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Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

 
SYNTHESIS AND CYTOTOXICITY OF DITHIOCARBAZATE AND 

THIOSEMICARBAZIDE SCHIFF BASES DERIVED FROM CHALCONE AND 

PHENYLBUTANONE ANALOGUES AND THEIR Cd(II) AND Zn(II) 

COMPLEXES  

 

By 

 

TAN MING YUEH 

 

September, 2015 

 

Chair:  Prof. Emerita Karen Badri, PhD 

 

Faculty: Science   

 
Bidentate nitrogen-sulfur (NS) Schiff bases derived from the condensation of S-benzyl- 

(SBDTC) and S-methyldithiocarbazate (SMDTC) as well as N-phenyl- (PT) and N-

methylthiosemicarbazide (MT) with 4-substituted chalcone (H, Cl, OCH3 and NO2), 

phenylbutanone (H, OH, OCH3 and CH3-C(=O)) analogues and zingerone have been 

prepared. The Schiff bases were characterized using various physico-chemical and 

spectroscopic methods. The characterized Schiff bases were complexed with 

cadmium(II) and zinc(II) ions. A total of 50 metal complexes and 35 Schiff base ligands 

were synthesized and characterized. A total of 30 crystal structures were elucidated 

throughout this work. The metal complexes adopted either distorted tetrahedral or square 

planar geometries and coordinated with ligand in 1:2 mol ratios viaazomethine nitrogen 

and thiolo sulphur atoms in four-coordinated geometries. The cytotoxicities of 

synthesized and characterized Schiff bases and their complexes were evaluated against 

breast cancer estrogen receptor positive, MCF-7 and breast cancer estrogen receptor 

negative, MDA-MB-231 cell lines. It was found that Schiff bases which showed the most 

active cytotoxicity against MCF-7 and MDA-MB-231 were SM4ClTC and SB4ClTC, 

respectively. The IC50 values for SM4ClTC and SB4ClTC against MCF-7 and MDA-

MB-231 were 2.4 μM and 2.8 μM, respectively. Dithiocarbazate Schiff bases condensed 

with chalcone analogues were generally more active than the phenylbutanone derived 

thiosemicarbazones.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperiuan untuk Ijazah Falsafah Kedoktoran 

 
 

SINTESIS DAN AKTIVITI SITOTOKSIK DITHIOKARBAZAT DAN 

TIOSEMIKARBAZAT BES SCHIFF DITERBITKAN DARIPADA KALKON 

DAN FENILBUTANON ANALOG SERTA Cd(II) DAN Zn(II) KOMPLEKS 

MEREKA 

 

Oleh 

 

TAN MING YUEH 

 

September, 2015 

 

 

Pengerusi:  Prof. Emerita Karen Badri, PhD 

 

Fakulti: Sains 

 
Bes Schiff bidentat NS hasil kondensasai S-benzildithiokarbazat (SBDTC) dan S-

metilditiokarbazat (SMDTC), N-fenilsemikarbazat (PT) dan N-metiltio semikarbazat 

(MT) dengan calkon gantian (H, Cl, OCH3dan NO2), fenilbutanon (H, OH, OCH3dan 

CH3-C(=O)) dan zingeron telahdisediakan. Bes Schiff dicirikan dengan pelbagai 

teknikkimia-fizik dan spektroskopi. Bes Schiff yang dicirikan terkompleks dengan ion 

kadmium(II) dan zink(II). Sebanyak 35 liganbes Schiff dan 50 kompleksnya telah 

disintesis dan dicirikan. Struktur bagi hablur tunggal 30 sebatian telah ditentukan melalui 

kaedah diffraktometri sinar-X. Kompleks didapati terkordina tempat dengan nisbah mol 

logam:ligan 1:2 bergeometri tetrahedron atau empat segi sesatah terkoordinat melalui 

atom nitrogen azometin dan sulphur thiolo. Aktiviti sitotosik terhadap sel barah payudara 

reseptor positif estrogen, MCF-7 dan sel barah payudara reseptor negative estrogen, 

