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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

DIRECT METHODS VIA MULTIPLE SHOOTING TECHNIQUE
FOR SOLVING BOUNDARY VALUE PROBLEMS

By

PHANG PEI SEE

MAY 2015

Chair: Zanariah Abdul Majid, Ph.D.

Faculty: Science

In this thesis, nonlinear two-point second order boundary value problems (BVPs)
are solved using the one-point, two-point block and three-point block direct method.
Subsequently, the two-point direct block method is extended to solve third order
BVPs. It also elaborates on the computational complexity, stability analysis, consis-
tency, convergent and the order of the methods.

Multiple shooting technique via the three-step iterative method is implemented in
order to solve the BVPs. This approach can avoid the sensitive BVPs when choosing
the wrong initial guessing value and converge faster compared to the existing method.
Variable step size strategy is adapted for solving second order and third order BVPs
respectively. Furthermore the variable step size and order strategy is developed to
solve second order BVPs directly. Besides that, a two-point direct block method is
proposed to solve three applications of BVPs in fluid dynamics. These applications
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are modelled as third order BVPs and system with combination of third and second
order BVPs.

Numerical results showed that the performance of the developed methods can obtain
better results in terms of maximum error, total step, total function calls and exe-
cution time when compared to existing method. In conclusion, the proposed direct
block methods in this thesis are appropriate for solving second order and third order
nonlinear boundary value problem.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH TERUS MELALUI TEKNIK PENEMBAKAN BERBILANG
UNTUK MENYELESAIKAN MASALAH NILAI SEMPADAN

Oleh

PHANG PEI SEE

MAY 2015

Pengerusi: Zanariah Abdul Majid, Ph.D.

Fakulti: Sains

Dalam tesis ini, masalah nilai sempadan (MNS) dua titik tak linear akan disele-
saikan oleh kaedah terus satu-titik, blok dua-titik dan blok tiga-titik. Seterusnya,
kaedah terus blok dua-titik dilanjutkan untuk menyelesaikan MNS peringkat ketiga.
ia juga menghuraikan tentang kerumitan pengiraan, analisis kestabilan, konsistensi,
penumpuan dan peringkat untuk kaedah.

Teknik penembakan berbilang melalui kaedah tiga langkah lelaran dilaksanakan un-
tuk menyelesaikan MNS. Pendekatan ini boleh mengelakkan MNS yang sensitif apa-
bila memilih nilai tekaan yang salah telah dilakukan dan membolehkan penumpuan
yang lebih cepat berbanding dengan kaedah yang sedia ada. Strategi saiz langkah
berubah digunakan untuk menyelesaikan peringkat kedua dan ketiga MNS masing-
masing. Tambahan pula strategi saiz langkah dan peringkat berubah dibangunkan
untuk menyelesaikan MNS peringkat kedua secara langsung. Selain itu, kaedah terus
dua-titik blok dicadangkan untuk menyelesaikan tiga aplikasi MNS dalam dinamik
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bendalir. Applikasi ini dimodelkan sebagai MNS berperingkat tiga dan sistem gabun-
gan MNS peringkat dua dan tiga.

Hasil berangka menunjukkan bahawa prestasi kaedah yang dibangunkan boleh men-
dapatkan keputusan yang lebih baik dari segi ralat maksimum, jumlah langkah,
jumlah fungsi panggilan dan masa pelaksanaan. Kesimpulannya, kaedah blok terus
yang dicadangkan dalam tesis ini adalah sesuai untuk menyelesaikan peringkat kedua
dan ketiga masalah nilai sempadan tak linear .
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CHAPTER 1

INTRODUCTION
1.1 Introduction

In engineering and the physical sciences, problems in heat transfer equation and
boundary layer equation that are modelled as boundary value problems (BVPs), are
often encountered. Therefore, various studies have been done to find solutions for
the BVPs. In the case where the BVPs are linear, the analytic solution can be ob-
tained and solved using the analytic method. Unfortunately, most of the real world
problems are modelled as nonlinear BVPs. In this case, it is impossible to identify
analytic solutions to these problems. Even if the analytic solutions do exist, the eval-
uation involves a tedious process; thus, triggering rigorous studies in determining the
approximate solutions of the BVPs to be carried out in recent years.

