UNIVERSITI PUTRA MALAYSIA

ELEMENTAL DISTRIBUTION OF CORE MARINE SEDIMENTS IN THE COAST OF SABAH, MALAYSIA BY USING NEUTRON ACTIVATION ANALYSIS AND INDUCTIVELY COUPLED PLASMA SPECTROSCOPY

AHMADREZA ASHRAF

FS 2015 35
ELEMENTAL DISTRIBUTION OF CORE MARINE SEDIMENTS IN THE COAST OF SABAH, MALAYSIA BY USING NEUTRON ACTIVATION ANALYSIS AND INDUCTIVELY COUPLED PLASMA SPECTROSCOPY

By

AHMADREZA ASHRAF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I fondly dedicate this thesis to my precious darling wife “Elham” and my sweetheart son “Sina” who have been so proud and supportive of my work and who have shared the many uncertainties, challenges and sacrifices for completing this dissertation. I am extremely appreciative of their unconditional love and appreciation for encouragement that they gave me and the sacrifices they made during the course of writing this thesis. You are a part of every page, every line, and every thought. I am truly thankful for having you in my life. Love both of you with all the fibers of my being.

Ahmadreza Ashraf
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of requirement for the degree of Doctor of Philosophy

ELEMENTAL DISTRIBUTION OF CORE MARINE SEDIMENTS IN THE COAST OF SABAH, MALAYSIA BY USING NEUTRON ACTIVATION ANALYSIS AND INDUCTIVELY COUPLED PLASMA SPECTROSCOPY

By

AHMADREZA ASHRAF

September 2015

Chairman: Professor. Elias Saion, PhD
Faculty: Science

Sabah of Malaysia shares the island of Borneo with Sarawak, Brunei and Indonesian Kalimantan. The shoreline for Sabah is around 1802 km in length. Contamination of heavy metals have occurred in the sea of Sabah from natural weathering and human activities in land including home and industrial wastes and also agricultural runoff such as nutrients, pesticides and fertilizers. The present research was an investigation on the vertical distribution of the concentrations of heavy metals, trace elements, rare earth elements, major elements and actinides from the core marine sediment samples in the coastal areas of Sabah. The study could provide baseline data of these element compositions in the sea of Sabah for future reference.

The elemental concentrations were acquired by using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) method. Generally, all elements were determined and they were further categorized as heavy metals, trace elements, rare earth elements, major elements and actinide elements based on their physical and chemical characteristics. There are 30 elements, including 24 elements (namely, Th, U, Zn, Al, Ca, Fe, K, Mg, Mn, Na, Ce, Lu, Dy, Sm, Eu, Yb, La, Sc, Br, Rb, Cs, Ta, Hf, and V), which were studied by using Instrumental Neutron Activation Analysis (INAA) and the following 6 elements (namely, As, Cd, Cu, Ni, Pb, and Cr) were studied by using Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) technique.

The degrees of enrichment and the status of contamination are categorized as the enrichment factor, geo-accumulation index and the modified degree of contamination methods were used to interpret the results. Furthermore, Pearson’s correlation factors and a cluster analysis were also carried out to determine the associations between the variables. The anthropogenicity of the elements was assessed using Kolmogorov-Smirnov tests and box plot tests. The anthropogenicity of the elements was tested at 95% confidence level.

For the core elemental distributions of heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn), the elements Cr, Ni, Pb and Zn showed the elemental concentrations exceeding 10 mg/kg in most stations and at all sampling depths. However, the enrichment factors of As are between 2 and 5 for SB1, SB2, and SB3, which revealed a moderate enrichment in the west coast of Sabah. Other elements were minimal enrichments for all the samples. Other contamination analyses indicated that all heavy metals were unpolluted for all sampling stations of Sabah.

For trace elements (Br, Cs, Hf, Rb, Ta, V), the elements Br, Rb and V showed the elemental concentrations exceeding 20 mg/kg in most stations and at all depths. However, the enrichment factors of Hf exceeded 2 at most stations, which revealed a moderate enrichment in the west coast of Sabah except at SB5. Other elements were minimal enrichments for all
the samples. All trace elements were unpolluted for all sampling stations in Sabah analyzed by other contamination analysis methods.

For light rare earth elements-LREEs (Sc, La, Ce, Sm, and Eu) and heavy rare earth elements-HREEs (Dy, Yb, and Lu), the LREEs at all stations were found to be averagely ten times higher than HREEs. However, all rare earth elements were unpolluted for all sampling stations in Sabah.

For major elements (Al, Fe, Ca, K, Mg, Na, and Mn) showed the elemental concentrations exceeding 10,000 mg/kg in all stations and at most sampling depths except for Mn where the elemental concentrations below 700 mg/kg in all stations and at all sampling depths. Only Ca and Na were polluted elements for all sampling stations. The contamination is contributed likely from natural sources, i.e marine animal skeletons for Ca and sea water for Na.

For actinide elements (Th and U) are unpolluted by other contamination analysis methods except for U in SB2, SB3, and SB4 stations disclosed moderate enrichment analysis.
Abstrak tesis yang dimajukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

TABURAN UNSUR SEDIMEN TERAS MARIN DI PERSISIRAN PANTAI SABAH MALAYSIA DENGAN MENGGUNAKAN ANALISIS PENGAKTIFAN NEUTRON DAN SPEKTROSKOPI INDIKSI PLASMA GANDINGAN

Oleh

AHMADREZA ASHRAF

September 2015

Pengerusi: Profesor. Elias Saion, PhD
Fakulti: Sains

Kepekatan unsur telah diperolehi dengan menggunakan kaedah Pengaktifan Analisis Neutron Instrumentasi (INAA) dan Pasangan Plasma Induktif-Mass Spektroskopi (ICP-MS). Secara umumnya, unsur-unsur telah ditentukan dan telah dikategorikan mengikut logam berat, unsur-unsur surih, unsur naik di bumi, unsur unsur utama dan unsur unsur aktaidi berdasarkan ciri-ciri fizikal dan kimia mereka. Terdapat 30 unsur, termasuk 24 elemen (iaitu, Th, U, Zn, Al, Ca, Fe, K, Mg, Mn, Na, Ce, Lu, Dy, Sm, Eu, Yb, La, Sc, Br, Rb, Cs, Ta, Hf, dan V), yang telah dikaji dengan menggunakan Instrumental Neutron Pengaktifan Analisis (inaa) dan mengikut 6 elemen (iaitu, As, Cd, Cu, Ni, Pb, dan Cr) telah dikaji oleh menggunakan teknik Induktif Bersama- Plasma-Mass Spektroskopi (ICP-MS).

Darjah pengayaan dan status pencemaran dikategorikan sebagai faktor pengayaan, indeks geo-pengumpulan dan kaedah pencemaran darjah diubah suai untuk menentukan perilaku antara pembolehduhah. Keantropogeniti satu unsur dinilai menggunakan ujian Kolmogorov-Smirnov dan ujian kotak plot. Keantropogeniti satu unsur telah diuji pada 95% tahap keyakinan.

Untuk taburan unsur teras logam berat (As, Cd, Cr, Cu, Ni, Pb dan Zn), unsur-unsur Cr, Ni, Pb dan Zn menunjukkan kepekanan unsur melebihi 10 mg / kg di kebanyakan stesen dan di semua kedalaman persampelan. Walau bagaimanapun, faktor-faktor pengayaan As adalah di antara 2 dan 5 untuk station SB1, SB2 dan SB3, yang mendedahkan pengayaan sederhana di pantai barat Sabah. Unsur-unsur lain ialah pengayaan minimum untuk semua sampel. Analisis pencemaran lain menunjukkan bahawa semua logam berat adalah tidak tercemar untuk semua stesen pensampelan Sabah.

Untuk unsur-unsur surih (Br, Cs, Hf, Rb, Ta, V), unsur-unsur Br, Rb dan V menunjukkan kepekanan unsur melebihi 20 mg / kg di kebanyakan stesen dan pada setiap kedalaman persampelan. Walau bagaimanapun, faktor pengayaan Hf melebihi 2 di kebanyakan stesen, yang menunjukkan pengayaan sederhana di pantai barat Sabah kecuali di station SB5. Unsur-unsur lain mengalami pengayaan minimum untuk semua sampel. Semua unsur-unsur
surih adalah tidak tercemar untuk semua stesen persampelan di Sabah jika dianalisis dengan kaedah analisis pencemaran lain.

Untuk unsur nadir bumi ringan-LREEs (Sc, La, Ce, Sm, dan Eu) dan unsur nadir bumi berat-HREEs (Dy, Yb dan Lu), rata-rata LREEs di semua stesen didapati sepuluh kali lebih tinggi daripada HREEs. Walau bagaimanapun, semua unsur-unsur nadir bumi tidak mengalami pencemaran untuk semua stesen persampelan di Sabah.

Untuk unsur-unsur utama (Al, Fe, Ca, K, Mg, Na, aand Mn) menunjukkan kepekatan unsur melebihi 10,000 mg/kg di semua stesen dan pada semua kedalaman persampelan kecuali Mn di mana kepekatan unsur di bawah 700 mg/kg di semua stesen dan kedalaman pada setiap sampel. Hanya Ca dan Na adalah unsur-unsur yang telah tercemar di semua stesen persampelan. Pencemaran ini disumbangkan daripada sumber semula jadi, iaitu rangka binatang laut untuk Ca dan air laut untuk Na.

Untuk unsur-unsur aktinida (Th dan U) adalah tidak tercemar dengan kaedah analisis pencemaran yang lain kecuali U di station SB2, SB3, dan SB4 adalah tercermar serdahana didedahkan dengan analisis pengayaan.
ACKNOWLEDGEMENTS

In the Name of God, the Most Gracious, the Merciful

First of all, all praises due God, Lord of universe. Only by His grace and mercy this thesis has been completed.

