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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 

 

MECHANICAL AND THERMAL CHARACTERIZATION OF 

MULTISCALE CARBON NANOTUBE POLYPROPYLENE  

AND EPOXY COMPOSITES  

                                                 By 

                                 SAEED RAHMANIAN 

                                          April 2015 

Chair:  Suraya Abdul Rashid, PhD 

Faculty: Engineering 

Different types of multiscale fillers were fabricated through growing carbon 

nanotubes on short fiber and microparticles. The fabricated fillers were incorporated 

with both thermoplastic and thermoset polymers to evaluate their reinforcing 

efficiency. First, dense carbon nanotubes (CNTs) were grown uniformly on the 

surface of short fibers to create multiscale fibers by catalytic chemical vapor 

deposition. Short fiber reinforced polypropylene composites were fabricated using 

the multiscale fibers and compared with composites made using neat fibers. Tensile, 

flexural and impact properties of the composites were measured, which showed 

evident enhancement of more than 30% in all mechanical properties compared to 

neat short fiber composites. SEM micrographs of composite fracture surface 

demonstrated improved adhesion between CNT-coated fiber and the matrix.  

 

 

To evaluate the effect of multiscale fillers on thermoset matrix, CNT and CNT-short 

carbon fibers (CSCF) were incorporated into an epoxy matrix to fabricate a high 

performance multiscale composite. The multiscale composites revealed significant 

improvement of more than 35% in elastic and storage modulus, strength as well as 

impact resistance in comparison to CNT-epoxy or CSCF-epoxy composites. An 

optimum content of CNT equal to 0.3 wt.% was found which provided the maximum 

stiffness and strength. The synergic reinforcing effects of combined fillers were 

analyzed on the fracture surface of composites through optical and SEM. 

 

 

Another multiscale filler was fabricated through growing CNT on silica 

microparticles. The CNT-silica fillers were incorporated within polypropylene (PP) 

as well as epoxy matrix. In spite of the inclusion of multiscale fillers up to 2 wt.%, 

the reological behaviors of nanocomposites were comparable to the pristine matrix. 
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An improvement by more than 35% was achieved for elastic modulus and tensile 

strength of nanocomposites, which was discussed by employing micromechanical 

modeling approaches. The strengthening effects of CNT-silica reinforcement on 

impact strength of PP or epoxy was revealed by impact tests and was illustrated 

through fractography of nanocomposites. 

 

 

A micromechanical model was employed to estimate the elastic modulus of 

multiscale fillers reinforced composites. In this model several effective parameters 

on the reinforcing role of nanotubes were considered to result in an appropriate 

estimation.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PENCIRIAN MEKANIKAL DAN TERMAL KOMPOSIT POLIPROPILENA 

DAN EPOKSI NANOTIUB KARBON BERBILANG SKALA  

 

                                                Oleh 

                                  SAEED RAHMANIAN 

                                           April 2015 

Penyelia: Suraya Abdul Rashid, PhD 

Fakulti: Kejuruteraan 

Beberapa jenis pengisi berbilang skala telah dihasilkan melalui penumbuhan 

nanotiub karbon pada gentian pendek dan mikropartikel. Pengisi yang dihasilkan 

telah ditambah dengan polimer termoplastik dan termoset untuk menguji kecekapan 

pengukuhan. Pertama, nanotiub karbon padat (CNTs) telah dihasilkan dengan sekata 

pada permukaan gentian pendek untuk membuat gentian berbilang skala dengan 

pemendapan wap kimia berpemangkin. Komposit polipropilena yang diperkukuhkan 

dengan gentian pendek telah dihasilkan menggunakan gentian berbilang skala dan 

dibandingkan dengan komposit yang dibuat dengan gentian kemas. Ciri-ciri 

ketegangan, kelenturan dan impak komposit telah diukur dan menunjukkan 

peningkatan jelas ciri-ciri mekanikal melebihi 30% berbanding dengan komposit 

gentian pendek kemas. Mikrograf SEM permukaan patah komposit yang dibelah 

menunjukkan pelekatan yang lebih baik antara gentian yang disalut CNT dengan 

matriks. 