Since there is a high demand to improve the performance of the methods used to
solve the BVPs numerically,the development of a quick method is essential in this
research area. Many numerical methods have been developed such as the finite differ-
ent method, collocation method and initial value method to solve BVPs numerically.
The most popular of the initial value method is to solve BVPs indirectly by reduc-
ing the higher order differential equation to the first order equation system. This
approach is easy to implement, but it will enlarge the equation system and make
the process more costly. In this research, a more efficient method that can solve the
higher order BVPs directly is developed. The higher order BVPs will be treated as
the original form without being reduced to the system of first order the equation.
The initial value method developed in this research is a multistep method which is
called the block method. The block method has an advantage as it can approximate
more than one solution in a single step.

The selection of the step size to solve BVPs by the numerical method is important
in obtaining more accurate and efficient results. Smaller step sizes will produce a
more accurate result, but it lengthens the execution time. Most existing research for
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solving BVPs use constant step size; however, this research implements the use of
the variable step size strategy and the variable step size and order strategy. These
strategies assure the accuracy and efficiency of the proposed code.

The shooting technique is required to transform the boundary condition to the initial
condition with generate the guessing value. This research implemented the multiple
shooting techniques and replace the root finding method from the Newton method
with the three-step iterative method in order to achieve a faster convergent.

The problem in fluid dynamic is often modelled as the system of combination for the
second and third order of the BVPs. When using the existing BVPs solver, many
researchers face the difficulty to obtain the second solution when the dual solution
exists. Researchers are required to test various initial guessing values to obtain the
second solution. This research presents a code which is a combination of the second
and third order BVPs adapted with multiple shooting technique via a three-step
iterative method. The advantage of the proposed code is that with two initial guess-
ing values, the researcher can obtain both the first and second solutions for a problem.

1.2 Objectives of the Thesis

The main objective of this thesis is to develop one-point and block direct method
adapted with multiple shooting technique via a three-step iterative method to solve
non-linear two-point BVPs. The objectives can be accomplished by:

1. deriving one-point direct method and implementing the method to solve second
order BVPs using the variable step size strategy;

2. deriving two-point and three-point direct block methods and implementing
these methods to solve the second order of BVPs using the variable step size
strategy;

3. deriving two-point direct block method of different orders and implementing
the method to solve the second order of BVPs using the variable step size and

2
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order strategy;

4. deriving two-point direct block method and implementing the method for solv-
ing the third order of BVPs using the variable step size strategy; and

5. developing an algorithm which consists of a combination of the second and
third order BVPs, and implementing the algorithm to solve the applications of
BVPs in fluid dynamic.

1.3 Motivation and Contribution of the Thesis

Boundary value problem has wide application therefore much attention has been
paid on finding the solution of the BVPs. Along with the development of computer
technology, the usage of numerical methods has been popularized and there are a
large number of numerical methods available to be utilized in solving the BVPs.
Famous example are the collocation method which is the based algorithm in bvp4c,
bvp5c and COLNEW codes. The limitation of these codes are the collocation method
cannot solve the BVPs directly, therefore these solvers are expensive in term of
execution time. This is the motivation of this study to developed new codes which
can solve the BVPs directly. It is worth to mention that most of the available
BVP solvers is implement adapted with simple shooting technique. For example the
matlab solver, dsolve and the mathematica solver, mshoot are based on the simple
shooting technique. Unfortunately, simple shooting technique may fail to converge
when there is a sensitive BVPs or a bad initial guessing value was chosen. Therefore,
multiple shooting technique has been used in this research. Besides that, to improve
the efficiency for solving the BVPs, the block method was chosen. This is because
the block method can solve the higher order BVPs directly and approximated the
solutions more than one points. It is not surprising that the block method has been
used to solve the BVPs by others researches. So far, all the block method to solve the
BVPs is implement with the constant step size. The contribution of this research is
to develop new algorithms of direct block method for solving second and third order
BVPs with variable step size (VS) and variable step size and order (VSVO) strategy.

3
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1.4 Scope of the Thesis

This thesis concentrates on the development of new algorithms to solve the second
order and third order of the boundary value problems (BVPs) directly. Three numer-
ical methods, i.e. the one-point direct method, the two-point direct block method
and the three-point direct block method will be derived and discussed in this the-
sis. The properties of this method will be analysed in terms of order, consistence,
convergence, zero-stable and computational complexity. These methods are adapted
with the multiple shooting technique via the three-step iterative method to solve
the second order and third order of the BVPs. Two strategies implemented in this
thesis are variable step size strategy, and variable step size and order strategy. The
application problems of BVPs in fluid dynamic will be solved.