I would like to express the most thankful, grateful and deep appreciation to my supervisor and Chairman of the Supervisory Committee Professor Dr. Elias Saion for his sincere and invaluable guidance, honestly encouragement and patience throughout my research. His wide knowledge and his logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I would like to extend my heartfelt gratitude to the members of my Supervisory Committee, Assoc. Professor Halimah Mohamed Kamari and Assoc. Professor Yap Chee Kong, University Putra of Malaysia, for their detailed and constructive comments and criticisms.

I would like to express the most thankful and grateful to the member of my Supervisory Committee, Dr. Mohd. Suhaimi Hamzah, Nuclear Agency of Malaysia for his invaluable contribution, and generous support.

I would like to grateful to Mr. MD Suhaimi Elias for his assistance. I am very much thankful and especial thanks to Mr. Lee, Madam Jamailiah Mat Yatim and Madam Shamsiah Abdul Rahman, Nuclear Agency of Malaysia for their unlimited support and help in collecting data in the laboratories and access to equipments.

I would like to extend my great thankful and appreciative to Prof. Dr. Zainal Abidin Talib the Dean of Faculty of science and Assoc. Prof. Dr. Zaidan Abdul Wahab the Head Department of physics, University Putra of Malaysia.

I would like to extend my great thanks to the staff of the physics Department, University Putra Malaysia.

Finally, Thanksgivings are expressed to the Instrumental Technology Division, Nuclear Agency of Malaysia for their continuous supporting and the usage of their facilities.
I certify that a Thesis Examination Committee has met on 21 September 2015 to conduct the final examination of Ahmadreza Ashraf on his thesis entitled "Elemental Distribution of Core Marine Sediments in the Coast of Sabah, Malaysia by using Neutron Activation Analysis and Inductively Coupled Plasma Spectroscopy" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Hj. Sidek Hj. Ab Aziz, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zainal Abidin Talib, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohammed Ahmed Ali Omar, PhD
Associate Professor
Qassim University
Saudi Arabia
(External Examiner)

Signed

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Elias Saion, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Halimah Mohamed Kamari, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Yap Chee Kong, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mohd. Suhaimi Hamzah, PhD
Manager
Waste and Environmental Technology Division, Nuclear Agency of Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _________________________ Date: _____________________

Name and Matric No: Ahmadreza Ashraf, GS 33502
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Elias Saion, PhD

Signature: ____________________________
Name of Member of Supervisory Committee: Halimah Mohamed Kamari, PhD

Signature: ____________________________
Name of Member of Supervisory Committee: Yap Chee Kong, PhD

Signature: ____________________________
Name of Member of Supervisory Committee: Mohd. Suhaimi Hamzah, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Introduction	1
1.2 Sources of Sediments	1
1.2.1 Sources of Terrigenous Sediments	2
1.2.2 Sources of Biogenic Sediments	2
1.3 Sources of Contamination in the Sediments	3
1.3.1 Heavy Metals Sources	3
1.3.2 Sources of Trace Elements in Sediment	6
1.3.3 Sources of Major Elements in Sediment	7
1.3.4 REEs Sources	7
1.3.5 Actinides Sources	8
1.4 Contamination and Pollution in the Marine Environment	8
1.4.1 The Marine Pollution	8
1.5 Heavy Metal Pollution in Sediments	9
1.6 Definition of the Study Area	9
1.7 Significance of the Study	11
1.8 Problem Statement	13
1.9 Scope of the Study	13
1.10 Objectives of the Study	14
1.11 Outline of the Thesis	14

2 LITERATURE REVIEW

2.1 Introduction	15
2.2 Marine Sediment Studies in the Coastal Area of Malaysia	15
2.2.1 Heavy Metals	15
2.2.2 Trace Elements	19
2.2.3 Rare Earth Elements (REEs)	23

3 THEORY

3.1 Introduction	28
3.2 Neutron Energy Classification	28
3.3 Triga Mark II Nuclear Research Reactor	29
3.4 Neutron Activation Analysis	31
3.4.1 Principle of INAA	33
3.4.2 INAA-Comparative Method	34
3.5 HPGe Detector for Gamma Rays	35
3.5.1 Gamma Ray Spectroscopy	36
3.6 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS)	38
3.6.1 Principle Operation of the ICP-MS System	39
3.6.2 Sample Introduction System and Radio-Frequency (RF) Generator

4 MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Standard Reference Material</td>
</tr>
<tr>
<td>4.3</td>
<td>Marine Sediments Sampling</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Sampling Location</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Collection of Core Sediment Samples</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Preparation of Sediment Samples for INAA</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Irradiation of the Sediment Samples for INAA</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Preparation of Standard Solutions</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Sample Digestion for ICP-MS Equipment</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Preparation of the Standards Used for ICP-MS</td>
</tr>
<tr>
<td>4.4</td>
<td>Irradiation Facility</td>
</tr>
<tr>
<td>4.5</td>
<td>Measurement of Gamma Rays</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Energy Resolution of HPGe Detector</td>
</tr>
<tr>
<td>4.6</td>
<td>Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) Elemental Analysis Procedures</td>
</tr>
<tr>
<td>4.7</td>
<td>Enrichment Factor (EF)</td>
</tr>
<tr>
<td>4.8</td>
<td>Geo-accumulation Index (I_{geo})</td>
</tr>
<tr>
<td>4.9</td>
<td>Modified Degree of Contamination (mC_d)</td>
</tr>
<tr>
<td>4.10</td>
<td>Statistical Analysis</td>
</tr>
</tbody>
</table>

5 RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Quality Assurance and Quality Control of INAA Method</td>
</tr>
<tr>
<td>5.3</td>
<td>Quality Assurance and Quality Control of ICP Method</td>
</tr>
<tr>
<td>5.4</td>
<td>Analysis of the Elements in the Coast of Sabah</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Concentration of the Elements</td>
</tr>
<tr>
<td>5.5</td>
<td>Heavy Metals</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Concentrations of Heavy Metals in the Core Marine Sediments of the Coast of Sabah</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Enrichment Factor of Heavy Metals in the Core Marine Sediments of the Coast of Sabah</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Assessment Results of Heavy Metals Using Geo-accumulation Index (I_{geo})</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Assessment Results of Heavy Metals Using Modified Degree of Contamination</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Statistical Analysis of Heavy Metals</td>
</tr>
<tr>
<td>5.6</td>
<td>Trace Elements</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Concentrations of the Trace Elements in the Core Marine Sediments of the Coast of Sabah</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Enrichment Factor of Trace Elements in the Core Marine Sediments of the Coast of Sabah</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Assessment Results of the Trace Elements Using Geo-accumulation Index (I_{geo})</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Assessment Results of Trace Elements Using Modified Degree of Contamination</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Statistical Analysis of the Trace Elements</td>
</tr>
<tr>
<td>5.7</td>
<td>Rare Earth Elements (REEs)</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Concentration of REEs in the Core Marine Sediments of the Coast of Sabah</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Enrichment Factor of REEs in the Core Marine Sediments of the Coast of Sabah</td>
</tr>
</tbody>
</table>
5.7 REEs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.3 The Shale-Normalised REE Pattern</td>
<td>136</td>
</tr>
<tr>
<td>5.7.4 The Chondrite-Normalised REE Pattern</td>
<td>138</td>
</tr>
<tr>
<td>5.7.5 Assessment Results of REEs Using I_{geo}</td>
<td>139</td>
</tr>
<tr>
<td>5.7.6 Assessment Results of REEs Using Modified Degree of Contamination</td>
<td>144</td>
</tr>
<tr>
<td>5.7.7 Statistical Analysis of REEs</td>
<td>148</td>
</tr>
</tbody>
</table>

5.8 Major Elements

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.1 Concentrations of Major Elements in the Core Marine Sediments of the Coast of Sabah</td>
<td>163</td>
</tr>
<tr>
<td>5.8.2 ($?$) of Major Elements in the Core Marine Sediments of the Coast of Sabah</td>
<td>170</td>
</tr>
<tr>
<td>5.8.3 Assessment Results of Major Elements Using I_{geo}</td>
<td>176</td>
</tr>
<tr>
<td>5.8.4 Assessment Results of Major Elements Using the Modified Degree of Contamination</td>
<td>180</td>
</tr>
<tr>
<td>5.8.5 Statistical Analysis of Major Elements</td>
<td>184</td>
</tr>
</tbody>
</table>

5.9 Actinide Elements

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.1 Concentration of Actinide Elements in the Core Marine Sediments of Sabah</td>
<td>197</td>
</tr>
<tr>
<td>5.9.2 ($?$) of Actinide Elements in the Core Marine Sediments of Sabah</td>
<td>199</td>
</tr>
<tr>
<td>5.9.3 Assessment Results of Actinide Elements Using I_{geo}</td>
<td>203</td>
</tr>
<tr>
<td>5.9.4 Assessment Results of Actinide Elements Using the Modified Degree of Contamination</td>
<td>207</td>
</tr>
<tr>
<td>5.9.5 Statistical Analysis of Actinide Elements</td>
<td>210</td>
</tr>
</tbody>
</table>

5.10 Comparison between Heavy Metals in the Core Sediments of Sabah and the International Guidelines

5.11 Comparison of Heavy Metals in the Core Sediments of Sabah with the National Studies

5.12 Comparison of REEs in the Core Sediments of Sabah and the National Studies

6 CONCLUSIONS AND FUTURE WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Conclusions</td>
<td>225</td>
</tr>
<tr>
<td>6.2 Future Works and Recommendations</td>
<td>228</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>229</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDICES</td>
<td>244</td>
</tr>
</tbody>
</table>

BIODATA OF STUDENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIODATA OF STUDENT</td>
<td>284</td>
</tr>
</tbody>
</table>

