSELM algorithm (LWN-OSELM) for online applications. The 
simulation carried out using different nonlinear systems to validate the 
proposed methods and compare it with WN-OSELM and NN-OSELM. The 
performance of LWN-OSELM model was superior in both modeling accuracy 
and learning performance. The LWN-OSELM evaluated by a real experimental 
data of the grain drier system and compared the results with the ANFIS model 
that obtained by Lutfy [20]; 
 
 
1.1.2 Model Predictive Control with Wavelet Network 
 
In most model predictive control (MPC) applications, linear models are used to 
predicting the process behavior over the prediction horizon [21]. But, because 
of a wide range of the real nonlinear processes that is not easy to describe the 
nonlinear dynamic by using linear models or linearization techniques, using the 
linear models becomes unfeasible. Therefore, the predictive control 
performance required to be extended to combine the nonlinear models.  
 
A number of researchers successfully applied the WNs as a system identifier 
for the generalized predictive control (GPC) algorithm to identify and control the 
real systems [3] [22] [23] [24]. However, the WN-based GPC method that has 
been used is hard to promise a good performance for controlling the real-time 
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industrial process that data is available in sequential version. Moreover, the 
optimization methods that they used, didn’t take in consideration the input and 
output constraints and the system uncertainties with disturbances. Also, the 
learning algorithms that has been used by the authors in [3], [22], [23], and [24] 
to train WN was incapable to be use of online so it can update the network 
weights when the system parameters changes.  The weight updating is 
necessary for adaptive MPC controller algorithm so it can be robust against 
any sudden changes in the system or any interfering of the input and output 
disturbances.   
 
Therefore, this work proposed a method for developing an adaptive model 
predictive control system coupled with WN-OSELM to solve the optimal control 
problem online with constraint and be robust by keeping the ability to deal 
efficiently with system uncertainties and the input output disturbances. For the 
reason of online learning and stochastic gradient descent methods are closely 
related and interchangeable [25]. An adaptive gradient descent (AGD) method 
introduced to solve online the optimal control problem with constraints. The 
conventional gradient descent with online search algorithms has drawbacks of 
the slow convergence because of the step size values which is updated 
proportionally to the gradient size not to the gradient direction (mathematically 
the sign of the gradient) [26].  
 
On this regard, an adaptive updating rate (AUR) algorithm developed to find 
the optimal step size based on Resilient Back Propagation (RPROP) algorithm. 
In order to determine the upper and lower limits of the step size, the Lyapunov 
stability theorem applied to find the conditional limits that grantee a stable path 
to minimize the objective function. 
 
The proposed wavelet network based model predictive controller (WNMPC) 
applied to different nonlinear systems and evaluated in terms of control 
accuracy, generalization ability, and robustness against uncertainties. These 
evaluations conducted as a comparative study with other common related 
controllers, namely an NNMPC controller [27] [3] and NARMA-L2 [28].  
 
 
1.2 Problem Statement and Motivation 
 
In a model predictive control design, the first concern is how to design an 
accurate control-oriented model for the plant that is able to capture the most 
significant dynamics of the system. Later on is how to design a proper 
predictive controller that generates an optimal control signals with robust 
performance. However, in this regard a list of problems is relevant:   
 

1. The conventional gradient descent based learning algorithms 
(including BP) that has been used with wavelet networks based MPC 
approaches are not proper for online learning process, because it may 
involve many iterations through the updated data sets, and this may be 
computationally expensive, especially when the inversion of Hessian 
matrix needed [19]. 
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2. The linearization process on the identified WN model by dividing into 
several local operating identifiers [3], [22], [29], may lead the prediction 
for the future process behavior in MPC scheme to be insufficient and 
causes inaccurate result. 
 
 

3. Using WN-ELM with MPC as control-oriented plant model may allow 
facing problems of high memory size when large training samples are 
involved. That because of its batch training mode, which may impose 
the nonlinear quadratic programming problem of the MPC to face a 
real challenge to find an efficient solution online.  
 

4. Despite of fast and accurate facility using NN-OSELM as control-
oriented plant model with MPC algorithms may produce an inaccurate 
open loop responses because of the network initialization procedure as 
mentioned in the above sections, and this may deranged all the MPC 
schemes. 
 
 

5. Moreover, there is a need for an online plant identifier that capable to 
combine with MPC algorithm and guarantee system stability by solving 
the optimization problem with constraints online adaptively with better 
computational time. 