1.5 Boundary Value Problem

Boundary value problems (BVPs) are defined as differential equations subject to a
set of additional restrictions on boundaries, which are known as boundary condi-
tions. One of the subdivisions of BVPs is between linear and non-linear problems,
dependent on the type of function in the differential equation consisting of BVPs.
The nth-order BVPs is linear if the differential equation is as follows:

y(n) = Pn(x)y(n−1) + ... + P3(x)y′′ + P2(x)y′ + P1(x)y + R(x),

where R(x), P1(x), P2(x), ..., Pn(x) are functions of x or constants.
The nth-order nonlinear BVPs consists of the differential equation as follows:

y(n) = f(x, y, y′, y′′, ..., yn−1).

In this research, second and third order nonlinear BVPs are the focus.
The general second order two-point nonlinear BVPs are as follows:

y′′ = f(x, y, y′), a ≤ x ≤ b, (1.1)
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subject to the three common type of boundary conditions:

1. Dirichlet boundary condition: all conditions for the primary dependent variable

y(a) = α, y(b) = β, (1.2)

where a, b, α and β are constants.

2. Neumann boundary condition: all conditions for the derivative of the primary
dependent variable

y′(a) = α, y′(b) = β, (1.3)

where a, b, α and β are constants.

3. Mixed boundary condition:

c1y + c2y
′(a) = α, c3y + c4y

′(b) = β, (1.4)

where a, b, α and β are constants; and c1, c2, c3 and c4 are simple function of x

or constants.

The general third order nonlinear BVPs are as follows:

y′′′ = f(x, y, y′, y′′), a ≤ x ≤ b, (1.5)

subject to various boundary conditions. Below are a list of some boundary conditions
for third order BVPs:

1. Type I boundary condition:

y(a) = α, y′(a) = γ, y(b) = β. (1.6)

2. Type II boundary condition:

y(a) = α, y′(a) = γ, y′(b) = β. (1.7)
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3. Type III boundary condition:

y(a) = α, y′′(a) = γ, y(b) = β. (1.8)

In this research, the Dirichlet and Neumann type second order BVPs will be focused.
For third order BVPs of type I, II and type III boundary conditions will be covered
. The solution to the BVPs is a solution to the differential equation which also
satisfies the boundary conditions. The following theorem gives the general conditions
to ensure that the solution to a nth-order BVPs exists and unique.

Theorem 1.1 (Existence and Uniqueness, Edwards et al. (2008))
Suppose the function, f(x, y, y′, y′′, ..., y(n)) in the BVPs is continuous on the set,

D = {(x, y, y′, y′′, ..., y(n))|a ≤ x ≤ b,−∞ < y, y′, y′′, ..., y(n) < ∞}.

The BVPs have a unique solution when the following properties have been fulfilled:

i) f(x, y, y′, y′′, ..., y(n)) ∈ D is continuous function.
ii) f(x, y, y′, y′′, ..., y(n)), fx(x, y, y′, y′′, ..., y(n)), fy(x, y, y′, y′′, ..., y(n)),

fy′(x, y, y′, y′′, ..., y(n)), ..., fy(n)(x, y, y′, y′′, ..., y(n)) are bounded.

iii) f(x, y, y′, y′′, ..., y(n)) > 0 on [a, b] ∈ D.

1.6 Preliminary Concepts

In this section, the preliminary concepts to be used throughout this thesis are estab-
lished. The general initial value methods for solving BVPs may be categorized as
either a single step or multistep method. The single step method is a self-starting
method, as only one back value is needed, such as the Euler and Runge-Kutta
method. The multistep method uses more than one back value to determine the
next mesh point. Generally, the one-step method will be employed to obtain these
initial values. The initial value methods developed in this thesis are direct method of
Adams type, which is a subfamily of the linear multistep method (LMM). Lambert
(1991) and Fatunla (1991) stated the following definitions of LMM. The general form
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of the k step LMM may written as follows:

k∑

j=0
αvjyn+vj = h

k∑

j=0
βvjy

′
n+vj

+ h2
k∑

j=0
γvjy

′′
n+vj

+ ... + hd
k∑

j=0
δvjfn+vj ,

j = 0, 1, ..., k, vj =

j∑

i=0
ri,

where αj , βj , γj and δj are constants, rj is the ratio of the step size and assume that
αk 6= 0. The linear operator L associated with the LMM is defined by the following:

L[y(x); h] =
k∑

j=0
[αvjy(x + vjh)− hβvjy

′(x + vjh)−

h2γvjy
′′(x + vjh)− ...− hnθvjy

(n)(x + vjh)],

j = 0, 1, ..., k, vj =

j∑

i=0
ri, (1.9)

where y is an arbitrary and continuously differentiable function on [a, b].