LIST OF PUBLICATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>285</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A comparison between the mean concentrations in the grab and core sediments of Penang Island</td>
</tr>
<tr>
<td>2.2</td>
<td>Total mean and means of elemental concentrations in the core sediment sample stations from the Strait of Malacca</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of studies on heavy metals in Malaysia</td>
</tr>
<tr>
<td>2.4</td>
<td>Range and mean concentrations and trace elements of the grab samples sediments of the Straits of Johor</td>
</tr>
<tr>
<td>2.5</td>
<td>Elemental concentration ranges and means of trace elements in the grab and core sediments of the Strait of Malacca</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of studies on trace elements in Malaysia</td>
</tr>
<tr>
<td>2.7</td>
<td>Range and mean concentration of REEs in the grab samples sediments of the Strait of Johor</td>
</tr>
<tr>
<td>2.8</td>
<td>Range and mean concentrations of REEs in the grab and core sediments of the Strait of Malacca</td>
</tr>
<tr>
<td>2.9</td>
<td>A comparison of the concentration means in the grab and core sediments of Penang Island</td>
</tr>
<tr>
<td>2.10</td>
<td>Total concentration of RREE, RLREE, RHREE, and ratios of La/Sm, La/Yb, Ce/La, Eu/Sm, Yb/Sm and Ce/Ce* in the surface sediments of the east coast of Peninsular Malaysia and their corresponding average values</td>
</tr>
<tr>
<td>2.11</td>
<td>The concentrations of REEs in the study area</td>
</tr>
<tr>
<td>2.12</td>
<td>Summary of studies on REEs in Malaysia</td>
</tr>
<tr>
<td>4.1</td>
<td>Longitude and latitude of the sampling sites</td>
</tr>
<tr>
<td>4.2</td>
<td>Irradiation, cooling and counting times for the 1st and 2nd counting of radioactivity measurements and isotopes determined for each cycle by comparative</td>
</tr>
<tr>
<td>4.3</td>
<td>Standard sources used for short-lived radionuclide</td>
</tr>
<tr>
<td>4.4</td>
<td>Standard sources used for long-lived radionuclide</td>
</tr>
<tr>
<td>4.5</td>
<td>Detection Limit for some elements in water solution measured by ICP-MS</td>
</tr>
<tr>
<td>4.6</td>
<td>Assessment criteria for the enrichment factor (EF) used in this study</td>
</tr>
<tr>
<td>4.7</td>
<td>Muller’s classification for geoaccumulation index</td>
</tr>
<tr>
<td>4.8</td>
<td>Hakanson’s classification of the modified degree of contamination</td>
</tr>
<tr>
<td>5.1</td>
<td>Heavy metals concentrations measured in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.2</td>
<td>(EF) of heavy metals in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.3</td>
<td>(Igeo) of heavy metals in the core sediments of Sabah compared to the average shale baseline values</td>
</tr>
<tr>
<td>5.4</td>
<td>(mCd)using average shale baseline values for heavy metals in the core marine sediments from Sabah</td>
</tr>
<tr>
<td>5.5</td>
<td>(Cf) of heavy metals for various depths at 5 stations in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.6</td>
<td>(Cd) for heavy metals at 5 stations in the core marine sediments of Sabah</td>
</tr>
</tbody>
</table>
5.24 \sumREE, \sumLREE, \sumHREE and \sumLREE/ \sumHREE, Ce/Ce*, Eu/Sm, Ce/La and La/Yb ratios at 5 stations in the sediment of Sabah
5.25 (EF) of REEs at 5 stations in the core marine sediment of Sabah
5.26 (I_{geo}) of the REEs in the core sediments of Sabah compared to the average shale baseline values
5.27 (mC_a) using average shale baseline values for the REEs in core marine sediments from Sabah
5.28 (C_f) of REEs for various depths at five stations in the core marine sediments of Sabah
5.29 (C_d) for REEs at five stations in the core marine sediments of Sabah
5.30 Correlation matrix for REEs in the core marine sediments of Sabah
5.31 Results of ANOVA with F test for the determined REEs
5.32 Results of the normality test for the concentrations of REEs of the core marine sediments in Sabah using $K-S$ test
5.33 Results of normality test for enrichment or depletion of REEs in the core marine sediments compared to the average shale using $K-S$ test
5.34 Summary on the determination of REEs’ outlier for the depths of the core marine sediments at different stations
5.35A (Al) concentration measured in the core marine sediment of Sabah
5.35B (Ca) concentration measured in the core marine sediment of Sabah
5.35C (Fe) concentration measured in the core marine sediment of Sabah
5.35D (K) concentration measured in the core marine sediment of Sabah
5.35E (Mg) concentration measured in the core marine sediment of Sabah
5.35F (Na) concentration measured in the core marine sediment of Sabah
5.35G (Mn) concentration measured in the core marine sediment of Sabah
5.36 (EF) of major elements at 5 stations in the core marine sediment of Sabah
5.37 (I_{geo}) of major elements in the core sediments of Sabah compared to the average shale baseline values
5.38 (mC_a) using average shale baseline values for major elements in the core marine sediments from Sabah
5.39 (C_f) of major elements for various depths at 5 stations in the core marine sediments of the coast of Sabah
5.40 (C_d) for major elements at 5 stations in the core marine sediments of the coast of Sabah
5.41 Correlation matrix for major elements in the core marine sediments of Sabah
5.42 Results of ANOVA with F-test for major elements
5.43 Results of the normality test for major elements concentration of the core marine sediments in Sabah using $K-S$ test
5.44 Results of normality test for enrichment or depletion of major elements in the core marine sediments compared to the average shale using $K-S$ test
5.45 Summary of the determination of major elements’ outlier for the depths of the core marine sediments at different stations
5.46A (Th) concentration measured in the core marine sediments of Sabah
5.46B (U) concentration measured in the core marine sediments of Sabah

5.47 (EF) of actinide elements at 5 stations in the core marine sediment from Sabah

5.48 (I_{geo}) of actinide elements in the core sediments of Sabah compared to the average shale baseline values

5.49 (mC_\text{d}) using average shale baseline values for actinide elements in the core marine sediments from Sabah

5.50 (C_f) of actinide elements for various depths at 5 stations in the core marine sediments of Sabah

5.51 (C_d) for actinide elements at 5 stations in the core marine sediments of Sabah

5.52 Correlation matrix for actinide elements in the core marine sediments of the coast of Sabah

5.53 Results of ANOVA with F test for the actinide elements

5.54 Results of the normality test for actinide elements concentration of the core marine sediments in Sabah using K-S test

5.55 Results of normality test for enrichment or depletion of actinide elements in the core marine sediments compared to the average shale using K-S test

5.56 Summary of the determination of actinide elements’ outliers for the depths of the core marine sediments at different stations

5.57 Comparison of heavy metals concentration to the international guidelines

5.58 Comparison of the heavy metals’ concentrations to the national studies

5.59 Comparison of REEs concentration to the national studies
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A map showing the locations of the study area</td>
</tr>
<tr>
<td>1.2</td>
<td>Locations of the South China, Sulu and Sulawesi Seas along the state of Sabah</td>
</tr>
<tr>
<td>1.3</td>
<td>Major rivers basins along the coastal of Sabah</td>
</tr>
<tr>
<td>1.4</td>
<td>A schematic representation of the reactor neutron flux distribution</td>
</tr>
<tr>
<td>1.5</td>
<td>One MW TRIGA MARK II Nuclear Reactor at Nuclear Agency Malaysia</td>
</tr>
<tr>
<td>1.6</td>
<td>Diagram illustrating the process of neutron capture by a target nucleus followed by the emission of gamma rays</td>
</tr>
<tr>
<td>1.7</td>
<td>γ-Spectroscopy system used in neutron activation analysis</td>
</tr>
<tr>
<td>1.8</td>
<td>γ-ray spectrum for several short-lived elements measured in a sample of irradiation time 5 second, cooling time 25 minute and counting time 12 minute with a HPGe detector</td>
</tr>
<tr>
<td>1.9</td>
<td>γ-ray spectrum from 0 to 800 keV for medium- and long-lived elements measured in a sample with irradiation time of 24 hours, a cooling time of 9 days and counting time of 30 minutes on a HPGe detector</td>
</tr>
<tr>
<td>1.10</td>
<td>γ-ray spectrum from 800 to 1600 keV for medium- and long-lived elements measured in a sample with irradiation time of 24 hours, a cooling time of 9 days and counting time 30 minutes on a HPGe detector</td>
</tr>
<tr>
<td>1.11</td>
<td>A schematic diagram of inductively coupled plasma mass spectroscopy (ICP-MS)</td>
</tr>
<tr>
<td>1.12</td>
<td>Mechanism of a droplet conversion into a positive ion</td>
</tr>
<tr>
<td>1.13</td>
<td>Location of the sampling sites of the coastal areas in Sabah</td>
</tr>
<tr>
<td>1.14</td>
<td>TRIGA MARK II at the Nuclear Agency Malaysia</td>
</tr>
<tr>
<td>1.15</td>
<td>A schematic diagram of a quadrupole ICP-MS</td>
</tr>
<tr>
<td>1.16</td>
<td>PERKIN-ELMER SCIEX ELAN 6000 System</td>
</tr>
<tr>
<td>5.1A</td>
<td>Distribution of the concentration of As in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.1B</td>
<td>Distribution of the concentration of Cd in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.1C</td>
<td>Distribution of the concentration of Cr in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.1D</td>
<td>Distribution of the concentration of Cu in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.1E</td>
<td>Distribution of the concentration of Ni in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.1F</td>
<td>Distribution of the concentration of Pb in the core marine sediments of the coast of Sabah</td>
</tr>
<tr>
<td>5.1G</td>
<td>Distribution of the concentration of Zn in the core marine sediments of Sabah</td>
</tr>
<tr>
<td>5.2A</td>
<td>(EF) for heavy metals plotted as a function of depths in core marine sediment at SB01 station of Sabah</td>
</tr>
<tr>
<td>5.2B</td>
<td>(EF) for heavy metals plotted as a function of depths in core marine sediment at SB02 station of Sabah</td>
</tr>
<tr>
<td>5.2C</td>
<td>(EF) for heavy metals plotted as a function of depths in core marine sediment at SB03 station of Sabah</td>
</tr>
<tr>
<td>5.2D</td>
<td>(EF) for heavy metals plotted as a function of depths in core marine sediment at SB04 station of Sabah</td>
</tr>
<tr>
<td>5.2E</td>
<td>(EF) for heavy metals plotted as a function of depths in core marine sediment at SB05 station of Sabah</td>
</tr>
</tbody>
</table>
5.3A \((I_{geo})\) diagram of heavy metals for various depths of the core marine sediment at SB01 station in Sabah