MDA-MB-231 telah dinilai bagi semua sebatian yang disintesis. Sebatian SM4ClTC dan 

SB4ClTC  menunjukkan aktiviti sitotosik yang tertinggi terhadap kedua-dua jeni ssel 

barah itu. Nilai IC50bagi  SM4ClTCdan SB4ClTC adalah 2.4 μMdan 2.8 μM terhadap 

MCF-7 dan MDA-MB-231 masing-masing. Pada keseluruhannya bes Schiff 

dithiokarbazat hasilan analog calkon lebih aktif berbanding bes Schiff tiosemikarbazat 

hasilan analog fenilbutanon. 
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CHAPTER ONE 

 

INTRODUCTION 

Cancer is among the leading causes of morbidity and mortality worldwide with 14 

million of new cases in year 2012 and it is expected to rise by about 70% (22 million) 

over the next two decades (Siegel et al., 2014). In Malaysia, more than 10,000 new 

cancer cases were reported and 38% of new cases among women were breast cancers. 

About one in 19 women are at risk, compared to one in eight in Europe and the United 

States. There is an urgent need to discover anti- breast cancer drugs with improved 

selectivity and activity. Natural products have been a rich source of lead compounds in 

anticancer drug discovery contributing approximately 74% of anticancer drugs 

(Newman et al., 2003). In this work, two natural product derived analogues of chalcone 

and phenylbutanone, were chosen to condense with sulphur-nitrogen chelating agents, 

S-substituted dithiocarbazate and N-substituted thiosemicarbazide, to form the Schiff 

bases. The Schiff bases were then reacted with transition metal ions of cadmium, 

Cd(II), and zinc, Zn(II), to form the metal complexes with a view to assessing the 

cytotoxicity of the Schiff bases and the affect of complexation with metals on 

cytotoxicity towards breast cancer cell lines, MCF-7 and MDA-MB-231. 

 

1. 1 Schiff bases derived from S-substituted dithiocarbazate and N-substituted 

thiosemicarbazide 

 

Dithiocarbazate, with its NH2NHCS2
- backbone, is produced by condensation of 

hydrazine hydrate and carbon disulphide in potassium hydroxide solution. S-substituted 

dithiocarbazate is formed through nucleophilic substitution upon addition of organic 

halide.  The synthetic route is shown in Figure 1.1. 

 
NH2H2N H2O

Hydrazine hydrate

C SS

Carbon disulphide

K OH

S

C
S

N
H NH2

K 2 H2O
Cl R1

Organic chloride
H2N NH

S

S

R1
Potassium 
hydroxide S-R1-dithiocarbazate

 
Figure 1.1: Reaction pathway for the synthesis of S-substituted dithiocarbazate 

 

S-substituted dithiocarbazate compounds are able to undergo thione-thiol tautomerism 

because of the presence of thioamide functions, -HN(C=S). In the solid state, these 

ligands have been found exist as thione tautomers. However, in solution, these ligands 

can exist in both thione and thiol forms in equilibrium (Ali and Livingstone, 1974). S-

substituted dithiocarbazate ligands, H2N-HN-C(=S)S-R1 have a free primary amine 

group, NH2, that is susceptible to nuclephilic addition reactions with aldehydes and 

ketones to form Schiff bases.  The reaction scheme is shown in Figure 1.2.  
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H2N NH

S

S

R1

S-R1-dithiocarbazate

R1

S
H
N

N

S

R2

R3

R2 R3

O

Aldehyde or ketone Dithiocarbazate derived Schiff base  
Figure 1.2: Reaction scheme for the synthesis of Schiff bases 

 

