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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

 
PREPARATION AND CHARACTERISATION OF DIELECTRIC 

PYROCHLORES IN THE Bi2O3-MgO-M2O5 (M = Ta AND Nb) TERNARY 
SYSTEMS  

 
By 

TAN PHEI YI  

June 2015 

 

 

Chairman: Tan Kar Ban, PhD 
Faculty: Science 
 
A detailed and comprehensive investigation of synthesis and characterisation of the 
pyrochlores in the Bi2O3-MgO-Nb2O5 (BMN) and Bi2O3-MgO-Ta2O5 (BMT) 
ternary systems was presented. The structural flexibility and variable stoichiometry 
of these pyrochlore systems had given rise to many interesting properties. The 
excellent dielectric properties, e.g. low dielectric losses and high dielectric 
constants had rendered BMN and BMT pyrochlores as potential dielectric 
applications. Phase pure cubic pyrochlores in both BMN and BMT systems were 
successfully prepared using conventional solid-state method. As with phase 
diagram study, phase pure cubic pyrochlores in the Bi2O3-MgO-Nb2O5 system 
were found to form in a broad solution area whose compositions with bismuth 
content between 41.88 mole % and 44.50 mole %. The solid solution area was 
represented by an overall general formula of Bi3.36+xMg1.92-yNb2.72-x+yO13.76-x+(3/2)y, 
which used two variables with the associated limits of -0.01 ≤ x ≤ 0.20 and 0.00 ≤ 
y ≤ 0.16, respectively. On the other hand, pyrochlores in the Bi2O3-MgO-Ta2O5 
system formed a relatively larger subsolidus solution area than that of the BMN 
system with the overall general formula Bi3.56-xMg1.96-yTa2.48+x+yO13.50+x+(3/2)y (0.00 ≤ 
x ≤ 0.32 and 0.00 ≤ y ≤ 0.20).  
 
Both BMN and BMT cubic pyrochlores were found to be thermally stable over a 
wide range of temperatures, i.e. 30 - 1000 °C. Selected BMN and BMT 
pyrochlores were characterised by AC impedance spectroscopy and these materials 
were found to exhibit excellent dielectric properties. High dielectric constants, ε’, 
low dielectric losses, tan δ in the order of 10-4 - 10-3 were recorded for BMN and 
BMT pyrochlores whose ε’ values were in the range of 167 - 204 and 70 - 85, 
respectively at temperature of 30 °C and frequency of 1 MHz. Both pyrochlores 
required high activation energies, Ea > 1.0 eV for their electrical conduction. The 
high activation energy suggesting that these materials were typical dielectric 
materials, which their conduction mechanism were governed by the hopping 
electronic type. Meanwhile, relaxor behaviour was observed for both systems in a 



© C
OPYRIG

HT U
PM

ii 
 

low temperature range of 10 K - 320 K. The electrical data at low temperature 
range could be accurately fitted with different types of equivalent circuits, e.g. a 
parallel resistance-capacitance-constant phase element (R-C-CPE) element in 
series with a capacitor.  
 
In attempts to improve the electrical performance of the pyrochlore materials, 
chemical doping using divalent cations such as Ni2+, Cd2+ and Zn2+ cations was 
performed. Different solid solution limits were obtained and the results showed 
that dielectric constants and dielectric losses of divalent cations doped solid 
solutions did not vary significantly with increase of dopants concentration. On the 
other hand, pentavalent dopant, Nb5+ was introduced into BMT cubic pyrochlores 
using a formula of Bi3.50Mg1.80Ta2.70-xNbxO13.80 (0 ≤ x ≤ 2.70). It formed a complete 
substitutional solid solution and the dielectric constants were found to increase 
with increasing Nb5+ concentration. Nb doped BMT pyrochlores exhibited ε’ in the 
range of 81 - 195 and low dielectric loss of 0.0013 - 0.0059. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 
PENYEDIAAN DAN PENCIRIAN BAHAN PIROKLOR DIELEKTRIK 