5.3B \((I_{geo})\) diagram of heavy metals for various depths of the core marine sediment at SB02 station in Sabah

5.3C \((I_{geo})\) diagram of heavy metals for various depths of the core marine sediment at SB03 station in Sabah

5.3D \((I_{geo})\) diagram of heavy metals for various depths of the core marine sediment at SB04 station in Sabah

5.3E \((I_{geo})\) diagram of heavy metals for various depths of the core marine sediment at SB05 station in Sabah

5.4 Trend of \((mC_d)\) level of heavy metals in the core marine sediment from Sabah

5.5A Dendrogram analysis mean of the heavy metals at SB01 station

5.5B Dendrogram analysis mean of the heavy metals at SB02 station

5.5C Dendrogram analysis mean of the heavy metals at SB03 station

5.5D Dendrogram analysis mean of the heavy metals at SB04 station

5.5E Dendrogram analysis mean of the heavy metals at SB05 station

5.6A The Box Plot of As in the core marine sediments of Sabah

5.6B The Box Plot of Cd in the core marine sediments of Sabah

5.6C The Box Plot of Cr in the core marine sediments of Sabah

5.6D The Box Plot of Cu in the core marine sediments of Sabah

5.6E The Box Plot of Ni in the core marine sediments of Sabah

5.6F The Box Plot of Pb in the core marine sediments of Sabah

5.6G The Box Plot of Zn in the core marine sediments of Sabah

5.7A Distribution of Br concentration in the core marine sediments of Sabah

5.7B Distribution of Cs concentration in the core marine sediments of Sabah

5.7C Distribution of Hf concentration in the core marine sediments of Sabah

5.7D Distribution of Rb concentration in the core marine sediments of Sabah

5.7E Distribution of Ta concentration in the core marine sediments of Sabah

5.7F Distribution of V concentration in the core marine sediments of Sabah

5.8A \((EF)\) of the trace elements plotted as a function of depths in the core marine sediment at SB01 station of Sabah

5.8B \((EF)\) of the trace elements plotted as a function of depths in the core marine sediment at SB02 station of Sabah

5.8C \((EF)\) of the trace elements plotted as a function of depths in the core marine sediment at SB03 station of Sabah

5.8D \((EF)\) of the trace elements plotted as a function of depths in the core marine sediment at SB04 station of Sabah

5.8E \((EF)\) of the trace elements plotted as a function of depths in the core marine sediment at SB05 station of Sabah

5.9A \((I_{geo})\) diagram of the trace elements for various depths of the core marine sediment at SB01 station in Sabah

5.9B \((I_{geo})\) diagram of the trace elements for various depths of the core marine sediment at SB02 station in Sabah

5.9C \((I_{geo})\) diagram of the trace elements for various depths of the core marine sediment at SB03 station in Sabah

5.9D \((I_{geo})\) diagram of the trace elements for various depths of the core marine sediment at SB04 station in Sabah

xviii
5.9E \((I_{geo}) \) diagram of the trace elements for various depths of the core marine sediment at SB05 station in Sabah

5.10 Trend of \((mC_d) \) level of the trace elements in the core marine sediment from Sabah

5.11A Dendrogram analysis mean of the trace elements at SB01 station

5.11B Dendrogram analysis mean of the trace elements at SB02 station

5.11C Dendrogram analysis mean of the trace elements at SB03 station

5.11D Dendrogram analysis mean of the trace elements at SB04 station

5.11E Dendrogram analysis mean of the trace elements at SB05 station

5.12A The Box Plot of Br in the core marine sediments of Sabah

5.12B The Box Plot of Cs in the core marine sediments of Sabah

5.12C The Box Plot of Hf in the core marine sediments of Sabah

5.12D The Box Plot of Rb in the core marine sediments of Sabah

5.12E The Box Plot of Ta in the core marine sediments of Sabah

5.12F The Box Plot of V in the core marine sediments of Sabah

5.13A Distribution of La concentration in the core marine sediments of Sabah

5.13B Distribution of Ce concentration in the core marine sediments of Sabah

5.13C Distribution of Sm concentration in the core marine sediments of Sabah

5.13D Distribution of Eu concentration in the core marine sediments of Sabah

5.13E Distribution of Dy concentration in the core marine sediments of Sabah

5.13F Distribution of Yb concentration in the core marine sediments of Sabah

5.13G Distribution of Lu concentration in the core marine sediments of Sabah

5.13H Distribution of Sc concentration in the core marine sediments of Sabah

5.14 Distribution of REEs in the each layer of the core marine sediments at 5 sampling locations of Sabah

5.15 \((EF)\) for La and Yb plotted as a function of depth in the core marine sediments of Sabah

5.16 Shale-normalised REEs pattern of each layer in all core stations of Sabah

5.17 Chondrite-normalized REEs pattern of each layer at all stations of Sabah

5.18A \((I_{geo}) \) diagram of (La) for various depths of the core marine sediment at 5 stations in Sabah

5.18B \((I_{geo}) \) diagram of (Sm) for various depths of the core marine sediment at 5 stations in Sabah

5.18C \((I_{geo}) \) diagram of (Ce) for various depths of the core marine sediment at 5 stations in Sabah

5.18D \((I_{geo}) \) diagram of (Eu) for various depths of the core marine sediment at 5 stations in Sabah

5.18E \((I_{geo}) \) diagram of (Dy) for various depths of the core marine sediment at 5 stations in Sabah

5.18F \((I_{geo}) \) diagram of (Yb) for various depths of the core marine sediment at 5 stations in Sabah

5.18G \((I_{geo}) \) diagram of (Lu) for various depths of the core marine sediment at 5 stations in Sabah