To determine the order of the method, the term in Eq. (2.9) is expanded using Taylor
polynomials as follows:

L[y(x); h] = C0y(x) + C1hy(1)(x) + ... + Cph
py(p)(x) + · · · , (1.10)

where C0, C1, ..., Cp are constants satisfying:

7



© C
OPYRIG

HT U
PM

C0 =
k∑

j=0
αvj

C1 =
k∑

j=0
vjαvj +

k∑

j=0
βvj

C2 =
k∑

j=0

v2
j

2
αvj +

k∑

j=0
vjβvj +

k∑

j=0
γvj

C3 =
k∑

j=0

v3
j

3!
αvj +

k∑

j=0

v2
j

2
βvj +

k∑

j=0
vjγvj +

k∑

j=0
σvj

...

Cp =
k∑

j=0

v
p
j

p!
αvj +

k∑

j=0

v
p−1
j

(p− 1)!
βvj +

k∑

j=0

vj
p−2

(p− 2)!
γvj +

k∑

j=0

vj
p−3

(p− 3)!
σvj ,

(1.11)

where j = 0, 1, ..., k, vj =
j∑

i=0
ri, p = 4, 5, 6, ...

Definition 1.6.1 The LMM is order of p if C0 = C1 = ... = Cp+r−1 = 0 and
Cp+r 6= 0 where r is the order of the equation.

Definition 1.6.2 The LMM is of order p is said to have error constant Cp+r where
r is the order of the equation.

Definition 1.6.3 The LMM is zero stable provided the roots Rj , j = 0(1)k of the

first characteristic polynomial ρ(R) specified as ρ(R) = det
[∑k

i=0 A(i)Rk−i
]

= 0,
satisfy |Rj | ≤ 1 and the multiciplicity for the |Rj | = 1 must not exceed the order of
the equation.

Definition 1.6.4 The LMM is said to be consistent if it has order greater or equal
to 1, (p ≥ 1).
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Definition 1.6.5 The LMM is said to be convergent if it is consistent and zero
stable.

1.7 Predictor-Corrector Method

A predictor-corrector method involves a combination of an explicit and implicit meth-
ods. When β0, γ0 and δ0 for a k-step method in the Eq.(2.4) is zero, the method
is called an explicit method. Meanwhile, when the values of β0, γ0, and δ0 are not
equal to 0, the method is implicit. The explicit method is called as the predictor
and the implicit method is called the corrector. This is because the explicit method
is used to predict the approximate solution, y at point x, while the implicit method
is used to improve the accuracy of the solution, y at point x. Usually, the corrector
method used is more accurately than the predictor method. In this thesis, the cor-
rector formulae is one order higher than the predictor.
The predictor-corrector scheme use in this thesis is PE(CE)t, which involves itera-
tion to convergence as follows:
P : Evaluate the approximate solution, y

(0)
k+1 using predictor formulae.

E: Evaluate the function.
C: Evaluate the approximate solution, y

(1)
k+1 using corrector formulae.

E: Evaluate the function.
If |y(t)

k+1 − y
(t−1)
k+1 | > TOL, t = 1, 2, 3, ... repeat the step (CE).

Since the predictor-corrector method in this thesis cannot be self-starting, the one-
step method was chosen as the starting method to obtain the initial value. The
one-step method is also implemented the PE(CE)t mode. The one-step methods
used in this thesis are the Euler and modified Euler method.
The predictor formula is written as:

y(xn+1) = y(xn) + hf(xn). (1.12)

The corrector formula is written as:

y(xn+1) = y(xn) +
h

2
(f(xn+1) + f(xn)). (1.13)
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1.8 Outline of the Thesis

The research work presented in the thesis consists of nine chapters. Below is the
summary of each chapter:

Chapter 1 begins with an introduction of the research. The objectives, motivation,
contribution and the scope of the thesis are stated. The introduction of the bound-
ary value problems (BVPs) which includes the existence and uniqueness of BVPs are
presented. Some preliminary concepts and the predictor corrector method will be
discussed.

Chapter 2 consists of a review of the earlier research on BVPs. It also includes the
literature review of the block methods and the shooting technique.