 
 
1.3 Research Objectives  
 
In general, the aim of this work is to model nonlinear system accurately using a 
system identification procedure that allows updating its parameters sequentially 
online in association with adaptive model predictive control scheme for real-
time control application. Moreover, the approaches attempt to cover all these 
objectives;  
 

1. Design LWN-OSELM nonlinear system identifier by first designing WN-
OSELM which will be able to perform useful generalization facility and 
modeling accuracy by using wavelet functions properties and 
inspective initialization technique. Second by embedding a linear term 
to the WN-OSELM frame to help identifying both linear and nonlinear 
characteristics of the nonlinear dynamic systems also to help the 
learning algorithm to start with a stable beginning using linear weights 
initially. Furthermore, this may help to produce minimally an initial 
solution for the sequence of control actions of MPC scheme when the 
plant has an open loop unstable response. 
 

2. Design an adaptive MPC scheme based on the designed LWN-
OSELM model by developing an adaptive updating rule (AUR) 
algorithm using Lyapunov stability analysis so it guarantees the 
robustness and optimal performance. 
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3. To use LWN-OSELM with adaptive modelling predictive controller and 
apply this method for implementation on laboratory based conveyor-
belt type grain dryer system using experimentally collected real data. 
The expected performance is better accuracy and robust control 
performances.  
   
 

1.4  Scope of Study and The contributions 
 
In this work, a WN-OSELM is introduces for nonlinear system modeling and 
control application to overcome the NN-OSELM problems. The architecture of 
WN-OSELM is embedded with a linear term to construct LWN-OSELM that 
enhances the convergence speed and stabilizes the learning algorithm, hence 
helps the MPC scheme to find initial solution at the beginning of control. The 
theoretical analysis need to be carried out to prove the adoption of OSELM with 
WN and LWN architectures.  
 
On the other hand, a constrained quadratic optimization problem needs to be 
solved by stochastic gradient descent (GD) method adaptively using Lyapunov 
stability analysis. Therefore, an adaptive AUR algorithm based on stability 
conditions is designed for optimal step size to guarantee stability and fast 
convergence.  However, utilizing the LWN-OSELM in nonlinear system 
modeling and then conjoining it with adaptive MPC can construct the proposed 
WNMPC controller that is able to deal with real time application.  In this work, 
an experimental data for actual nonlinear system namely, conveyor-belt type 
grain dryer was handled to perform real data modeling using LWN-OSELM and 
then applying the WNMPC controller to evaluate of the optimal control 
performance and the capability of dealing with uncertainties  robustly.  
 
 
1.5 Thesis Outline 
 
This thesis is organized according to the following plan; after the general 
introduction presented in this chapter, Chapter 2 introduces general concepts 
of two major parts of the work. The first part is on nonlinear system 
identification techniques using wavelet networks and the second part is on 
model predictive control schemes based on neural networks and wavelet 
networks models.  
 
Chapter 3 presents the detailed methodologies of the proposed methods to 
achieve the objectives of the present work, namely, the WN and LWN based 
OSELM as well as WNMPC controller. These methods through theoretical 
analysis and design by driving the control law formulas, the stability analysis of 
the proposed WNMPC is carried out to develop an adaptive updating rule for 
the step size of the GD optimization problem.  
 
Chapter 4 presented in two parts, the first is simulations for modeling using 
WN-OSELM, LWN-OSELM, and NN-OSELM applied on three different types of 
nonlinear dynamic systems then evaluation the results with model validation 
tests and learning feasibility using root mean square error.  
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The second part is the WNMPC controller simulations carried on two nonlinear 
systems to evaluate the ability of the proposed controller to control different 
nonlinear systems in terms of control accuracy, generalization ability, and 
robustness. In addition, a comparison using the performance index criteria are 
detailed between the proposed controller and other common related 
controllers, namely an NNMPC controller and NARMA-L2. 
  
Chapter 5 focuses on the 6th objective of this work, which is modeling a 
laboratory based grain dryer type conveyor-belt using LWN-OSELM with an 
experimentally collected input output data set. Well after, the WNMPC 
controller is applied to evaluate the performances of modeling and the 
robustness of the controller. In particular, this chapter also presents the works 
related to the cross-flow conveyor-belt type grain dryers with basic information 
on grain drying system modeling and control. Furthermore, the simulations will 
perform with a comparative study between the proposed method and both the 
NN-OSELM and ANFIS models. Moreover, the results of controlling the drying 
system by the WNMPC introduced and compared with the simplified ANFIS 
controller. 
 
To finish, Chapter 6 conducted for comparisons and discussion on Chapter 4 
and 5 results while Chapter 7 for conclusions and future work. 
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