 

 

Bagi menilai kesan pengisi berbilang skala pada matriks termoset, CNT dan CNT-

gentian karbon pendek (CSCF) telah ditambah ke dalam matriks epoksi untuk 

menghasilkan komposit berbilang skala yang berprestasi tinggi. Komposit-komposit 

tersebut menunjukkan peningkatan lebih daripada 35% dalam modulus elastik dan 

simpanan, kekuatan dan daya tahan impak berbanding dengan komposit CNT-epoksi 

atau CSCF-epoksi. Kandungan optimum CNT yang bersamaan dengan 0.3 wt.% 

didapati memberi kekerasan dan kekuatan yang maksimum. Kesan pengukuhan 

sinergistik pengisi-pengisi yang telah digabung dikaji dengan menganalisa 

permukaan patah komposit yang dibelah menggunakan SEM dan mikroskopi optikal.  

Sejenis lagi pengisi berbilang skala telah dihasilkan melalui penumbuhan CNT pada 

mikropartikel silika. Pengisi CNT-silika telah digabung dengan polipropilena (PP) 
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dan matriks epoksi. Walaupun dengan penambahan pengisi berbilang skala sebanyak 

2 wt.%, ciri-ciri reologi nanokomposit adalah hampir sama dengan matriks tanpa 

sebarang tambahan. Peningkatan melebihi 35% telah dicapai untuk modulus elastik 

dan kekuatan ketegangan nanokomposit yang diperoleh dengan menggunakan 

pendekatan secara pemodelan mikromekanikal. Kesan pengukuhan CNT-silika pada 

kekuatan impak PP atau epoksi telah ditunjukkan dengan ujian impak dan 

digambarkan melalui patahgraf nanokomposit. 

Model mikromekanikal telah diggunakan untuk menganggar modulus elastik 

komposit yang diperkukuh dengan pengisi berbilang skala. Dalam model ini, 

beberapa parameter yang berkesan dalam peranan pengukuhan nanotiub telah 

dipertimbangkan untuk memberi anggaran yang tepat. 
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1 CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

The expressions nanoscience and nanotechnology point to the ability to investigate, 

to measure, to accumulate, to manipulate and to distinguish the matter on a 

dimensional scale lower than 100 nanometers, thus to molecular status.  However, 

nanotechnology is still in the early phase of their advancement and it is interesting to 

exploit and employ the methods of nanosciences for the manufacture and use of 

materials, equipment and systems with magnitudes to the molecular level. Working 

in this field, it is possible to prepare products with characters greatly improved or 

with completely new properties. In fact, operating to nanosize level, the material 

offers diverse opportunities from those surveyed when working on macrosize 

dimensions. The application fields of nanotechnology are very large, and they can 

persuade many productive divisions such as, the transportation means, the food 

industry, information technologies, telecommunications and the automobile industry 

and the aerospace, through the development and the employment of new or improved 

materials. 

 

Looking at nanoscience from a chemical view, a material body interacts with its 

surrounding environment according to its surface characteristics. Therefore, higher 

surface area of material body results in higher interfacial zones with large number of 

physical phenomena. The enhancement of surface by reducing the body dimension is 

shown in Figure 1.1. As easy to understand, the nanosize particles provide an 

extremely high surface area in comparison to macro/micro size one with equivalent 

volume. Indeed a great raise in chemical reactivity is achieved merely by declining 

the system characteristic dimensions from macro/micro to nano-scale. 

 

 

Figure ‎1.1 The morphological revolution of the nanostructures: 

enhancement of the surface area by going to nanosize 

(Source: Chatterjee, 2012) 
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The significance of carbon in “macrosize materials world” is obvious for a long time, 

thus it is simple to understand the big efforts in promoting carbon nanostructured 

materials. In the mid-1980s, carbon science and technology were accelerated by the 

discovery of a former all-carbon molecule, fullerene and followed by the discovery 

of carbon nanotubes in 1991 (Grady, 2011). Carbon nanotubes (CNTs) are derived 

from graphite sheet with a tubular form which comprised graphite cylinders normally 

closed at both ends with caps consisting pentagonal rings. CNTs are available in the 

forms of single, double or multi walled. In general, CNTs possess a diameter of a 

few nanometers with length can enlarge up to several centimeters. Different shapes 

of carbon nanoparticles derived from the graphene structure are presented 

schematically in Figure 1.2.  