Chapter 3 describes the derivation of the one-point direct method and analyses its
properties including the stability and order. It also introduces the multiple shooting
technique and its adaptation to the direct method in order to solve the second order
of the BVPs using the variable step size strategy. It also introduces the algorithm
developed and discusses the numerical results based on the eight problems tested.

Chapter 4 takes into consideration the use of the direct block method to solve the
second order of BVPs.It shows the derivations of the two-point and three-point block
methods and presents the stability and the order of the methods. It also explains
the proposed methods that are implemented with the multiple shooting technique
via the three step iterative method using the variable step size strategy. Finally, it
shows and discusses the numerical results based on the algorithms 2PNLBVPVS and
3PNLBVPVS which were developed and tested with eight problems of the second
order of BVPs.

Chapter 5 analyses the computational complexity of the one-point direct method
and the block direct method which is determined based on the number of arithmetic
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operations performed in the algorithm. The results show that the computational
complexity of these methods is reliable in estimating the cost of these methods.

Chapter 6 shows the derivation of the two-point direct block method. It presents the
stability and the order of the method. The implementation of the variable step size
and variable order strategy adapted with the multiple shooting technique are used
to solve the second order BVPs. It then presents and discusses the numerical results.

Chapter 7 covers the solution of the third order BVPs. It presents the derivation,
stability and order of the two-point direct block method to solve the third order
BVPs. The multiple shooting technique via the three-step iterative method is im-
plemented to solve the third order BVPs using variable step size strategy. It shows
and discusses the numerical results of eight problems tested.

Chapter 8 focuses on the solutions to the application of BVPs in fluid dynamic. It
discusses the formulation of the problem and the implementation to solve the prob-
lem. It displays and compares the numerical results with the existing methods.

Chapter 9 summarizes and suggests the future work in this research.

11



© C
OPYRIG

HT U
PM

BIBLIOGRAPHY

Abdullah, A. S., Majid, Z. A. and Senu, N. 2013. Solving third order boundary value
problem with fifth order method. AIP Conf. Proc. 1522: 538–543.

Adesanya, A., Odekunle, M. and Adeyeye, A. 2012. Continuous block hybrid predic-
tor corrector method for the solution of y”= f (x, y, y’). Int. J. Math. Soft Comput
2: 35–42.

Ahmad, S. and Pop, I. 2010. Mixed convection boundary layer flow from a verti-
cal flat plate embedded in a porous medium filled with nanofluids. International
Communications in Heat and Mass Transfer 37 (8): 987–991.

Altıntan, D. and Uğur, Ö. 2014. Solution of initial and boundary value problems by
the variational iteration method. Journal of Computational and Applied Mathe-
matics 259: 790–797.

Aly, E. H., Ebaid, A. and Rach, R. 2012. Advances in the Adomian decomposition
method for solving two-point nonlinear boundary value problems with Neumann
boundary conditions. Computers & Mathematics with Applications 63 (6): 1056–
1065.

Ascher, U., Christiansen, J. and Russell, R. D. 1981. Collocation software for
boundary-value ODEs. ACM Transactions on Mathematical Software (TOMS)
7 (2): 209–222.

Attili, B. S. and Syam, M. I. 2008. Efficient shooting method for solving two point
boundary value problems. Chaos, Solitons & Fractals 35 (5): 895–903.

Azmi, N. A. 2010. Direct Integration Block Method for Solving Higher Order Ordinary
Differential Equations . PhD thesis, Universiti Putra Malaysia.

Bachok, N., Ishak, A. and Pop, I. 2012. Flow and heat transfer characteristics on
a moving plate in a nanofluid. International Journal of Heat and Mass Transfer
55 (4): 642–648.

Bailey, P. B., Shampine, L. F. and Waltman, P. E. 1968. Nonlinear two point bound-
ary value problems . Academic Press.

Bi, W., Ren, H. and Wu, Q. 2009. Three-step iterative methods with eighth-order
convergence for solving nonlinear equations. Journal of Computational and Applied
Mathematics 225 (1): 105–112.

228



© C
OPYRIG

HT U
PM

Blasius, H. 1908. The boundry layers in fluids with little friction. Z. Math. Phys. 56:
1–37.

Burden, R., Faires, J. and Reynolds, A. 1981. Numerical analysis . Prindle, Weber &
Schmidt, Boston, MA.