DALAM SISTEM TERNARI Bi2O3-MgO-M2O5 (M = Ta DAN Nb)  
 

Oleh 
 

TAN PHEI YI 
 

June 2015 
 

 
Pengerusi: Tan Kar Ban, PhD 
Fakulti: Sains  
 
Penyelidikan yang terperinci dan menyeluruh bagi sintesis dan pencirian piroklor-
piroklor dalam kedua-dua sistem Bi2O3-MgO-Nb2O5 (BMN) dan Bi2O3-MgO-
Ta2O5 (BMT) telah dijalankan. Terdapat banyak ciri yang menarik ditunjukkan 
oleh sistem-sistem piroklor berstruktur fleksibel dan berlainan stoikiometri ini. 
Ciri-ciri dielektrik yang cemerlang, contohnya kehilangan dielektrik yang rendah 
dan pemalar dielektrik yang tinggi telah membolehkan piroklor-piroklor BMN dan 
BMT berpotensi dalam aplikasi dielektrik. Fasa tulen piroklor kubus BMN dan 
BMT telah berjaya disintesis dengan menggunakan kaedah tindak balas keadaan 
pepejal. Seperti dalam kajian gambarajah fasa, fasa tulen piroklor kubus dalam 
sistem Bi2O3-MgO-Nb2O5 menunjukkan kawasan larutan pepejal yang luas di 
mana komposisinya mengandungi Bi antara 41.88 % mol hingga 44.50 % mol. 
Kawasan larutan pepejal boleh diwakili oleh formula am, Bi3.36+xMg1.92-yNb2.72-

x+yO13.76-x+(3/2)y di mana dua pembolehubah yang digunakan mempunyai had -0.01 ≤ 
x ≤ 0.20 dan 0.00 ≤ y ≤ 0.16. Sebaliknya, Bi2O3-MgO-Ta2O5 membentuk kawasan 
larutan piroklor kubus yang lebih luas daripada sistem BMN dengan formula 
keseluruhannya Bi3.56-xMg1.96-yTa2.48+x+yO13.50+x+(3/2)y (0.00 ≤ x ≤ 0.32 dan 0.00 ≤ y ≤ 
0.20).  
 
Kedua-dua piroklor kubus BMN dan BMT menunjukkan kestabilan terma dalam 
julat suhu 30 - 1000 °C. Piroklor-piroklor BMN dan BMT yang terpilih telah dikaji 
dengan menggunakan spektroskopi AC impedans dan bahan-bahan ini 
menunjukkan ciri-ciri dielektrik yang bagus. Pemalar dielektrik yang tinggi dan 
kehilangan dielektrik yang rendah iaitu pada julat 10-4 -10-3 telah dicatatkan bagi 
piroklor-piroklor BMN dan BMT di mana nilai ε’ bagi piroklor BMN dan BMT 
masing-masing dalam lingkungan 167 - 204 dan 70 - 85 pada suhu 30 °C dan 
frekuensi 1 MHz. Kedua-dua piroklor memerlukan tenaga pengaktifan yang tinggi, 
Ea > 1.0 eV untuk konduksi elektrik. Tenaga pengaktifan yang tinggi menunjukkan 
bahawa bahan-bahan ini adalah bahan dielektrik dan mekanisma konduksinya 
melibatkan lompatan elektron-elektron dalam bahan tersebut. Sementara itu, sifat 
relaxor dapat diperhati bagi kedua-dua sistem dalam lingkungan suhu yang rendah 
iaitu 10 K - 320 K. Data-data elektrik pada suhu rendah boleh dimuatkan dengan 
tepat pada litar setara yang berbeza, contohnya susunan selari rintangan-kapasitan-
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elemen fasa berterusan (R-C-CPE) ke dalam susunan siri yang mempunyai satu 
kapasitor. 
 