 

 

 
Figure ‎1.2. Graphene is a 2-D of carbon structure. It can be formed into 

0-D fullerene, 1-D nanotubes and 3-D graphite 

(Source: Geim et al., 2007) 

Carbon nanotubes have attracted the interest of many scientists worldwide. The 

combination of tiny dimensions, high strength and the outstanding physical 

properties of their structures make them a unique element with a whole range of 

favorable applications. The combination of a particular structure and topology 

endows CNTs with prominent mechanical properties such as high stiffness, strength, 

elastic deformability jointed with stability, low density and special surface chemistry. 

Considering covalent bonds of carbon-carbon as one of the strongest link in nature, 

afterward a structure established on a perfect arrangement of such bonds, which are 

directed along the axis of the nanotubes can construct an exceedingly strong material. 

The theoretical and experimental works on individual nanotubes have confirmed an 

elastic modulus as high as 1000 GPa, which is equal to the in-plane stiffness of 

defect free graphite. Moreover, the tensile strength of individual nanotubes was 

estimated about 300 GPa theoretically and close to 50 GPa experimentally, which is 

still ten times higher that carbon fiber stiffness (Breuer et al., 2004; Coleman et al., 

2006).    
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1.2 Significance of Study 

Polymer composites with fillers mixed in thermoplastic and thermoset matrices are 

taken into account as an important group of materials because of their wide range of 

applications. In comparison to the incorporation of microscale additives, nanofillers, 

with their tiny size, establish a very small inter-particle space which influences the 

polymer matrix characteristics even at very diluted filler concentrations (Thostenson 

et al., 2001). Polymer nanocomposites came into industrial consideration with the 

detection at Toyota research center in the 1980s. In that research, via addition of a 

small portion of nanofiller to PA6 impressive improvement was recorded in 

modulus, strength, gas barrier properties and heat distortion temperature (Mittal, 

2011). 

Nanocomposite is defined as a class of multi-phase material in which one of the 

components is dissipated in another one in nanometer level. Conventional fillers 

incorporated within polymers have often been employed to decline cost or improve 

material properties needed for particular applications. Ceramic fillers such as 

alumina or silica are typically utilized to increase the elastic modulus in epoxy resins 

with reducing the cost. However, the disadvantage is that inclusion of such rigid 

particles further decreases the ductility in the initially brittle epoxy. On the other 

hand, soft filler particles, such as rubber, can be employed to toughen the epoxy resin 

matrix, but they subsequently reduce the stiffness.  

Well-dispersed nanofillers are able to improve elastic modulus and strength, and to 

keep or even enhance ductility since they are much smaller than the crucial crack 

size for polymer matrix and require not initiate failure. Moreover, achievement of the 

desired properties by the incorporation of large amounts of traditional fillers often 

results in diminishing the weight-savings acquired in utilizing low-density polymers. 

Polymeric nanocomposites have been demonstrated to present unique combinations 

of electrical, thermal and mechanical properties at low filler weight fractions. 

The mechanical performance of carbon nanotubes is exciting because CNTs are 

considered as the “extreme” fibrous carbon ever made. The conventional carbon 

fibers with approximately fifty times the strength to density ratio higher than steel, 

are tremendous load-bearing reinforcing components in composites. Carbon fibers 

have been employed as reinforcing element in lightweight, high strength and 

performance composites. It can typically be found in a range of products from costly 

tennis rackets to aircraft and spacecraft body parts. Therefore, nanotubes should be 

perfect potential candidates for structural applications. 