5.18H \((I_{geo}) \) diagram of (Sc) for various depths of the core marine sediment at 5 stations in Sabah
5.19 The trend of \((mC_d)\) level of the REEs in the core marine sediment from Sabah
5.20A Dendrogram analysis mean of the REEs at SB01 Station
5.20B Dendrogram analysis mean of the REEs at SB02 Station
5.20C Dendrogram analysis mean of the REEs at SB03 Station
5.20D Dendrogram analysis mean of the REEs at SB04 Station
5.20E Dendrogram analysis mean of the REEs at SB05 Station
5.21A The Box Plot of Ce in the core marine sediments of Sabah
5.21B The Box Plot of Dy in the core marine sediments of Sabah
5.21C The Box Plot of Eu in the core marine sediments of Sabah
5.21D The Box Plot of La in the core marine sediments of Sabah
5.21E The Box Plot of Lu in the core marine sediments of Sabah
5.21F The Box Plot of Sc in the core marine sediments of Sabah
5.21G The Box Plot of Sm in the core marine sediments of Sabah
5.21H The Box Plot of Yb in the core marine sediments of Sabah
5.22A Distribution of (Al) concentration in the core marine sediment of Sabah
5.22B Distribution of (Ca) concentration in the core marine sediments of Sabah
5.22C Distribution of (Fe) concentration in the core marine sediment of Sabah
5.22D Distribution of (Mg) concentration in the core marine sediment of Sabah
5.22E Distribution of (K) concentration in the core marine sediment of Sabah
5.22F Distribution of (Na) concentration in the core marine sediment of Sabah
5.22G Distribution of (Mn) concentration in the core marine sediment of Sabah
5.23A \((EF)\) for (Al) plotted as a function of depths in the core marine sediment at 5 stations of Sabah
5.23B \((EF)\) for (Ca) plotted as a function of depths in the core marine sediment at 5 stations of Sabah
5.23C \((EF)\) for (K) plotted as a function of depths in the core marine sediment at 5 stations of Sabah
5.23D \((EF)\) for (Mg) plotted as a function of depths in the core marine sediment at 5 stations of Sabah
5.23E \((EF)\) for (Mn) plotted as a function of depths in the core marine sediment at 5 stations of Sabah
5.23F \((EF)\) for (Na) plotted as a function of depths in the core marine sediment at 5 stations of Sabah
5.24A \((I_{geo})\) diagram of major elements for various depths of the core marine sediment samples at SB01 in Sabah
5.24B \((I_{geo})\) diagram of major elements for various depths of the core marine sediment samples at SB02 in Sabah
5.24C \((I_{geo})\) diagram of major elements for various depths of the core marine sediment samples at SB03 in Sabah
5.24D \((I_{geo})\) diagram of major elements for various depths of the core marine sediment samples at SB04 in Sabah
5.24E \((I_{geo})\) diagram of major elements for various depths of the core marine sediment samples at SB05 in Sabah
5.25 The trend of \((mC_d)\) level of major elements in the core marine sediment samples of the coast of Sabah
5.26A Dendrogram analysis mean of major metals at SB01
5.26B Dendrogram analysis mean of major metals at SB02
5.26C Dendrogram analysis mean of major metals at SB03
5.26D Dendrogram analysis mean of major metals at SB04
5.26E Dendrogram analysis mean of major metals at SB05
5.27A The Box Plot of (Al) in the core marine sediments of Sabah
5.27B The Box Plot of (Ca) in the core marine sediments of Sabah
5.27C The Box Plot of (Fe) in the core marine sediments of Sabah
5.27D The Box Plot of (K) in the core marine sediments of Sabah
5.27E The Box Plot of (Mg) in the core marine sediments of Sabah
5.27F The Box Plot of (Mn) in the core marine sediments of Sabah
5.27G The Box Plot of (Na) in the core marine sediments of Sabah
5.28A Distribution of Th concentration in the core marine sediments Sabah
5.28B Distribution of U concentration in the core marine sediments Sabah
5.29A (EF) for actinide elements plotted as a function of depths in core marine sediment at SB01 of Sabah
5.29B (EF) for actinide elements plotted as a function of depths in core marine sediment at SB02 of Sabah
5.29C (EF) for actinide elements plotted as a function of depths in core marine sediment at SB03 of Sabah
5.29D (EF) for actinide elements plotted as a function of depths in core marine sediment at SB04 of Sabah
5.29E (EF) for actinide elements plotted as a function of depths in core marine sediment at SB05 of Sabah
5.30A (I_{geo}) diagram of actinide elements for various depths of the core marine sediment at SB01 in Sabah
5.30B (I_{geo}) diagram of actinide elements for various depths of the core marine sediment at SB02 in Sabah
5.30C (I_{geo}) diagram of actinide elements for various depths of the core marine sediment at SB03 in Sabah
5.30D (I_{geo}) diagram of actinide elements for various depths of the core marine sediment at SB04 in Sabah
5.30E (I_{geo}) diagram of actinide elements for various depths of the core marine sediment at SB05 in Sabah
5.31 The trend of (mC_d) level of actinide elements in the core marine sediment from Sabah
5.32A The Box Plot of Th in the core marine sediments of Sabah
5.32B The Box Plot of U in the core marine sediments of Sabah
5.33A Comparison of As concentration in the core sediment from Sabah to the international guidelines
5.33B Comparison of Cd concentration in the core sediment from Sabah to the international guidelines
5.33C Comparison of Cr concentration in the core sediment from Sabah to the international guidelines
5.33D Comparison of Cu concentration in the core sediment from Sabah to the international guidelines
5.33E Comparison of Pb concentration in the core sediment from Sabah to the international guidelines
5.33F Comparison of Zn concentration in the core sediment from Sabah to the international guidelines
5.34A Comparison of As concentration in the core sediment of Sabah to those of the national studies
5.34B Comparison of Cd concentration in the core sediment of Sabah to those of the national studies
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.34C</td>
<td>Comparison of Cr concentration in the core sediment of Sabah to those of the national studies</td>
<td>220</td>
</tr>
<tr>
<td>5.34D</td>
<td>Comparison of Ni concentration in the core sediment of Sabah to those of the national studies</td>
<td>220</td>
</tr>
<tr>
<td>5.34E</td>
<td>Comparison of Cu concentration in the core sediment of Sabah to those of the national studies</td>
<td>221</td>
</tr>
<tr>
<td>5.34F</td>
<td>Comparison of Pb concentration in the core sediment of Sabah to those of the national studies</td>
<td>221</td>
</tr>
<tr>
<td>5.34G</td>
<td>Comparison of Zn concentration in the core sediment of Sabah to those of the national studies</td>
<td>221</td>
</tr>
<tr>
<td>5.35A</td>
<td>Comparison of Ce concentration in the core sediment of Sabah to those of the national studies</td>
<td>222</td>
</tr>
<tr>
<td>5.35B</td>
<td>Comparison of Sm concentration in the core sediment of Sabah to those of the national studies</td>
<td>222</td>
</tr>
<tr>
<td>5.35C</td>
<td>Comparison of Eu concentration in the core sediment of Sabah to those of the national studies</td>
<td>223</td>
</tr>
<tr>
<td>5.35D</td>
<td>Comparison of Yb concentration in the core sediment of Sabah to those of the national studies</td>
<td>223</td>
</tr>
<tr>
<td>5.35E</td>
<td>Comparison of Lu concentration in the core sediment of Sabah to those of the national studies</td>
<td>223</td>
</tr>
<tr>
<td>5.35F</td>
<td>Comparison of La concentration in the core sediment of Sabah to those of the national studies</td>
<td>224</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AAS Atomic Absorption Spectrophotometer
ADC Analogue to Digital Converter
ANOVA Analysis of variance
ASCS Automatic Sample Changer System
A_{SAM} The activity of interested element in the sample
A_{STD} The activity of interested element in the calibration standards
CA Cluster Analysis
Cd Contamination degree
Cf Contamination factor
CRM Certified Reference Materials
C_{SAM} Concentration of interested element in the sample
C_{STD} Concentration of interested element in the calibration standards
CTRs Controlled Thermonuclear Reactors
DRC Dynamic Reaction Cell
EF Enrichment Factor
FAAS Flame Atomic Absorption Spectrophotometer
FNAA Fast Neutron Activation Analysis
FWHM Full-Width At Half-Maximum
HPGe High-purity germanium
HREE Heavy Rare Earth Element
IAEA International Atomic Energy Agency
ICP Inductively Coupled Plasma
ICP-MS Inductively Coupled Plasma-Mass Spectrometry
ICP-AES Inductively Coupled Plasma Atomic Emission Spectroscopy
$IGEO$ Geoaccumulation Index
INAA Instrumental Neutron Activation Analysis
IQR Inter Quartile Range
ISQGs Interim Sediment Quality Guidelines
$K-S$ test Kolmogorov–Smirnov test
LLD Lower Limit of Detection
LOD Lower than Limitation of Detection
LREE Light Rare Earth Element
MCD Multi-Channel Analyzer
MDL Method Detection Limit
MCA Multichannel analyzer
mC_d Modified Degree of Contamination
MS Mass Spectrometer
NAA Neutron Activation Analysis
NASC North American Shale Composite
NIST National Institute of Standards and Technology
NP Not Present
PGNAA Prompt Gamma Neutron Activation Analysis
PTS Pneumatic Transport System
REE Rare Earth Element
REEs Rare Earth Elements
Ref Reference
RNAA Radiochemical Neutron Activation Analysis
RR Rotary Rack
RTP Reactor TRIGA PUSPATI
sam Sample
SD Standard Deviation
SRM Standard Reference Material
std Standard
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{SAM}</td>
<td>The weight of the sample</td>
</tr>
<tr>
<td>W_{STD}</td>
<td>The weight of the standards</td>
</tr>
<tr>
<td>γ-ray</td>
<td>Gamma ray</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Sediments in aquatic water ecosystem are important as substrates for organisms, and perform an essential role both as a carrier and a possible source of contaminants (Burden, et al., 2002). These materials can affect the quality of groundwater and agricultural products when disposed in unmanageable way. Contaminants in the sediment may be recycled through biological and chemical agents within the water system. Bioaccumulation and food chain transfer can be affected by water contaminants, particularly for benthic organisms, which have a direct contact with sediment and may have greater impacts on their survival compared to aqueous concentrations (Malins, et al., 1984).

Sediments contain an important repository of metal pollutants in the sea. They are considered foods for many aquatic organisms. However, there are anthropogenic chemicals and waste materials such as toxic organic and inorganic chemicals, which are eventually accumulated in sediments that can poison aquatic lifes. Moreover, worst still is the presence of high concentration of heavy metals as particulate matters often found in sediments, particular in many industrialised harbours and coastal regions around the world (Chen, et al., 2001; Miller, et al., 2000; Wang, et al., 2007).

Soils, sand, organic matter, or minerals accumulated at the bottom may be released into a water body and contaminate the water (Allen, 1996; Guven and Akinci, 2008). Sediments of the seas, rivers, lakes, and oceans can be contaminated by metal pollutants from industrial and municipal wastes or agricultural activities (Begum, et al., 2009; Pempkowiak, et al., 1999). When larger animal feeding on these contaminated organisms, toxin is taken into their bodies causing it to move up the food chain. As a result, fish and shellfish, as well as freshwater and marine mammals may accumulate hazardous concentrations of toxic chemicals (Begum, et al., 2009).

1.2 Sources of Sediments

Studies on sediment are in an increase recently because of their negative influence on the quality of aquatic environment. The problems caused by these sediments may be physical, whereby they can lead to aggradation of water bodies and subsequent obstruction of engineered structures or they may be chemical upon the release of pollutants that have been previously transported in their association (Poleto and Charlesworth, 2010).

Poleto and Charlesworth (2010) have introduced sediments from sites, with a variety of geological contexts and different soil management. The sources as reported by Bortone (2006) are elaborated in the following.
1.2.1 6hXUFVh17 errigeQhXV6diments

Terrigenous particles eroded from the continents were mostly came from weathering of parent rocks that outcrop at the surface.

1.2.2 6hXUFVh1%hJenic Sediments

The quantity of living organisms is directly related to the availability of light and nutrients. Therefore, biological activity develops mainly from the surface to the limit of solar energy penetration and its related photosynthesis at 100-200 m water depth (the photic zone) in areas where nutrients (Si, P, K, SO₄, NO₃, Fe, Mo, etc.) are made available from the deep ocean by upwelling and from the continents by runoff. Some nutrients (Si, Fe, P, etc.) are present in low concentrations and gave limited effects on oceanic productivity.

1.2.3 The WateU&hOXPQ

The pH of sea water is near by neutrality with slightly alkaline (around pH8). Seawater has Cl and Na elements that make about 85% of the total. The remaining 15% include SO₄, Mg, Ca, K, CO₃ and Br. Chemical elements are derived from volcanic activity and continental weathering via runoff that were principally and accumulated during geological times. It is noteworthy that some chemical elements, which are widely distributed on continents such as Si, Fe and Al, make less than 0.5% of all the chemical elements in seawater. Most particles in the water column come from organic matter, which represents about 50% of the total. Organic matter is principally of aquatic origin and is concentrated in the photic zone, including shelves and near shore areas of river mouths. Less than 20% of total organic matters sink below the photic zone and less than 10% reach the seafloor, the rest being oxidised in the water column. However, the organic particles are more abundant in and below the areas of high productivity, which are oceanic divergences and coastal upwelling, where the availability of dissolved oxygen in seawater is not important enough to allow efficient oxidation of high quantities of organic matter.

1.2.4 HWdU6hXUFVh16diments

Mid-oceanic ridge volcanism and hot-spot volcanism in principal have contributed to the fluid basaltic lavas that are weathered depending on local climatic conditions. The nature of chemical weathering products is influenced by the lavas composition, generally enriched in Fe, Mg, etc. The particles are then brought into the ocean by runoff or wind activity.