Dalam usaha untuk meningkatkan prestasi elektrik atas bahan-bahan piroklor, 
pendopan kimia dengan menggunakan kation divalen seperti Ni2+, Cd2+ dan Zn2+ 
telah dibuat. Larutan pepejal dengan had yang berbeza telah diperolehi dan 
menunjukkan bahawa tiada perubahan yang ketara dalam pemalar dielektrik dan 
kehilangan dielektrik apabila bahan dop ditambahkan ke dalam larutan pepejal 
kation divalen. Selain daripada itu, dopan pentavalen, Nb5+ didopkan ke dalam 
piroklor BMT dengan menggunakan formula Bi3.50Mg1.80Ta2.70-xNbxO13.80 (0 ≤ x ≤ 
2.70). Ia membentuk satu larutan pepejal gantian yang lengkap dan didapati 
bahawa nilai pemalar dielektriknya meningkat dengan pertambahan kepekatan 
Nb5+. Piroklor BMT dengan dopan Nb menunjukkan nilai ε’ dalam lingkungan 81 - 
195 dan mempunyai kehilangan dielectrik yang bernilai 0.0013 - 0.0059. 
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CHAPTER 1 

INTRODUCTION 

1.1 Electroceramics 
Ceramic is a polycrystalline nonmetallic body, which made from powder that 
formed into a shape and then heating the shape to impart mechanical strength. 
However, this does not include single crystals, glasses and cements. 
Electroceramics are materials that are applicable for electrical use. They are high 
technological materials whose properties and applications depend on a complex 
interplay of structural, processing and compositional varieties. In the first half 
twentieth century, the characteristics of electroceramics are well known for 
chemically stable and high resistivity. The properties is highly diverse, e.g. mineral 
magnetite in ceramic form, which is recognised as having a high electrical 
conductivity besides to its magnetic properties (Moulson and Herbert, 1990(a); 
Irvine et al., 1990). 
 
Advanced ceramics are an essential part of the electronic and electrical equipment 
that used for consumer, industrial, and military applications. The electronic 
ceramics are integral components of the circuits that used in computers, signal 
processing, telecommunications, power transmission, and power control 
technologies. These materials play a ubiquitous but often little-noticed role in our 
daily lives. The applications of electroceramics included ceramic conductors, 
piezoelectric ceramics, pyroelectric materials, dielectrics and insulator, low 
temperature cofired ceramics etc. The electroceramic that are closely related to the 
dielectric ceramics whose properties and applications are discussed in the 
subsequent section 1.2 and 1.3, respectively.   
 

1.2 The Properties of Dielectric Materials 
Dielectric materials exhibit high electrical resistivities and they are poor electrical 
conductor. They cover a wide range of properties, from steatite (relative 
permittivity, ε’ of 6) to complex ferroelectric compositions (relative permittivities, 
ε’ exceeding 20000). Class I dielectrics include low- and medium-permittivity 
ceramics and their dissipation factors are less than 0.003. The medium-permittivity 
covers ε’ in the range of 15 - 500 with temperature coefficients of permittivity in 
the range of 100 to -2000 MK-1. Class II dielectrics consist of high-permittivity 
ceramics based on ferroelectrics whose ε’ values are between 2000 - 20000 within 
varying temperature, field strength and frequency. The dissipation factors of these 
materials are normally below 0.03, but could be at higher level in certain 
temperature ranges especially when high AC fields are applied. Class III dielectrics 
contain a conductive phase that effectively reduces the thickness of dielectric in 
capacitors by at least an order of magnitude (Moulson and Herbert, 1990(c); 
Herbert, 1985). 
 