Choi, J. and Guarino, L. A. 1995. The baculovirus transactivator IE1 binds to viral
enhancer elements in the absence of insect cell factors. Journal of virology 69 (7):
4548–4551.

Chun, C. and Sakthivel, R. 2010. Homotopy perturbation technique for solving two-
point boundary value problems–comparison with other methods. Computer physics
communications 181 (6): 1021–1024.

Cordero, A., Torregrosa, J. R. and Vassileva, M. P. 2011. Three-step iterative meth-
ods with optimal eighth-order convergence. Journal of Computational and Applied
Mathematics 235 (10): 3189–3194.

Cortell, R. 2005. Numerical solutions of the classical Blasius flat-plate problem. Ap-
plied Mathematics and Computation 170 (1): 706–710.

Dehghan, M. and Nikpour, A. 2013. Numerical solution of the system of second-order
boundary value problems using the local radial basis functions based differential
quadrature collocation method. Applied Mathematical Modelling 37 (18): 8578–
8599.

Duan, J.-S. and Rach, R. 2011. A new modification of the Adomian decomposition
method for solving boundary value problems for higher order nonlinear differential
equations. Applied Mathematics and Computation 218 (8): 4090–4118.

Edwards, C. H., Penney, D. E. and Calvis, D. 2008. Elementary differential equations
with boundary value problems. Pearson Prentice Hall Upper Saddle River, NJ.

Ehigie, J., Okunuga, S. and Sofoluwe, A. 2011. 3-point block methods for direct
integration of second order ordinary differential equations. Adv Numer Anal. doi
10 (2011): 513148.

El-Danaf, T. S. 2008. Quartic nonpolynomial spline solutions for third order two-
point boundary value problem. World Academy of Science, Engineering and Tech-
nology 45: 453–456.

229



© C
OPYRIG

HT U
PM

Ezzati, R. and Aghamohamadi, M. 2009. Solving the non linear system of third
order boundary value problems by using He’s homotopy perturbation method.
International Journal of Industrial Mathematics 1 (4): 351–363.

Fatunla, O. S. 1991. Block methods for second order ODEs. International journal of
computer mathematics 41 (1-2): 55–63.

Goldmann, M. 1988. Vectorisation of the multiple shooting method for the nonlinear
boundary value problem in ordinary differential equations. Parallel Computing
7 (1): 97–110.

Ha, S. N. 2001. A nonlinear shooting method for two-point boundary value problems.
Computers & Mathematics with Applications 42 (10): 1411–1420.

Hairer, E. and Wanner, G. 1975. A theory for Nyström methods. Numerische Math-
ematik 25 (4): 383–400.

Hasan, Y. Q. 2012. The numerical solution of third-order boundary value problems
by the modified decomposition method. Advances in Intelligent Transportation
Systems 1 (3): 71–74.

Herbst, B. and Botha, J. 1981. Computable Error Estimates for the Collocation
Method Applied to Two-point Boundary Value Problems. IMA Journal of Numer-
ical Analysis 1 (4): 489–497.

Hermann, M. and Kaiser, D. 1993. RWPM: a software package of shooting methods
for nonlinear two-point boundary value problems. Applied Numerical Mathematics
13 (1): 103–108.

Howarth, L. 1938. On the solution of the laminar boundary layer equations. In Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 547–579. The Royal Society.

Ibraheem, K. I. and Khalaf, B. M. 2011. Shooting neural networks algorithm for
solving boundary value problems in ODEs. Applications and Applied Mathematics
6 (11): 1927–1941.

Ideon, E. and Oja, P. 2014. Linear/linear rational spline collocation for linear bound-
ary value problems. Journal of Computational and Applied Mathematics 263: 32–
44.

230



© C
OPYRIG

HT U
PM

Iftikhar, M., Rehman, H. U. and Younis, M. 2013. Solution of Thirteenth Order
Boundary Value Problems by Differential Transformation Method. Asian Journal
of Mathematics and Applications 2014.

Islam, M. S., Shirin, A. et al. 2011. Numerical solutions of a class of second order
boundary value problems on using Bernoulli polynomials. Applied Mathematics
2 (09): 1059.

Islama, S. U., Aziz, I., Šarler, B. et al. 2010. The numerical solution of second-
order boundary-value problems by collocation method with the Haar wavelets.
Mathematical and Computer Modelling 52 (9): 1577–1590.