Schiff bases derived from dithiocarbazates are a class of Schiff bases that are 

particularly important due to their interesting physico-chemical and potentially 

pharmacological properties as well as their intriguing bonding and geometric variations 

with metal ions (Islam et al., 2011).  The flexibility and bioactivity of Schiff bases are 

proposed to be associated with the presence of both imino (-N=CH-) and thioamino 

(C(=S)NH-) moieties in the structures. Dithiocarbazate derived Schiff bases form an 

interesting series of ligands to study because small differences in molecular structures 

caused by introducing slightly variant organic substituents can greatly modify their 

properties (Crouse et al., 2004a; Tarafder et al., 2002). Formation of Schiff bases is 

proved by the appearance of azomethine, ν(C=N) and secondary amine, ν(N-H) 

infrared absorptions that fall in the ranges of 1460-1490 cm-1 and  3200-3100 cm-1, 

respectively (Khoo et al., 2014; Omar et al., 2014a). In the 13C NMR analysis, the 

presence of azomethine, C=N bond is evidenced by the appearance of a C=N resonance 

at δ 152-154 ppm.  

Schiff bases are able to exhibit thione-thiol tautomerism because of the presence of 

thioamide, -NH-C(S) functions as shown in Figure 1.3.  

 

R1

S
H
N

N

S

R2

R3

R1

S N
N

SH

R2

R3

R1

S
H
N

N

S

R2

R3
-H

+H

a) Thione form b) Thiol form c) Deprotonated thiol form  
Figure 1.3: The (a) thione, (b) thiol and (c) deprotonated thiolate tautomeric 

forms of dithiocarbazate derived Schiff bases 

In the IR spectra, the existence of either thione or thiol tautomers can be determined 

through the appearance of ν(C=S) and ν(C-S) bands that found at regions 1100-1000 

cm-1 and ~ 2700 cm-1, respectively ( Ali and Livingstone, 1974) while in the 1H NMR 

spectra, the appearance of singlet peaks due to secondary N-H and S-H protons at 

regions ~ δ 12.5 ppm and ~ δ 4.0 ppm indicate the  thione or thiol forms, respectively  

(Khoo et al., 2014; Taha et al., 2014).  

Schiff bases derived from thiosemicarbazide or thiosemicarbazones are obtained by the 

reaction of thiosemicarbazides or N-substituted thiosemicarbazides with aldehydes or 

ketones as shown in Figure 1.4. Thiosemicarbazones and dithiocarbazate derived Schiff 

bases share similar thioamide functions, -HN(C=S) as and also able to exhibit thione-

thiol tautomersim as shown in Figure 1.3. Thiosemicarbazones have received 

considerable attention since the Domagk report regarding their anti-tubercular activity 

(Domagk, 1951). They are one of the important classes of Schiff bases with wide 

pharmacological activities and their acitivities are often related to their ability to 

coordinate with metal centers in enzyme substrates(Seena et al., 2006). Currently, 3-

aminopyridine-2-carboxylaldehyde thiosemicarbazone, Triapine, is being evaluated in 
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human phase II trials as cancer chemotherapeutic agent (Feng et al., 2014). They also 

react as chelating ligands to trace metals qualitatively and quantitatively (Jagadeesh et 

al., 2015). Thiosemicarbazones usually coordinate with metal ions through thioamide 

sulfur and azomethine nitrogen atoms. However, the number of coordination sites can 

be increased by the suitable substitution on the thiosemicarbazone framework to form 

coordination polymers with multiple dimensions and various topologies (Li et al., 

2010).  

 

H2N NH

NH

S

R1

N-R1-thiosemicarbazide

R1

H
N

H
N

N

S

R2

R3

R2 R3

O

Aldehyde or ketone Thiosemicarbazide derived Schiff 
base or thiosemicarbazone  

Figure 1.4: Reaction scheme of the synthesis of thiosemicarbazone 

 