The tiny size of nanofillers leads to some factors that discern nanocomposites from 

conventional composites. First of all, nanofillers have small mechanical, electrical 

and optical defects in contrast to micron size fillers. The inclusion of nanofillers 

within a polymer matrix does not necessarily result in a reduction in the ductility of 

the polymer and in some cases can enhance it. Secondly, even though many 

properties of a reinforcement material are supposed to be intrinsic, they are often 

valid above a critical length scale. While the nanoparticles decline below this size, 

the characteristics of the particles can change considerably from the bulk material. 
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Third, the small size of the fillers creates an exceptionally large interphase region in 

the composites. For instance, the surface area of a 10mm fibrous carbon is more than 

100 times larger than that of a 1nm single-walled nanotube with the similar total 

volume. In addition, the inter-particle spacing decreases such that at small volume 

fractions of filler.  

1.3 Problem Statements 

The outstanding properties of CNTs can be exploited by the addition of such 

nanofillers within a polymer matrix to fabricate nanocomposites. Various polymer 

matrices can be utilized along with such carbon nanofillers to fabricate interesting 

composites that are investigated in this present work. Several methods have been 

introduced to manufacture polymer nanocomposites while the capability of 

nanofillers dispersion is a critical parameter to tune their properties.  

The most main application of CNTs regarding their mechanical properties would be 

as reinforcements in composite materials. In spite of the evident advantages of CNTs 

incorporation within a polymer matrix, fabrication process of nanocomposites 

involves some particular feature, distinctive from traditional composites. The major 

problem includes obtaining a good interface between CNTs and the polymer matrix 

as well as achieving proper load transfer from the matrix to the CNTs, during 

loading. This problem originates essentially from two reasons. First, CNTs possess a 

smooth atomic structure with roughly the same diameters and length as polymer 

chains. Second, CNTs are almost formed into aggregates that act differently in 

reaction to a loading, in comparison to individual CNTs (Ma et al., 2010).  

Proper dispersion/distribution of CNTs should be provided to obtain improved 

mechanical properties of the nanocomposite. Large surface area of nanotubes can 

potentially create physical interactions and entanglements which form aggregations 

of CNTs. The aggregations reduce the reinforcing efficiency of nanotubes because of 

restriction on load transfer to all CNTs, declining effective aspect ratio and creating 

local stress concentrations. Furthermore, the orientation and waviness of nanotubes 

play a critical role in the ultimate properties of the nanocomposites (Bose et al., 

2010). 

In view of the preceding, a huge effort has been done to establish suitable conditions 

for the well-dispersion of CNTs and subsequently, transfer of mechanical load to 

nanotubes in a polymer matrix. Various approaches of CNTs chemical treatment 

have been confirmed quite successful in attaching functional moieties which afford 

superior nanotube dispersion, as well as effective wetting of CNTs with polymer 

matrices (Bose et al., 2010; Ma et al., 2010). Another method of chemical 

modification has been introduced as grafting of macromolecules onto the CNTs 

surface. Indeed, the attachment of a whole polymer chain is supposed to have 

superior influence on the CNTs characteristics and their affinity to polymer matrices 

in contrast to the addition of functional groups (Bose et al., 2010; Ma et al., 2010).  
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In addition to modifying the chemical affinity of CNTs to polymer matrices, a 

variety of dispersing strategies, also assist in the efficient processing to form 

CNT/polymer nanocomposites with increased mechanical properties. These 

dispersion strategies include solution processing, bulk mixing, melt mixing and in 

situ polymerization (Andrews et al., 2004; Grady, 2011). Solution processing is used 

as the most common method at small scales to prepare CNT–polymer composites. In 

this method, CNTs powder is dispersed in a liquid medium through intense stirring 

and sanction, then  mixed with a polymer or polymer solution. The extra solvent will 

evaporate in a controlled manner under vacuum condition to form a CNT-polymer 

blend. In bulk mixing, the nanofillers are blended in polymer matrix via local burden 

of high pressure. High energy ball milling and three roll milling with microsize gap 

are two common approaches in this category while the former often shorten the 

nanotube length (Dai, 2006).  