1.2.1 Polarisability 
When an electric field is applied to an ideal dielectric material, there is no long-
range transport of charge but only limited rearrangement such that the dielectric 
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acquires a dipole moment. This situation is said to be polarised. There are basically 
four types of polarisation mechanisms in dielectric materials and the details for 
each mechanism is described in the next section (Moulson and Herbert, 1990(b)). 
The polarisation gives rise to useful behaviour, such as electrical energy storage 
(capacitors) and piezoelectric effect.  
 

1.2.1.1 Types of Polarisation Mechanism  
i) Electron polarisation 
This mechanism involves deformation of external electron clouds of individual 
atoms under the electric field. Relaxation time of this polarisation is in the range of 
10-14 - 10-15 s (Nowotny and Rekas, 1992). 
 
 
 
 
 
 
Figure 1.1: Electronic polarisation (Nowotny and Rekas, 1992). 
 
ii) Space charge polarisation 
It is also the Maxwell-Wagner polarisation which involves the deformation of the 
space charge localised at the grain boundaries and dislocations (Nowotny and 
Rekas, 1992). This polarisation generally found in ferrites and semiconductors 
when temperature increases (Gao and Sammes, 1999). 
 

 

 

 

 
Figure 1.2: Space charge polarisation (Nowotny and Rekas, 1992). 
 
iii) Dipole polarisation 
This polarisation involves the orientation of the permanent dipoles, if present in the 
lattice without an electric field. Application of the field results in the change of 
dipoles in their orientations. The orientation time of this polarisation is much 
longer which they remains within 10-8 - 10-10 s (Nowotny and Rekas, 1992). 
 
 
 
 
 
 
Figure 1.3: Dipole polarisation (Nowotny and Rekas, 1992). 
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iv) Ionic (atomic) polarisation 
The polarisation involves a shift of lattice atoms (ions) from their equilibrium 
positions to more stable positions under an electric field. The charge is then 
slightly redistributed within the material giving rise to a relaxation time about 10-13 
s (Gao and Sammes, 1999; Nowotny and Rekas, 1992).  
 

 

 
 
 
 
Figure 1.4: Ionic (atomic) polarisation (Nowotny and Rekas, 1992). 
 
 
1.2.2 Permittivity  
The absolute permittivity, εo is the measure of the resistance of a substance when it 
is encountered formation of electric field. Relative permittivity or dielectric 
constant, ε’ shows the relative permittivity value of a medium to the absolute 
permittivity of vacuum or in free space, εo where εo is 8.854 ×10-12 Fm-1. The 
relative permittivity, ε’ of a material shows its energy storing capacity when a 
potential is applied across it. It is related to the macroscopic properties like 
polarisation or capacitance. The permittivity of a material determines the relative 
speed that an electrical signal can travel in that material. A low permittivity will 
result in a high signal propagation speed (Sebastian, 2008(a)).  
 
Figure 1.5 (a) illustrates a dielectric material in a situation of simply absent air (air/ 
vacuum). The two plates are segregated by a distance of l while the area of each 
plate is given as A and the plates are connected to a voltage supply, V. When the 
voltage is applied, it causes one of the plates positively charged and the other plate 
is negatively charged. The magnitude of charge on each plate is given by Q while 
the magnitude of charge per unit area is given by Q/A. The capacitance, Co 
indicates the case of air (between the two plates) and has the unit of Coulomb/Volt 
(the same as Farad, F). Hence, it is given the formula as below: 
Co = εo A/l                   (1.1) 
where capacitance is proportional to A and is inversely proportional to l (Chung, 
2010). 
 
Figure 1.5 (b) shows a parallel-plate capacitor like which the dielectric material 
replaces the air with relative dielectric constant, ε’. The magnitude of charge on 
each plate is ε’Q instead of Q, hence the capacitance, C is given the formula as  
C = ε’Q/V = ε’Co = εoε’A/l                  (1.2) 
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Figure 1.5 (a): A parallel-plate dielectric capacitor in the form of air 
separated by plates that are connected to a voltage supply, which makes one 
plate positively charged while the other plate is negatively charged (Chung, 
2010). 
 