Ismail, F., Ken, Y. L. and Othman, M. 2009. Explicit and implicit 3-point block
methods for solving special second order ordinary differential equations directly.
Int. Journal of Math. Analysis 3: 239–254.

Jain, M. and Saldanha, J. 1978. Higher order difference methods for second order
two-point boundary-value problems. Journal of Computational and Applied Math-
ematics 4 (3): 199–206.

Jator, S. 2009. Novel finite difference schemes for third order boundary value prob-
lems. Int. J. of Pure and Applied Mathematics 53 (1): 37–54.

Jha, N. 2013. A fifth order accurate geometric mesh finite difference method for
general nonlinear two point boundary value problems. Applied mathematics and
computation 219 (16): 8425–8434.

Keller, H. B. 1968. Numerical methods for two-point boundary-value problems.
Waltham.

Khan, A. and Aziz, T. 2003. The numerical solution of third-order boundary-value
problems using quintic splines. Applied mathematics and computation 137 (2):
253–260.

Khuri, S. and Sayfy, A. 2009. Spline Collocation Approach for the Numerical Solu-
tion of a Generalized System of Second-Order Boundary-Value Problems. Applied
Mathematical Sciences 3 (45): 2227–2239.

Lambert, J. 1991. Numerical methods for ordinary differential systems: the initial
value problem. Wiley Chichester.

231



© C
OPYRIG

HT U
PM

Langkah, K. B. D.-T. E., Majid, Z. A., Azmi, N. A., Suleiman, M. and Ibrahaim,
Z. B. 2012. Solving directly general third order ordinary differential equations using
two-point four step block method. Sains Malaysiana 41 (5): 623–632.

Liang, S. and Jeffrey, D. J. 2009. An efficient analytical approach for solving fourth or-
der boundary value problems. Computer Physics Communications 180 (11): 2034–
2040.

Liu, L.-B., Liu, H.-W. and Chen, Y. 2011. Polynomial spline approach for solving
second-order boundary-value problems with Neumann conditions. Applied Mathe-
matics and Computation 217 (16): 6872–6882.

Lu, J. 2007. Variational iteration method for solving two-point boundary value prob-
lems. Journal of Computational and Applied Mathematics 207 (1): 92–95.

Majid, Z. A. 2004. Parallel block methods for solving ordinary differential equations.
PhD thesis, Universiti Putra Malaysia.

Majid, Z. A., Azmi, N. A. and Suleiman, M. 2009. Solving second order ordinary
differential equations using two point four step direct implicit block method. Eu-
ropean Journal of Scientific Research 31 (1): 29–36.

Majid, Z. A., Hasni, M. M. and Senu, N. 2013. Solving second order linear Dirichlet
and Neumann boundary value problems by block method. Int J Appl Math 43 (2):
71–76.

Majid, Z. A., Mokhtar, N. Z. and Suleiman, M. 2012. Direct two-point block one-step
method for solving general second-order ordinary differential equations.Mathemat-
ical Problems in Engineering 2012.

Majid, Z. A. and Suleiman, M. 2008a. Variable step variable order two point block
fully implicit method for solving ordinary differential equations. European Journal
of Scientific Research 21 (3): 521–529.

Majid, Z. A. and Suleiman, M. 2008b. Variable step variable order two point block
fully implicit method for solving ordinary differential equations. European Journal
of Scientific Research 21 (3): 521–529.

Majid, Z. A. and Suleiman, M. B. 2006. Direct integration implicit variable steps
method for solving higher order systems of ordinary differential equations directly.
Sains Malaysiana 35 (2): 63–68.

232



© C
OPYRIG

HT U
PM

Malathi, V. 1999. Solving boundary value problems for ordinary differential equations
using direct integration and shooting techniques. PhD thesis, Ph. D diss., Universiti
Putra Malaysia.

Matinfar, M. and Ghasemi, M. 2013. Application of variational iteration method to
nonlinear heat transfer equations using He’s polynomials. International Journal of
Numerical Methods for Heat & Fluid Flow 23 (3): 520–531.

Mir, N. A., Rafiq, N. and Akram, S. 2009. An efficient three-step iterative method
for non-linear equations. Int. J. Math. Analysis 3 (40): 1989–1996.

Mohamad, A. J. 2010. Solving second order non-linear boundary value problems by
four numerical methods. Eng. Tech. J 28 (2): 369–381.

Morrison, D. D., Riley, J. D. and Zancanaro, J. F. 1962. Multiple shooting method
for two-point boundary value problems. Communications of the ACM 5 (12): 613–
614.