Subduction volcanism explosion can contribute huge quantities of glass and ashes by runoff. However, volcanic glass and ashes were also transported by winds and distributed over large oceanic areas, where they settle to form distinct sedimentary layers. Authigenic particles can be observed in many sediment types and form water-sediment interface through chemical and biochemical processes. Chemical elements were provided by seawater, biogenic and terrigenous particles, and hydrothermal activity. Meanwhile, biological activity plays a major role in the formation of authigenic elements such as glauconite and phosphates, whereas hydrothermal activity is closely associated to the development of metalliferous oxides such as
crusts and nodules. Authigenic components are currently more abundant in areas of low deposition such as shallow and high-energy parts of continental shelves for glauconite and phosphates, as well as deep isolated parts of the largest oceanic basins for metalliferous crusts and polymetallic nodules.

1.3 Sediments

Another issue of major environmental concern is the pollution of estuarine sediments with chemical contaminants. A wide variety of organic compounds and metals from industrial, agricultural and urban sources can be discharged into estuaries. The contaminants can be adsorbed onto suspended particles, which will eventually settle in sediments. There, they can exert toxic effects on the benthic community that lives in the sediments and can indirectly affect human health as well.

The contamination sources of heavy metals, trace elements, REEs and actinides in the sediments will be described in the subsequent sections.

1.3.1 Heavy Metal Sources

Metals are constituent of the rocks, soils, sediments and water. However, in 200 years of industrialisation, huge critical chemicals on the earth's surface have increased, challenging those regulatory systems which took millions of years to evolve (Wood and Wang, 1983). Meanwhile, heavy metals in sediments are originated from natural sources such as rock weathering, soil erosion, and dissolution of water-soluble salts, as well as anthropogenic sources from municipal wastewater-treatment plants, manufacturing industries and agricultural activities (Guven, et al., 2008). The metals are readily available as soluble species. Nonetheless, this is restricted to metals that are available to those with atomic numbers below 40. Heavy metals may be classified in the following (Wood, 1974):

i) Noncritical including Na, Mg, Fe, K, Ca, Al, Sr, Li, Rb;
ii) Toxic, but very insoluble or very rare including Ti, Hf, Zr, W, Ta, Ga, La, Os, Ir, Ru, Ba, Rh; and
iii) Extra toxic including Be, Co, Ni, Cu, Zn, Sn, Cr, As, Se, Te, Ag, Cd, Hg, Tl, Pb, Sb, Bi.

Environmental pollution of trace metals is of increasing concern over the potential effects to human health and the environment (Vernet, 1991). Nevertheless, data on distributions and concentrations of trace metals in the marine environment are available since the mid 1970s, mainly due to advanced developments in free methodologies for sampling, handling and analyses of samples, and improved analytical methods such as inductively coupled plasma-mass spectrometry (ICP-MS) (Burton and Statham, 1990; Plant, et al., 2003).

Heavy metals in lithosphere are released into the environment through volcanism and weathering of rocks (Fergusson, 1990). However, most of heavy metals in the aquatic environment is often a caused by human intervention (Denton, et al., 1997; Mance, 1987). Coastal regions become the most sensitive areas because of increasing urbanisation, industrial development and recreational activities. Pollution levels are
often elevated in coastal areas because of nearby land-based pollution sources (Fergusson, 1990; Wang, et al., 2007).

Almost all industrial processes that produce waste discharges are potential sources of heavy metals to the aquatic environment (Denton, et al., 2001). On other hand, domestic wastewater, sewage sludge, urban runoff and leachate from solid waste disposal sites are also sources of heavy metals into rivers, estuaries and coastal waters (Mance, 1987). Other potential sources include ports, harbours, marinas and mooring sites, possibly associated with recreational and commercial, as well as occasionally, military, boating and shipping activities (Denton, et al., 1997).

The sources of some heavy metals such as Cd, Cr, Cu, Pb, Ni, Zn, and Co can be summarised in the following subsections.

Cadmium (Cd)

Cadmium is found as complex oxides, sulphides and carbonates in zinc, lead and copper ores, which is isolated in the production of zinc. Some sulphidic zinc ores contain up to 1.4% of cadmium (Finkelman, 2005). Cadmium ions are very toxic to plants and animal species (Denton, et al., 1997). The main source of cadmium includes metallurgical industries, municipal effluents, and sewage sludge, as well as mine wastes, fossil fuels and from fertilisers.

In sediments, cadmium is the main sorption material for the metal. It is worth noting that the level of cadmium increases with a decrease in size and an increase in density. The sorption of cadmium in sediments may increase with pH. The release of cadmium from sediments is influenced by acidity, redox conditions and complexing agents in the water and less mobile under alkaline conditions (Fergusson, 1990).

The concentration of cadmium in the lithosphere is ~0.1 μg/g (Callender, 2003), in pristine areas are <0.2 μg/g and those with levels exceeding 100 μg/g is at severely contaminated sites (Naidu and Morrison, 1994). Cadmium poisoning is commonly experienced in the lungs, kidneys and bones. Chronic inhalation of cadmium leads to pulmonary emphysema, where the small air sacs of the lungs are distended or destroyed which reduce lung capacity (Ansari, et al., 2004).

Chromium (Cr)

With an average concentration of 100 mg/kg, chromium found in the environment is due to erosion of rocks from volcanic eruptions. The concentrations in soil range between 1 and 3000 mg/kg, 5 to 800 μg/L in sea water and 26 μg/L to 5.2 mg/L in rivers and lakes. Like zinc, chromium is one of the most abundant heavy metals in the lithosphere (with an average concentration of about 69 μg/g), while mercury content in carbonate sediments is reported to be 0.03 μg/g (Callender, 2003). Chromium is moderately toxic to aquatic organisms. Major coastal marine contributors of chromium are dominated by input from rivers, urban runoff, domestic and industrial wastewaters and sewage sludge (Denton, et al., 1997). Other main sources of chromium in the aquatic environment include the waste stream from electroplating and metal finishing industry (Callender, 2003; Finkelman, 2005).
It has been reported that the levels of chromium in marine sediments range from 2.4 μg/g at unpolluted sites to 749 μg/g at grossly contaminated sites (Denton, et al., 1997). Chromium is carcinogenic to humans and long-term exposure to it has been associated with lung cancer in workers exposed to its levels in air that are in the order of 100 to 1000 times higher than usually found in the environment (Finkelman, 2005).

Copper (Cu)

With the mean concentration in the lithosphere of about 39 μg/g, copper is moderately abundant heavy metal. It is an essential trace element for the growth of most aquatic organisms but becomes toxic at levels as low as 10 μg/g (Callender, 2003). Heavily polluted sediments have been reported to exceed 200 μg/g. Copper in waters come from such as mining, smelting, and domestic and industrial wastewaters, as well as steam electrical production, incinerator emissions and dumping of sewage sludge (Denton, et al., 1997).

Copper has a high affinity for clay mineral fractions, especially those rich in coatings containing organic carbon and manganese oxides (Callender, 2003). As a result, residues are often elevated in sediments near localised sources of inputs (Denton, et al., 1997). Copper is essential for good health. However, exposure to higher doses can be fatal. Long-term exposure to copper results in irritations to nose, mouth, and eyes, and causes headache and diarrhoea (Finkelman, 2005).

Lead (Pb)

Lead is usually extracted from ore together with zinc, silver and copper. Galena (PbS) is a mineral contains 86.6% of lead. Pb in water is coming from manufacturing and atmospheric deposition. Other sources include domestic wastewaters, sewage and sewage sludge (Denton, et al., 1997). Lead is in the 15 - 50 μg/g range for coastal and estuarine sediments around the world (Denton, et al., 1997).

Lead is a major hazard to human and animals. The immediate effects of lead poisoning are nausea, vomiting, abdominal pains, anorexia, constipation, insomnia, anaemia, irritability, and mood disturbances and loss of coordination. In more severe situations, neurological effects such as restlessness, hyperactivity, confusion and impairment of memory can result in coma and death (Ansari, et al., 2004).

Nickel (Ni)

Major sources of nickel in natural waters include municipal wastewater and smelting and refining of nonferrous metals (Denton, et al., 2001). The drainage effluents from mining are also known to be major contributors (Finkelman, 2005). Typically, nickel residues in sediments can be up to 100 μg/g or higher but may fall below 1 μg/g in some clean coastal waters (Denton, et al., 1997) with the average concentration of nickel in the lithosphere of 55 μg/g (Callender, 2003).

Health effect due to exposure to nickel include is reduced lung function. Metallic nickel may also be carcinogenic (Finkelman, 2005).
Zinc (Zn)

Zinc is a very common environmental contaminant that usually outranks all other metals in terms of abundance (Denton, et al., 1997; Finkelman, 2005). The major source of zinc is from domestic wastewaters, coal-burning power plants, manufacturing processes involving metals. Two-third of all atmospheric zinc emissions are from come from nonferrous metals, burning of fossil fuels and municipal wastes, as well as from productions of fertiliser and cement (Callender, 2003; Denton, et al., 2001).

Major sinks for zinc in the aquatic environment come from sediments and they have been in excess of 3000 μg/g close to mines and smelters (Denton, et al., 2001). The highest sedimentary zinc levels can reach as high as 5700 μg/g are found to be from enclosed harbours. This is mainly due to restricted water circulation, while a variety of localised sources including brass and galvanised fittings on boats, wharves and piers, zinc-based anti-corrosion and anti-fouling paints cause harbours to be particularly prone to zinc contamination (Denton, et al., 1997).