 

 

 

 

 
 
Figure 1.5 (b): A parallel-plate capacitor like that in Figure 1.5 (a), except that 
the air between the two plates is replaced by a dielectric material (i.e. an 
electrical insulator) (Chung, 2010). 
 
 
1.2.3 Dielectric Loss, tan δ 
Dielectric loss or dissipation factor, tan δ is the conversion of electrical energy to 
heat in a capacitor. This is due to the conversion of the movement of charges into 
vibrations of the lattice, i.e. phonons.  It is expressed by the power factor, sin δ, 
where (1/2 π – δ) is the advance in phase of the current relative to that of an applied 
alternating voltage. The power factor is the fraction of the voltage-ampere product 
applied to a capacitor that is lost as heat, it is usually given as a percentage and this 
usage is commonly extended to the dissipation factor (Moulson and Herbert, 
1990(c)). The origin of dielectric losses can also be considered as a delay between 
the electric field and the electric displacement vectors. The total dielectric loss is 
the sum of intrinsic and extrinsic losses. Intrinsic dielectric losses are the losses in 
the perfect crystals which depend on the crystal structure. This can be described by 
the interaction of the phonon system with the ac electric field. Extrinsic losses are 
associated with imperfections in the crystal lattice which caused by impurities, 
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microstructural defects, grain boundaries, porosity, microcracks, order-disorder, 
random crystallite orientation, dislocations, vacancies, dopant atoms etc (Sebastian, 
2008(a)). 
 
The dielectric loss can be portrayed using the formula as follow: 
tan δ = ε’’/ε’                   (1.3) 
where ε’ is the relative permittivity; ε’’ is the imaginary part of the permittivity 
which termed the loss factor.  
The tan δ is generally taken as an indication of the quality of a particular type of 
capacitor. A high loss is not preferable in almost all applications. It lowers the 
quality and results in the generation of heat that raises the temperature of a 
capacitor.    
 

1.2.4 Temperature Coefficient of Capacitance (TCC) 
Temperature coefficient of capacitance (TCC) is the maximum change in 
capacitance over a specific temperature range. The capacitance value stated by the 
manufacturer is established at a reference temperature of 25 °C to 300 °C and TCC 
should always be considered for applications operating above or below this 
temperature. It is always performed in parts per million (ppm) per degrees 
centigrade. The TCC is calculated as follow: 
TCC = (Cf – Ci / (Tf - Ti)Ci) *1000000                (1.4) 
where Cf and Ci refer to capacitance value at initial temperature, Ti and final 
temperature, Tf, respectively (Fiore, 2000). 
 
 
1.3 Application of Dielectric Materials 
Ceramic dielectrics have been produced in a wide range of compositions and forms 
as to fulfil the needs especially in electronic industries. Several applications of 
dielectric materials are presented in the coming subsections. 
 
 
1.3.1  Low Temperature Cofired Ceramic (LTCC) 
The LTCC has become crucial in the development of various modules and 
substrates. This technology combined several thin layers of low-permittivity 
ceramic composites and conductors. These resulted in multilayered LTCC modules 
that are applied in the form of a 3D wiring circuit board today. The LTCC allows a 
versatile mix of passive microwave components such as microstrips, striplines, 
antennas, filters, resonators, capacitors etc, making possible a whole matrix of 
design integrated components that are interconnected with 3D stripline circuitry. 
Among the various components that can be realised in LTCC packages are 
resonators and internal capacitors (Sebastian, 2008(b)). 
 
The great advantage of LTCC technology is related to the low sintering 
temperature (< 950 °C), as this gives the advantageous utilisation for today’s 
packaging concepts in microelectronic and microwave modules. This feature 
allows the embedded microwave components and transmission lines can be 
fabricated using highly conductive and inexpensive electrodes including silver, 
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gold or copper with low conductor loss and low electrical resistance at high 
frequencies (Sebastian, 2008(b)). 
 