Mukhtar, N. Z., Majid, Z. A., Ismail, F. and Suleiman, M. 2012. Numerical Solution
for Solving Second Order Ordinary Differential Equations Using Block Method.
In International Journal of Modern Physics: Conference Series, 560–565. World
Scientific.

Noor, M. A. 2007. New family of iterative methods for nonlinear equations. Applied
Mathematics and Computation 190 (1): 553–558.

Noor, M. A. and Noor, K. I. 2006. Three-step iterative methods for nonlinear equa-
tions. Applied Mathematics and Computation 183 (1): 322–327.

Noor, M. A., Noor, K. I., Mohyud-Din, S. T. and Shabbir, A. 2006. An iterative
method with cubic convergence for nonlinear equations. Applied Mathematics and
Computation 183 (2): 1249–1255.

Omar, Z. and Suleiman, M. 2005. Solving Ordinary Differential Equations Using
Parallel 2-Point Explicit Block Method. Matematika 21: 15–23.

Phang, P. 2011. Direct method of adams moulton type for solving two-point boundary
value problem. PhD thesis, Master diss., Universiti Putra Malaysia.

Porshokouhi, M. G., Ghanbari, B., Gholami, M. and Rashidi, M. 2011. Numerical
Solution of Eighth Order Boundary Value Problems with Variational Iteration
Method. Gen 2 (1): 128–133.

233



© C
OPYRIG

HT U
PM

Rafiullah, M. and Haleem, M. 2010. Three- Step Iterative Method with Sixth Or-
der Convergence for Solving Nonlinear Equations. International Journal of Math.
Analysis 4 (50): 2459–2463.

Roberts, S. and Shipman, J. 1967. Continuation in shooting methods for two-
point boundary value problems. Journal of mathematical analysis and applications
18 (1): 45–58.

Russell, R. D. 1977. A comparison of collocation and finite differences for two-point
boundary value problems. SIAM Journal on Numerical Analysis 14 (1): 19–39.

Saadatmandi, A. and Razzaghi, M. 2007. The numerical solution of third-order
boundary value problems using Sinc-collocation method. Communications in nu-
merical methods in engineering 23 (7): 681–689.

Sakiadis, B. 1961. Boundary-layer behavior on continuous solid surfaces: I.
Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE
Journal 7 (1): 26–28.

Singh, N. and Kumar, M. 2012. Adomian decomposition method for solving higher
order boundary value problems. Mathematical Theory and Modeling 2 (1): 11–22.

Srivastava, P. K. and Kumar, M. 2011. Numerical treatment of nonlinear third order
boundary value problem. Applied Mathematics 2 (08): 959.

Suleiman, M. 1989. Solving nonstiff higher order ODEs directly by the direct inte-
gration method. Applied Mathematics and Computation 33 (3): 197–219.

Tirmizi, I. and Twizell, E. H. 2002. Higher-order finite-difference methods for nonlin-
ear second-order two-point boundary-value problems. Applied mathematics letters
15 (7): 897–902.

Waeleh, N., Abdul Majid, Z., Ismail, F. and Suleiman, M. 2011. Numerical solution
of higher order ordinary differential equations by direct block code. Journal of
Mathematics and Statistics 8 (1): 77–81.

Worland, P. 1974. A stability and error analysis of block methods for the numerical
solution of y"= f (x, y). BIT Numerical Mathematics 14 (1): 106–111.

Xu, D. and Guo, X. 2013. Application of fixed point method to obtain semi-analytical
solution to Blasius flow and its variation. Applied Mathematics and Computation
224: 791–802.

234



© C
OPYRIG

HT U
PM

Yao, Q. 2010. Successively iterative method of nonlinear Neumann boundary value
problems. Applied Mathematics and Computation 217 (6): 2301–2306.

Yasin, M., Arifin, N., Nazar, R., Ismail, F. and Pop, I. 2013. Mixed convection
boundary layer flow on a vertical surface in a porous medium saturated by a
nanofluid with suction or injection. Journal of Mathematics and Statistics 9 (2):
119.

Yun, J. H. 2008. A note on three-step iterative method for nonlinear equations.
Applied Mathematics and Computation 202 (1): 401–405.

235


	DIRECT METHODS VIA MULTIPLE SHOOTINGTECHNIQUE FOR SOLVING BOUNDARY VALUEPROBLEMS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTERS
	BIBLIOGRAPHY