Chalt (Ch)

Cobalt is the 33rd most abundant element found in air, surface water, and leachate from hazardous waste sites, groundwater, soil and sediment. Cobalt and inorganic cobalt compounds are both natural and anthropogenic (Barceloux, 1999). Natural sources are originated from wind-blown dust, seawater spray, and volcanoes and as well as from continental and marine biogenic emissions. Some anthropogenic sources are burning of fossil fuels, sewage sludge, phosphate fertilisers, mining and smelting of cobalt ores, and industries. Cobalt released in air is deposited into soil; while cobalt released into water settled into sediment.

Cobalt concentration is reported to be less than 1 μg/L in seawater. The concentration in drinking water less than 1–2 μg/L, and in rainwater is 0.3–1.7 μg/L. The cobalt concentration in earth’s crust is 20–25 μg/g. As anthropogenic sources the concentration in soil may be several hundred milligrams per kilogram, coming from various sources include mining and processing of cobalt-bearing ores, use of cobalt-containing sludge or phosphate fertilisers on soil, disposal of cobalt containing wastes and atmospheric deposition from activities such as burning of fossil fuels and smelting and refining of metals (Smith and Carson, 1981).

1.3.2 Sources of Trace Elements in Sediment

Trace element found sediments due to geological weathering processes and erosion during precipitation events (Chapman, et al., 2003). Materials carried in the faster-flowing water will settle and cause sedimentation (Bartram and Ballance, 1996; Ongley, 1996). Chemical accumulation in sediments mainly originate from deposition of the elements and from diffusion (Chapman, et al., 2003; Ongley, 1996).

Some trace elements can be remobilised after being deposited in sediments by bank erosion during floods or by geochemical weathering and leaching (Novotny and Olem, 1994). Anthropogenic sources of trace elements in sediment came from both industrial effluents and municipal wastewater discharges to water bodies (USEPA,
2005). They also can come from sources like stormwater and agricultural runoff, (USEPA, 2005).

1.3.3 Shurces hfi Majhr Elements in Sediment

Major elements in oxide form are SiO₂, Al₂O₃, Fe₂O₃, Na₂O₃, MgO, CaO, K₂O, TiO₂, P₂O₅ and MnO (Shaw, 1956). The major elements are found in such large quantity in seawater and marine sediments (Sadiq, 1992). In seawater, they are ions and complexes as Na⁺, NaCl, Na₂SO₄ and NaHCO₃; magnesium as Mg²⁺, MgCl₂, MgSO₄, MgHCO₃, calcium as Ca²⁺, CaCl₂, CaSO₄ and CaHCO₃; sulphur as SO₄²⁻, HS⁻, S₂⁻ and S²⁻; iron as Fe (OH)₃, Fe₃(OH)₈, FeS₂; manganese as Mn²⁺, MnCO₃, Mn₂(CO₃)₂; aluminium as Al silicate and Al (OH)₃; phosphorous as CaCO₃·P (Balistrieri and Murray, 1987; Sadiq, 1992; Shimmield and Price, 1986).

1.3.4 REE Shurces

Rare earth elements (REEs), including seventeen chemical elements, include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, with atomic numbers from 57 to 71; whereas the two other elements (yttrium and scandium) with similar chemical properties tend to occur in the same ore deposits as lanthanides (Bailey Grasso, 2013).

REEs can be divided as being 'light REE’ (LREE) or ‘heavy REE’ (HREE) depending on the electron configuration of each rare-earth element. In particular, LREE is defined as lanthanum of atomic number 57 to gadolinium of atomic number 64 (Bailey Grasso, 2013). LREE has in common increasing unpaired electrons, ranging from 0 to 7.

Among LREEs, Ce and Eu can behave differently. Ce³⁺ insoluble is Ce⁴⁺ under oxidising conditions and Eu²⁺ insoluble is Eu²⁺ under reducing conditions. Meanwhile, HREE is defined as terbium of atomic number 65, through lutetium of atomic number 71 to yttrium of atomic number 39.

Ce is the most abundance element in the earth’s crust at 60 mg kg⁻¹ (ppm), whereas the least abundant REEs at 0.5 ppm are related to Tm and Lu (Hedrick, 2004).

The principal REE sources are coming from the minerals such as bastnasite, monazite, loparite, and the lateritic ion-adsorption clays. The transport, sedimentation, weathering, erosion and digenesis processes play a role in the distribution of REEs in ancient and modern sediments (McLennan, 1989). The distribution pattern of REEs in marine sediments helps to elucidate their widespread use in both industry and agriculture (Takahashi and Noriki, 2007). Nowadays, contamination of REEs into the environment may be due to the fact that REEs are used in many modern devices such as samarium-cobalt and neodymium-iron-boron high-flux magnets, as well as in superconductors and electronic components, catalysts and hybrid car components, luminescent materials; as Nd:YAG laser, erbium-doped fibre amplifiers, phosphors containing REEs in CR tubes and television sets; as yttrium iron garnet (YIG) in tuneable microwave devices and tungsten in high temperature welding.
1.3.5 Actinides Sources

The actinides are radioactive elements that lie between Ac and Lr, with atomic numbers ranging between 89 – 103 (Seaborg, et al., 1991) found in Uranium such as naturally occurring actinides of Ac, Th, Pa and U, while 238U typically presents at ppm levels in uncontaminated soils and sediments and at ppb levels in natural waters (Langmuir, 1997; Murphy and Shock, 1999). U can be found in significant quantities in earth’s crust (2-4 mg/kg) and soil (0.7-11 mg/kg). In fact, uranium also can exist as isotopes of U-238 (99.2%) and U-235 (0.7%). Uranium ore deposits in one of three types: quartz-pebble conglomerates, unconformity type deposits and sandstone deposits (Nash, 1981). Microorganisms can play a role in the formation of quartz pebble and sandstone hosted deposits (Miholic, 1952; Nash, 1981; Suzuki and Banfield, 1999). U can come from inorganic U(VI) reduction by organic matter or hydrogen sulphide derived from sulphate-reducing bacteria (Nakashima, et al., 1984; Nash, 1981). Microorganisms can have a direct play in the formation of the ore deposits (Pietzsch, et al., 1998) as bacteria can enzymatically reduce U(VI) (Lovley, et al., 1991).

The uranium can be extracted from ores in a number of different chemical and microbiological leaching techniques (Benes, et al., 1998; Eisenbud and Gesell, 1997; Tuovinen and Kelly, 1974), which produce ‘yellow cake’ (nominally U_3O_8). Solid wastes from uranium ore milling contained radioactivity 70-85% and of the total radioactivity, 50-100% 232Th, and 93-100% 226Ra retained (Abdelouas, et al., 1999; Benes, et al., 1998). 226Ra is particularly problematic in these wastes as it emits intense alpha radiation and forms the radioactive gas 222Rn as a decay product (Krauskopf, 1988).

Actinide elements can pose a potential hazard to human health coming from rainwater leaching of heavy metals or wind erosion and dispersal of tailings materials (Abdelouas, et al., 1999; Benes, et al., 1998). Most uranium is extracted during processing; however, residual concentrations are typically around 100-1400 mg kg$^{-1}$ 238U (Junghans and Helling, 1998; Putnik, 1996); while pore-water in contact with tailings and surface waters associated with processing can contain up to 85 ppm uranium (but are more typically between 0.3-10 ppm) (Willett and Bond, 1995).

1.4 Chntaminatiiñ and Phillutiñ in the Marine Envirhn

Coastal areas is very significant region to man for food resources and ecosystem services. Man activities at coastal areas can give negative impacts and caused marine pollution. It is necessary to predict and monitor pollution on marine and estuarine ecosystems. The concern of marine pollution is related to in instant and long-term damages to coastal and marine habitats and ecosystems (Valentukevičienė and Brannvall, 2008).

1.4.1 The Marine Phllutiñ

The pollution is disturbance of the natural state of the environment through anthropogenic activity. Pollution induces the loss of potential resources (Goldberg, 1992). Waters and sediments in such regions bear industrial and sewage discharges and polluted the echosystems (Hester and Harrison, 2000). The anthropogenic
sources of pollution are coming from urban storm water runoff and effluent discharge (Brown and Peake, 2006; Matthai, et al., 2002). Many contaminants have low water solubility and are particle-reactive (Olsen, et al., 1982). Contaminants are rapidly adsorbed to suspended sediment and organic matter and are scavenged from the water column through flocculation, coagulation and sedimentation (Hatje, et al., 2003; Honeyman and Santschi, 1988; Huh, et al., 1992).

1.5 Heavy Metal Pollution in Sediments

Heavy metals such as cadmium, mercury, lead, copper, and zinc, are regarded as serious marine pollutants because of their toxicity could incorporated into food chains and they have ability to remain in an environment for a long time (Puyate, et al., 2007).

The concentration of heavy metals in sediments influence by reduction/oxidation reactions, adsorption/desorption and physical transport or by addition to anthropogenic input (Basaham and El-Sayed, 1998). Toxic compounds of heavy metals are adsorbed either in their organic or inorganic forms (Forstner and Wittman, 1983; Kabata-Pendas, 2010). In particular, the heavy metal content of sediments comes from natural sources as well as anthropogenic sources such as manufacturing industries and agricultural activities (Guven, et al., 2008).

1.6 Definition of the Study Area

Malaysia is a coastal nation with a coastline length of 4809 km and rich in biodiversity and natural resources. The country is divided into two landmasses that are separated by the South China Sea. Peninsular Malaysia is located to the west of South China Sea with a coastline of 2031 km and the other part is East Malaysia, consisting of Sabah and Sarawak (Figure 1.1) (Radzi, 2009).

![Figure 1.1 A map showing the locations of the study area](image)

Sabah is the second largest state in Malaysia with the longest coastline of approximately 1743 km, that extends from 73,711 km², the border of Sarawak in the
Southwest to Indonesia in the Southeast, including all offshore islands that are part of the continental shelf of Southeast Asia (Abdul-Hadi, et al., 2013).

The coastline of Sabah borders the South China Sea on its west coast, the Sulu Sea on its east coast and the Sulawesi Sea on its Southeast coast, and is also part of South Asia Waters (Wyrtki, 1961). The study area of the coastal Sabah is shown in Figure 1.2. The total territorial water of Sabah is about 55,828 km², which extends to twelve nautical miles.