 
1.3.2 High Frequency Ceramic Dielectrics 
Highly frequency dielectric ceramics make it possible to markedly miniaturise 
passive microwave components such as resonators. The resonators are meant for 
the stabilisation of oscillators and frequency filters. These ceramics have to fulfil 
the requirements of high permittivity, extremely low dielectric losses and low 
temperature coefficient of the permittivity, TCε in order to yield temperature stable 
resonators (Wersing, 1991). 
 
Two main types of resonators are found and these materials must have the ε’ 
values in the range of 10 - 90 over the frequency range of 500 MHz to 30 GHz. 
These are coaxial λ/4 resonators filled with dielectric for frequencies up to 3 GHz. 
Their lengths are determined by 
l = (λo/4)•(1/√ε′)                    (1.5) 
Resonators used in higher frequencies are made from a piece of dielectric wire. 
They are called dielectric resonators. Their diameters can be expressed as  
D ≈ λo• (1/√ε′)                   (1.6) 
with λo being the vacuum wavelength at the resonance frequency (Wersing, 1991). 
The temperature coefficient of the resonance frequency, TCF has to be 
approximately zero in order to obtain temperature constant oscillators and 
frequency filters. 
TCF = (1/fr)•(∂fr/∂T) ≈ (1/fr •∆fr)/∆T                (1.7) 
Since the resonance frequency of a resonator depends on its size and on ε’, the 
equation are given as follow: 
TCF = -TCε’/(2-α1)                  (1.8) 
with TCε’ is being defined according to TCF in (equation 1.7) and α1being the 
linear thermal expansion coefficient, i.e. the temperature coefficient of one of the 
resonator’s dimensions e.g. the length, l (Wersing, 1991). 
 
The first microwave ceramic, which fulfils the technical requirements, is BaTi4O9. 
Its ε’ is 38 with TCF ≈ 15 ppm/K and the quality factor, Qf ≈ 5000 at 2 GHz. Later, 
Ba2Ti9O20 is found to have better properties with ε’ of 40, TCF ≈ 2 and Q f ≈ 15000 
at 2 GHz. Nd2O3-TiO2-BaO-Bi2O3 is another ceramic that is applicable as 
microwave ceramics with high permittivity. On the other hand, ceramic with low 
losses is found in the Ba(ZnTa)O3 system where Ba(Zn1/3Ta2/3)O3 yielded ε’ of 30, 
TCF ≈ 0 ppm/K and Q f ≈ 6000 at 11 GHz. Table 1.1 shows a collection of 
microwave ceramics which have gained important technical interests to date 
(Wersing, 1991). 
 
Table 1.1: Today’s most important group of microwave ceramics (Wersing, 1991). 

Ceramic ε' TCF 
(ppm/K) 

Qf 

2 GHz 20 GHz 
Ba2Ti9O20 40 2 15000 2000 
Zr0.8TiSn0.2O4 38 0 15000 3000 
BaTiu[(NixZn1-x)1/3Ta2/3]1-uO3 30 -3…3 26000 5000 
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Ceramic 
Dielectric 

Metalized 
Termination 

Capacitor 
Element 

Leads 

Coating 
Material 

Ba[Snx(Mg1/3Ta2/3)1-x]O3 25 ≈ 0 > 40000 10000 
Nd2O3-BaO-TiO2-Bi2O3 ≈90 ≈0 3000 - 
 
 
1.3.3 Capacitor 
Ceramic capacitors have become the dominant capacitor type because they are 
small, reliable and they can be manufactured cost effectively through highly 
mechanised processes. Capacitors are valuable for the electrical energy storage. 
The storage of electrical energy is based on the separation between positive and 
negative charges. The consequences of Coulombic attraction, the separation of 
opposite charges costs energy. The magnitude of charge involves in the separation 
is greater, the more electrical energy amount can be stored (Chung, 2010; Khan et 
al., 1987). Figure 1.6 shows the assembled capacitor and disc capacitor, 
respectively (Khan et al., 1987). 
 