1. 2 Chalcone and phenylbutanone analogues 

Both chalcone and phenylbutanone analogues are characteristic constituents in many 

edible plants, including vegetables, fruits and spices. Chalcones, or 1,3-diaryl-2-

propen-1-ones, belong to the flavonoid family and consist of two aromatic rings joined 

by a three-carbon α, β-unsaturated carbonyl system(Nowakowska, 2007b). Naturally 

occurring and synthetic chalcone analogues have been reported to be non-toxic to 

normal cells while possessing widespread of biological activities, including 

antimicrobial, antifungal, antioxidant, anti-inflammatory, cytotoxic, antitumor and 

anticancer activities (Nowakowska, 2007a). They have the potential to serve as lead 

compounds for the discovery of new pharmacological agents with reduced side effects 

and improved efficacy (Mai et al., 2014). The presence of an α, β-unsaturated carbonyl 

system is reported to be critical for biological activity (Sahu et al., 2012). 

Phenylbutanones are phenolic alkanones containing vanilloid groups in their 4-phenyl-

2-butanone structures (Koeduka et al., 2011). Naturally occurring and synthetic 

phenylbutanone analogues exhibit chemopreventive properties both in vitro and in vivo 

by suppressing the transformative, hyperproliferative, and inflammatory activities that 

initiate carcinogenesis as well as angiogenesis and metastasis in the later steps of 

carcinogenesis (Shukla and Singh, 2007). 

In this study, a total of nine chalcone and phenylbutanone analogues are used to 

condense with S-substitutued dithiocarbazates and N-substituted thiosemicarbazides to 

form 45 Schiff bases. Chalcone and three 4-substituted chalcone analogues substituted 

with the electron-donating methoxy, OCH3, group and electron- withdrawing chloride 

(Cl) and nitro (NO2) groups are used in preliminary exploration of structure activity 

relationships. Three phenylbutanone analogues with electron donating hydroxy (OH) 

and methoxy (OCH3) substituent groups or the electron-withdrawing acetoxy 

(C=O(O)CH3)  and zingerone (or vanilylacetone) group are used as shown in Figure 

1.5. The cytotoxicity of Schiff bases derived from chalcones are compared with 

phenylbutanones derived Schiff bases to explore the importance of α, β-unsaturated 

systems in biological activity.  
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Figure 1.5: Chalcone and phenylbutanone analoguesused in this study 

 

1. 3 Transition metal complexes 

Dithiocarbazate and thiosemicarbazide derived Schiff bases are among the most widely 

studied chelating agents (Mayer et al., 2009). The presence of both soft sulphur and 

hard nitrogen donor atoms allows coordination with a broad range of transition and 

non-transition metal ions yielding stable metal complexes with interesting structural, 

physico-chemical properties and pronounced biological activities. Ali and Livingstone 

first reviewed the chemistry of nitrogen-sulfur (NS) chelating ligandsin 1974. Since 

then, much workhas been published about these compounds and their metal complexes.  

These Schiff bases generally behave as bidentate (N, S) ligands forming five-membered 

chelate rings; however the presence of additional donor atoms in suitable position can 

increase the coordination ability of the ligand resulting inneutral and cationic 

complexes. Transition metal ions are good candidates for ligation because they possess 

vacancies in d and f orbitals that faciliate the coordination with ligands. The presence 

of an additional donor atom in a suitable position of ligandcan raise the coordination 

ability of the ligand and increase denticity from monodentate to hexadentate giving rise 

to different coordination geometries and architectures with potentially beneficial 

applications in material science, such as molecular-based magnet, catalysis, zeolite-like 

porous materials, and luminescence (Morshedi et al., 2009).  

Schiff bases can coordinate with metal ions as either mono(ligand) or bis(ligands) 

which could result in open chain and macrocyclic metal complexes. Schiff base 

condensations between diamines and dicarbonyls are among the simplest and most 

popular methods for synthesis of marcocyclic ligands(Keypour et al., 2008).  