![Figure 1.2](hFDWLhQVhIWKH6hXWK&KLQD6XODQG6XODZHVL6HDVDOhQJWK)

Sabah has numerous islands that range in size from less than a hectare to several square kilometres. They are unsheltered rocky islands at varying distances from the shore, while others are sheltered muddy islands found in protected bays or in estuaries.

The west coast of Sabah is characterised by sandy beaches found from the tip at Kudat region in the north to Klias region in the South. The southern part of the Klias region has one of the few extensive areas of tidal wetlands (mangroves and nipah) on the west coast. Freshwater wetlands can be found in the coastal flatlands of the west coast, especially in Beaufort, Papar and Kota Balud (Mojiol, 2006).

Sabah has 19 river basins, with the Kinabatangan river basin on the East Coast as the largest basin covering an area of 15,385 km². This is followed by the Padas River on the West Coast, which is the second largest with an area of 8,726 km². Most of the other basins cover smaller areas (Juin, et al., 2000).
Sabah has eight major rivers including Padas, Pegalan, Papar and Mulau in the west, and Sugut, Labuk, Kinabatangan and Segama in the east. Figure 1.3 shows the major rivers that are flowing into the coastal areas of Sabah.

![Map of Sabah showing major rivers](image)

Figure 1.3 MaMhUvers basins aOhQJWKhstaOhI6abah (AGhSvGIUhP’ anish &hhSratihQJhUEnviUhhQPrnt and DeveOhSPPrnt DANCED, 1996)

Rivers is the primary transport of suspended sediment, pollution and nutrients to enter the catchment areas. The significance of a river with respect to sediment, nutrient or pollution loading is dependent upon both the discharge of the river and the concentrations of various materials in the river water.

Sabah has a typical equatorial climate with constant temperature, considerable amount of rain and high humidity. The two prevailing monsoons in Sabah, which characterise the climate in this region, are the Northeast Monsoon and the Southwest Monsoon. The Northeast Monsoon predominates the months between November and March, whereas the Southwest Monsoon prevails during the months of May to September. In addition, there are also two successive inter-monsoons that occur from April to May and September to October.

1.7 Significance of the Study

The coastal zone of Sabah is an area of high economic significance, which is often subject to fast economic development, large population migrations and urban development. Among others, the attraction of the coast to human settlements is due to its proximity to the ocean’s living and non-living resources, as well as marine transportation and recreation.
The marine part of the coastal zone of Sabah is a very important and productive ecosystem (as it possesses some of the world’s richest ecosystems) because it is the Economic Exclusive Zone (EEZ), which covers approximately 54,360 km² or around 30% of the Malaysian EEZ. The major part of the area lies in the South China Sea, extending to the limit of the continental shelf off the West Coast of Sabah. To the South-East, off the east coast of Sabah between Semporna and Pulau Sebatik, the area is extended to the continental shelf boundary in the Sulawesi Sea. The remaining area between Semporna and Kudat is the Sulu Sea, with the Malaysia/Philippines international boundary. About 30% of the marine coastal zone, or approximately 54,360 km², is the territorial waters of Sabah.

To the Southwest, the marine coastal zone is delimited by the interstate boundary between Sarawak and Sabah in the Brunei Bay area and by the international boundary between the EEZ claims from Brunei and Malaysia, which extends from the coast all the way to the continental shelf. To the Southeast, the zone is delimited by the international boundaries between Malaysia and the Philippines, between Malaysia and Indonesia and the continental shelf (Macintosh and Nielsen, 1999).

Another significant of the marine part of the coastal zone of Sabah is associated to the people who live along the coast of Sabah. Sabah had a population of 3,117,405 in 2010 (Abdullah, 2013). The highest population concentrations were in major cities such as Kota Kinabalu, Tawau, Sandakan, Lahad Datu and Semporna, the five districts that accounted for approximately 50% of the total population. These areas become attraction of majority of illegal and unregistered settlements. In terms of land area, the five districts only represent around 22% of Sabah. This indication of population pressure on the coastal areas is likely to be strengthened considerably (Mojiol, 2006).

All the most populated towns are captured within the coastal zone of Sabah, namely, Kota Kinabalu, Sandakan, Tawau, Lahad Datu and Semporna. It is estimated that more than 75% of the population live and work in the coastal zone (Macintosh, et al., 1999). Meanwhile, the urban population growth exceeds the rural indicating a net migration towards the towns in Sabah. This leads to environmental impacts of urbanisation which need particular focus from a coastal management approach (Juin, et al., 2000).

The fisheries in Sabah are predominantly artisanal with more than 70% of the catches taking place within 30 nautical miles from the coast (Jaaman, et al., 2004). Tourism is an important and growing sector, which exerts a considerable pressure on coastal areas, particularly on the west coast and coral islands. Other sectors with significant impacts on coastal areas are forestry, mining that includes offshore oil and gas extraction, and transportation, all of which take place at considerable distances from the shoreline (Juin, et al., 2000).

It is obvious that the heavy and chemical industries, oil and gas-related industries and agriculture activities have developed rapidly along the coast of Sabah and this leads to contamination and pollution of the coastal marine sediments which are of anthropogenic sources of land-based and sea-based activities.
Due to the lack of elemental baseline data and inadequate information on the levels of heavy metals, major and trace elements, REEs and actinides in the coastal marine sediments of Sabah, more studies are needed to investigate the environmental impacts and management on the marine coastal zone of Sabah because of its highly significant and most productivity region in Malaysia.

Therefore, the scientific investigation on the coastal and offshore marine sediments is important to determine the implications of the status of contamination and pollution and the temporal changes of the modern sedimentation.

1.8 Problem Statement

Environmental problem in the coast of Sabah is very serious because it receives discharges from many rivers due to human activities and various industries. Most of the coastal agricultural and fishery resources, electronic, gas and heavy industries, agriculture, fishing, shipping activities and human population are concentrated on the west and east coasts of Sabah.

It is important to note that most environmental research has focused on the marine sediments in the coast of other regions in Malaysia (Din, 1995; Rezaee, et al., 2010; Seng, et al., 1987; Wood, 2001; Yap, et al., 2003a, 2003b). Therefore, more studies related to the environment is needed to be carried out because marine sediments provide useful information for reconstructing oceanographic conditions and environmental changes that took place in the past.

Along both the east and west coasts of Sabah, heavy and chemical industries, oil and gas industries and agriculture activities are developing rapidly in the recent years as compared to the past. Therefore, more research is needed to be conducted in this area due to insufficient baseline data available on the marine sediments along the coast of Sabah. Moreover, it is important to investigate and provide assessments of the elemental pollution degrees to determine pollution patterns in the coasts of Sabah using sediment samples as they provide useful information pertaining to marine pollution.

1.9 Scope of the Study

The coastal areas of Sabah are developing rapidly into important economic zones, where numerous significant industrial estates and industrial sectors are currently operating within the coastal zone of Sabah, where rubber, forest, and timber industries; chemical, petroleum products, chemical fertilizers, gas, electric, and oil platform industries; oil palm, fishery, and food industries; building materials and plastic industries are located. Among the various industrial sectors, the manufacturing sectors and the main types of manufacturing activities are one of the fastest growing activities in the coast of Sabah.

The combination of the anthropogenic activities due to various industrial and manufacturing sectors, with their direct links to human population that lead to municipal and urban solid wastes, makes the coastal marine environment of Sabah area particularly vulnerable to contaminations.
Thus, the scope of this study was to determine and provide the pollution patterns of vertical elemental distributions of heavy metals, trace elements, REEs and actinides, and assess possible contamination by pollutants in the aquatic ecosystems of the coastal Sabah as a result of waste discharges from both natural and anthropogenic origins.

1.10 Objectives of the Study

The goal of current study was to identify elemental distribution in core marine sediment of the coastal areas in Sabah. This information may provide the status of elemental pollution in the coast of Sabah, which can be acquired by analysing the core marine sediments using the INAA method by the Malaysian research reactor and ICP-MS method at the Nuclear Agency, Malaysia.

The objectives of this research are:

To determine the spatial and vertical distributions of mineral deposits in the coast of Sabah for identification of areas with elevated concentrations of mineral deposits contaminations in assessing the status of pollutants in this area. Details of the mineral deposits are summarised as follows:

- Major elements.
- Heavy elements.
- Trace elements
- Rare earth elements (REEs).
- Actinide elements.

To establish the baseline data for the above mineral deposits in the marine sediments of the coast of Sabah.

1.11 Outline of the Thesis

The thesis consists of five chapters which are respectively described in the following subsection:

The first chapter consists of the general introduction, which includes the background, significance and objectives of the study. The second chapter provides a review of literature in the field of study. This chapter discusses some previous researches that were done regionally on anthropogenic impact of marine sediments and their association with the present study.

The third chapter contains the theoretical part detailing the theoretical physics of nuclear reactions and the procedural aspects of instrumentation neutron activation analysis (INAA) and ICP-MS techniques. The fourth chapter is the methodology of collection, preparation and measurement procedures of marine sediment samples using INAA and ICP-MS.

The fifth chapter is the results and discussions on experimental results, data analyses and comparison of the results with established data. The final chapter is the conclusions for this research work and the recommendations for future work.
REFERENCES

Abdullah, S. J. H. OVERVIEW OF MUNICIPAL SOLID WASTE MANAGEMENT PRACTICES AND CHALLENGES IN SABAH: A REVIEW PAPER.

Censi, P., Mazzola, S., Sprovieri, M., Bonanno, A., Patti, B., Puntuero, R., et al. (2004). Rare earth elements distribution in seawater and suspended

Elias, M., and Hamzah, M. Assessment of Sediment Quality Collected from Tunku Abdul Rahman Park, Sabah.

matter under diagenetic or hydrothermal conditions. *Geochimica et Cosmochimica Acta*. 48(11), 2321-2329.

237

240