Assembled capacitor 
 

 

 

 

 

Disc capacitor 

 

 

 

 

 

 
 
 
Figure 1.6: Assembled capacitor and disc capacitor, respectively (Khan et al., 
1987). 
 
 
 1.3.4 Multilayer Ceramic Capacitors (MLCCs) 
Multilayer ceramic capacitors (MLCCs) have grown from mica mineral capacitors 
that used for highly stable, good quality and small volume components in 
electronic systems, especially military communications equipment in 1940s (Ward, 
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1991). MLCCs have been in continuous development and used for over 30 years 
and yet still in active research development in order to enhance their quality. The 
use of MLCCs prevails nowadays due to their excellent properties, e.g. high 
capacitance, small size, high reliability and high-frequency characteristics (Kishi et 
al., 2003; Ward, 1991).  
 
The monolithic structure of a multilayer ceramic capacitor requires that both the 
buried electrodes; that is the internal electrodes and the external terminations 
(external electrode) as well as the ceramic dielectric should be compatible with one 
another and during the manufacturing process. Figure 1.7 shows the cut-away view 
of multilayer ceramic capacitor.  
 

 

 

 

 

 

 
Figure 1.7: Cut-away view of multilayer ceramic capacitor (Kishi et al., 2003).  
 
The first MLCC has made from polycrystalline BaTiO3 ceramic since early 1950s. 
Conventional MLCCs based on BaTiO3 are fabricated with noble metals such as 
platinum (Pt) or palladium (Pd) as internal electrodes which can be fired with 
dielectric in air at 1300 °C or even higher. With increasing stacked layers due to 
miniaturisation process and higher capacitance of MLCCs, the electrode cost 
increases steeply. Hence, silver (Ag)-Pd alloy electrodes are used to achieve low-
temperature sintering of dielectrics while base metals such as nickel (Ni) and 
copper (Cu) are used as internal electrodes using nonreducible dielectric that can 
be fired in a reducing atmosphere as to cut down the internal electrode cost. On the 
other hand, different types of dopants introduced into BaTiO3 are meant for 
varying the ε’ value. It can be categorised into four primary categories of 
dielectrics, i.e. a) high-Qf, low-ε’ temperature compensating materials; b) 
intermediate-ε’ materials; labelled X7R or BX; c) high ε’ formulations, known as 
Z5U or Z5V and d) nonhomogeneous, barrier layer materials that have ε’ up to 
100,000. Table 1.2 shows typical ceramic dielectric materials for MLCCs together 
with several Electronic Industries Alliance (EIA) specifications. Other dielectrics 
that can be sintered at low temperatures, i.e. below 1100°C, are Pb-based complex 
perovskite materials. Examples of Pb-based materials that are applicable as 
MLCCs include Pb(Mg1/2W1/2)O3, Pb(Mg1/3Nb2/3)O3, Pb(Zn1/3W3/3)O3 and 
Pb(Fe1/3W2/3)O3- Pb(Fe1/2Nb1/3)O3, respectively. 
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Table 1.2: Typical ceramic dielectric materials for MLCCs with several EIA 
specifications (Kishi et al., 2003; Khan et al., 1987). 
EIA 
designation 

Class Temperature 
range (°C) 

Temp.-
cap. 
Change 
(%) 

ε' 
value 
up to  

BaTiO3 
content 
(%) 

Other 
dopants 

Grain 
size 
(µm) 

NPO 
(C0G) 