There are also reports of mixed-ligand complexes containing saccharin (Omar et al., 

2014; Ravoof et al., 2007a), substituted salicylaldehyde (Devi and Batra, 2015), and 

heterocyclic nitrogen bases such as pyridine, bis(pyridine), imidazole, and 1,10-

phenanthroline(Babu et al., 2007; Jia et al., 2013) as the co-ligands. Mixed-ligand 

complexes are reported to exhibit good nucleolytic cleavage activity, enzyme 

activation, as well as the storage and transportation of active material through 

membrane (Devi and Batra, 2015).  
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Transition metals, such as manganese, cobalt, nickel and copper have been intensitely 

studied because they have variable oxidation states, coordination numbers and the 

ability to bind to a variety of ligands through O, S, N, P, C and halides donor groups 

(Sujarani and Ramu, 2014; van Rijt and Sadler, 2009). Metal complexation arranges 

the coordinating ligands into three dimensional spacesgoing beyond structures that are 

accessible with purely organic compoundsgiving shape- and functional group 

complementarity with targeted protein pocket(Meggers, 2007). Metal compounds, 

especially those of second and third row transition metals, are sufficiently 

thermodynamically stable to enable the organic ligands to remain bound to the metal at 

the targeted site.  

Some metal complexes also act as inert drug derivatives or “prodrugs” converting to 

active forms and binding to biologically targeted molecules through ligand substitution, 

redox activation or photoactivation (Lainé and Passirani, 2012). To release the ligands 

to the targeted molecules, the metal-to-ligand coordination should be hydrolytically and 

kinetically stable to allow ligation or de-ligation reaction in vivo (van Rijt and Sadler, 

2009). 

Metal compounds have a range of accessible redox states and the activation is triggered 

by ligand release. For instance, the cisplatin prodrug reduces the inert platinum (IV)–

cisplatin to labile platinum (II) and releases cisplatin in the targeted active site in a 

dose-limiting approach (Lainé and Passirani, 2012). In short, the wide range of 

coordination modes, accessible redox states, tunable thermodynamic and kinetic 

properties, and intrinsic properties of cationic metal ions allow metal complexes to 

exhibit advantages over organic agents alone (van Rijt and Sadler, 2009). In recent 

years, Schiff base metal complexes have played a prominent role in the discovery of 

metal coordination complexes with pronounced biological activities.  

 

1. 4 Cadmium (Cd) and Zinc (Zn) 

 

The International Agency for Research on Cancer (IARC) and the USA National 

Toxicology Program have classified cadmium as a carcinogen of category 1. However, 

at very low concentrations down to 1 μM, it enhances DNA synthesis and cell 

proliferation (von Zglinicki et al., 1992). Cadmium(II), Cd(II) ion has been found to 

serve as catalytic centre in a newly discovered carbonic anhydrase from the marine 

diatom phytoplankton, Thalassiosira weissflogii(Lane et al., 2005). The Cd(II) ion has 

also been found to induce metallothionein synthesis in many organs, including the liver 

and kidney. Metallothionein is an important transportation and storage protein for 

cadmium and other metal ions. The binding of intracellular cadmium to 

metallothionein in tissue protects against from the toxicity of cadmium (Thomas, 

2011).  

Zinc is the second most prominent trace intracellular metal in the human body after 

iron and plays wide range of essential cellular processes, including cell proliferation, 

reproduction, immune function and defense against free radicals(Salgueiro et al., 

2000). It is a component of more than 3000 zinc-associated transcription factors 

involving in gene expression to maintain structural integrity and binding to DNA and 

more than 300 enzymes of DNA replication and transcription as well as DNA repair 

(Ho, 2004). Thus, zinc has a significant impact on DNA replication and transcription as 

well as DNA repair. Zinc plays an essential role in the development and progression of 
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maglinancy in prostate cancer with three proposed mechanism as: intermediary 

metabolism and bioenergetics effects; mobility and invasive effects; growth and 

proliferation effects (Franklin and Costello, 2007). Zinc deficiency may increase the 

risk for cancer by increasing sensitivity to oxidative stress which cause DNA damage 

or by impairing DNA damage repair response (Song et al., 2010).  
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