On account of the fact that thermoplastic polymers become softer when heated over 

their melting point, melt processing has been the preferred methodology for the 

fabrication of CNT-thermoplastic based composites. Moreover, the technique is 

relevant for polymers with insolvability behavior in common solvents. The process 

factors and accordingly the shear stresses should be tailored to attain an optimum 

dispersion feature within the extrusion, which ultimately would be subjected to a 

consequent shaping step, such as hot pressing, for the fabrication of the final parts. 

Apart from other methods, in situ polymerization of monomers in the presence of 

CNT has been performed for the production of functional composites. The main 

preference of this technique is that it fabricates polymer grafted tubes, blended with 

free polymer chains (Koerner et al., 2005; Pham et al., 2008; Tang et al., 2003). 

It is evident from the literature that although the mentioned chemical process 

possesses a positive effect on nanofillers dispersion, this route disrupts some inherent 

characteristics of CNTs. Furthermore, these methods involve the immense 

consumption of chemical solvents, especially environmentally unfriendly strong 

acids. Therefore, the worth of achieving improvements by treatments of CNTs, in 

contrast to the treatment cost is seriously in doubt.      

In addition to the mentioned methods, some very recent studies demonstrated 

‘grafting CNTs on microparticles’ as an effective way to fabricate nanocomposites. 

Growing CNTs on microfibers or microparticles seems more practical and 

economically performable to tailor dispersion of nanotubes through conventional 

manufacturing apparatus (Dichiara et al., 2012; Li et al., 2013; Zeng et al., 2008). 

Whereas other efforts require chemical or physical treatment of nanofillers or 

polymer prior to the mixing process. Furthermore, by growing nanotubes on 

microfiller, a multiscale filler will be fabricated which can offer the advantages of 

both nanosize and microsize fillers.    

In this doctoral research, the author have attempted to introduce some multiscale 

fillers through growing CNTs on different microfillers. These microfillers include: 

short glass fiber, short carbon fiber and silica mesoporous particles. CNTs are grown 

onto the surface of these substrates fabricating an isotropic structure referred to as 
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multiscale fillers. The grown nanotubes create an interphase region between polymer 

matrix and microfiber, which are expected to improve the stress transfer. Since the 

CNTs are attached to the microfiller, it is anticipated that the multiscale fillers will 

disperse within the matrix by use of the conventional mixing process. Resolving the 

dispersion problem by introduction of multiscale fillers is a preferred approach 

compared to chemical treatment methods because of low cost, relative simplicity, 

preserving the intrinsic properties of CNTs as well as adapting capability to the 

conventional manufacturing process.   

Both thermoset and thermoplastic polymer are used as composite matrix to identify 

the advantages of CNTs-microfillers. Epoxy resin as a thermoset and polypropylene 

as a thermoplastic matrix are employed to investigate the reinforcing efficiency of 

multiscale fillers. Both types of multiscale fillers which were CNTs-short fiber and 

CNTs-silica, were incorporated with epoxy and polypropylene via common mixing 

techniques. It is expected that such method addresses the dispersion problem of 

CNTs and subsequently improves the mechanical properties of the polymer 

nanocomposites. In addition, CNTs-silica particles are studied regarding the 

rheological behavior of nanocomposites to demonstrate another advantage of 

multiscale fillers during processing.     

1.4 The Aim and Objectives of Study 

The main aim of this study was to investigate the effects of several CNT-multiscale 

fillers on the problems associated with nanotubes dispersion and to improve the 

mechanical properties of polymer nanocomposites.   

To achieve this aim, the following specific objectives have been pursued: 

 

(a) To characterize the morphology and quality of CNT grown on short fiber as a 

multiscale filler. 

(b) To characterize the morphology and quality of mutiscale filler produced by 

growing CNT on silica microparticles. 

(c) To investigate the reinforcing effects of both short fiber and silica multiscale 

fillers on mechanical properties of polypropylene nanocomposites produced 

through common manufacturing process.  