1 -55 to 125 ±30 
ppm 

100 10-50 TiO2, 
CaTiO3, 
Nd2Ti2O7 

1 

X7R (BX) 2 -55 to 125 ±15 4,000 90-98 MgO, 
MnO, 
Nb2O5, 
CoO Rare-
earth 

<1.5 

Z5U 2 10 to 85 +22, -56 14,000 80-90 CaZrO3, 
BaZrO3 

3-10 

Y5V 2 -30 to 85 +22,-82 18,000 80-90 CaZrO3, 
BaZrO3 

3-10 

 
1.3.5 Piezoelectric Ceramics 
Dielectric materials that can develop electric polarisation when they are strained 
through an applied stress are known as piezoelectric, which means “pressure 
electricity”. They show the development of a strain, x which is directly 
proportional to an applied field. The resultant strain is proportional to the square of 
the field known as the electrostrictive effect. The phenomenon of electrostriction is 
expressed by a relationship  
x = ξE2                    (1.8) 
where ξ is the electrostrictive coefficient and E is the electric field. 
The most commonly used piezoelectric materials include quartz, barium titanate 
(BaTiO3), lead titanate, lead zirconate, CdS and ZnO. The applications of these 
piezoelectric materials are such as gas igniters, actuators, piezoelectric transformer 
etc (Gao and Sammes, 1999; Moulson and Herbert, 1990(d)). 
 
 
1.3.6 Pyroelectric Ceramics 
Pyroelectric materials have crystal structure contains at least one crystallographic 
direction along which spontaneous polarisation exists. They are a special class of 
piezoelectrics. Heating of pyroelectric material leads to mechanical deformation 
because of the thermal expansion. It produces a change in extent of polarisation 
which then resulting in a voltage across the sample. The pyroeletricity of a material 
is measured by the pyroelectric temperature coefficient dP/dT as follow: 
∆ q/A =  ∆ ΤdP/dT                               (1.9) 
where ∆ q/A is the charge released on area A when temperature changes by ∆ Τ. 
 
The examples of pyroelectric materials include BaTiO3, LiTaO3, Pb(Zr,Ti)O3 etc. 
Pyroelectric materials are applicable as control of oscillator frequencies in the 
telecommunication equipment, sonar, high voltage step-up transformers, band-pass 
filters, and accelerometers (Gao and Sammes, 1999). 
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1.4 Problem statements 
Bismuth zinc niobate pyrochlores (BZN) and bismuth zinc tantalate pyrochlores 
(BZT) are well known as dielectric materials that are applicable as multilayer 
ceramic capacitors. This sheds new light on the preparation of new pyrochlore 
through chemical doping especially MgO could offer low dielectric loss. To date, 
limited information is available in literature concerning the properties of 
pyrochlores in the Bi2O3-MgO-N2O5 (N= Nb and Ta) systems. These reported 
compositions may have been a mixture that contains trace amount of other 
secondary phases. Therefore, it is important to study the formation mechanism and 
to establish a suitable synthesis condition for the sample preparation. The detailed 
knowledge of the structure-property relations for the individual phases is still 
scarce, but it is especially important if these phases have variable composition and 
is essential in order to control and optimise the properties. 
 
 
1.5 Objectives 
The objectives of this research are: 

I. To synthesise single phase cubic pyrochlores and their solid solutions 
in the Bi2O3-MgO-Nb2O5 (BMN) and Bi2O3-MgO-Ta2O5 (BMT) 
ternary systems. 

II. To construct phase diagrams in the above mentioned systems through 
careful study of phase formation, phase stability, phase compatibility 
of BMN and BMT phases in condition of thermal equilibrium. 

III. To characterise the single phase materials using X-ray diffraction 
analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), 
Raman spectroscopy, thermal analysis (DTA and TGA), scanning 
electron microscopy (SEM), inductively coupled plasma atomic 
emission spectroscopy (ICP-OES) and AC impedance spectroscopy. 

IV. To investigate the chemical doping effect, i.e. ZnO, NiO, CdO and 
Nb2O5 in BMN and BMT pyrochlores as to explore the possibility of 
new solid solution formation as well as to enhance the electrical 
performance. 
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