 (d) To identify their reinforcing effects of both short fiber and silica multiscale 

fillers on mechanical properties of epoxy nanocomposites. 

 (e) To study the reinforcement efficiency of produced CNT-microfiller 

reinforcements through employing micromechanical modeling approaches.  
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1.5 Scope of Work 

The scope of work is schematically shown in Figure 1.3. In addition, 

micromechanical modeling was performed to investigate their prediction ability of 

elastic modulus of multiscale composites.  

 
Figure ‎1.3. Schematic representation of scope of work 

As shown in Figure 1.3, the synthesis of two types of mutiscale fillers will be 

discussed. Among various methods of nanotube synthesis, CVD has shown the most 

promise for industrial-scale deposition, because of its price/unit ratio, and its 

capability of growing nanotubes directly on a desired substrate. Therefore, CNT-

short fiber was synthesized through CVD process and incorporated within 

polypropylene as well as epoxy matrix. Mechanical and thermal characterizations 

were carried out to investigate the effects of CNT-short fiber reinforcements. The 

work continued by the introduction of CNT-silica as another type of multiscale filler. 

The mixing of CNT-silica particle within polypropylene and epoxy matrix provided 

multiscale composites which were characterized mechanically and thermally. 

Micromechanical models were employed to study the reinforcement efficiency of the 

produced fillers.  

Among different types of polymers, epoxy resin and polypropylene were selected as 

a thermoset and thermoplastic polymers respectively. Epoxy has always been the 

preferred choice as the matrix for advanced composites due to its excellent properties 

and its suitability for various processing techniques. Epoxy as a thermosetting 

polymer often possesses strong mechanical properties as well as high temperature 

and chemical resistance. It has a wide range of industrial applications, including 

metal coatings, use in electronic and electrical components, high tension electrical 

insulators, fiber-reinforced plastic materials, and structural adhesives commonly used 

in boat building. 
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Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a 

wide variety of applications including packaging and labeling, textiles (e.g., ropes, 

thermal underwear and carpets), stationery, plastic parts and reusable containers of 

various types, laboratory equipment, loudspeakers, automotive components, and 

polymer banknotes. A polymer made from the monomer propylene, PP is rugged and 

unusually resistant to many chemical solvents, bases and acids. Research is ongoing 

with PP as makers experiment with different methods for synthesizing it. Some of 

these experiments yield the promise of exciting new types of plastic, with new 

consistencies and a different feel from the fairly rigid version that most people are 

used to. Mixing CNT within PP has been introduced as a new technique to provide a 

new nanocomposite with some mechanical and thermal advantages.  

1.6 The Outline of the Thesis 

Chapter 2 includes a literature review of properties of CNTs, methods used to 

produce CNTs, grafting approaches of CNTs on several substrates with special 

emphasise given to short fiber and microparticles, dispersion methods of CNTs as 

well as mechanical properties of polymer nanocomposites as a result of mixing 

CNTs. 

In chapter 3, the methodology employed to fabricate CNTs-short fiber and CNTs-

silica fillers as the reinforcement of nanocomposites are discussed. Manufacturing 

process of nanocomposites and mechanical and reological analysis methods are also 

explained. The characterization techniques of both multiscale fillers and 

nanocomposites are discussed.   

Chapter 4 reports the morphology and characterizes the quantity and the crystallinity 

of the CNTs grown on short fibers under certain growth parameters. The effects of 

CNTs-short fiber reinforcements on the mechanical properties of polypropylene and 

epoxy matrix are presented. The relationship of mechanical improvements with 

microstructural characters of nanocomposites is discussed.  This chapter continues by 

reporting the characteristics of CNTs-silica, morphology and effective parameters on 

the synthesis. This is followed by reporting the enhanced mechanical properties 

obtained as a result of incorporating CNT-silica microparticles into the epoxy and 

polypropylene matrix. The rheological behaviour of epoxy suspensions containing 

multiscale particles and CNT-silica polypropylene composites are compared with 

pure polymers.  

Chapter 5 concludes the research finding and provides suggestions for the future 

work. 
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