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By
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October 2015
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A growing number of demanding applications in high frequency electronics and
telecommunications depends on the absorbing properties of materials. The
electromagnetic properties of microwave absorbers and radar-absorbing
materials are critical issues that need to be resolved in many military applications
dealing with reduction of radar signature of aircraft and ships. For industrial
equipment and home appliance applications, the Electromagnetic Compatibility
Compliance Directive (ECCD), demands electromagnetic interference side
effects be eliminated or marginally minimised. The equipment must not disturb
radio and telecommunication as well as other appliances.  Additionally, the
ECCD also governs the immunity of such equipment to interference and seeks
to ensure that this equipment is not disturbed by radio emissions when used as
intended.  Many type of absorbing materials are commercially available.
However, many are expensive and not environmentally friendly.

This thesis describes the synthesis and characterization of zinc oxide (ZnO)
nanoparticles and ZnO-PCL nanocomposites using the microwave irradiation
and melt blend techniques respectively. Two types of pellets with dimension of
6.0 cm X 3.6 cm and 0.11 cm X 0.22 cm were prepared for the measurement of
complex permittivity of the different % of the composites using open ended
coaxial probe (OEC), while the latter dimension were used in a rectangular
waveguide (RWG) in measuring both the permittivity and permeability of the
different % composites.

Comparison of permittivity between OEC and RWG results were carried out for
all materials used in this study (PTFE, PCL and composites with different
percentages of ZnO nanofillers). The effect of the different % ZnO nanofiller on
the permittivity of the composites were also investigated.  Attenuation, power
loss and absorption due to sample thickness and ZnO nanofiller inclusion in the
composites were investigated using finite element method (FEM) and RWG
methods, whilst transmission and reflection coefficient were measured,
simulated and calculated using RWG, FEM, and Nicholson Ross Weir (NRW)
methods respectively.
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Microstrip and FEM techniques were used to determine both the transmission
and reflection coefficients and electric field distribution for the different % ZnO-
PCL nanocomposites pellets when placed on top a microstrip. Comparison of
the measured and calculated scattering parameters were also investigated.
Furthermore, the results obtained from the scattering parameters were used to
determine the attenuation of the different % of ZnO-PCL nanocomposites pellets.
Finally, the effect of the different % ZnO nanofiller on electric field was
investigated by visualizing the electric field distribution of the ZnO-PCL
nanocomposites pellets placed on top a microstrip using finite element method.
Findings from investigations showed that the complex permittivity values
obtained using the OEC method were in good agreement with the RWG
technique, whilst increase of ZnO nanofiller percentage into the polymer matrix
increased the dielectric constant, loss factor, attenuation, absorption, real
permeability, imaginary permeability and reflection coefficient of the composites.
The attenuation obtained for the 70 % filler composition was -18 dB which is
good for microwave absorption whilst the microwave irradiation technique was
able to synthesize ZnO nanoparticles with an average particle size of 57.5 nm.
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SINTESIS DAN PENENTUAN SIFAT-SIFAT ZINK OKSIDA
POLYCAPROLACTONE NANOKOMPOSIT DENGAN MENGGUNAKAN

TEKNIK PANDU GELOMBANG SEGI EMPAT TEPAT DAN MIKROSTRIP

Oleh

ABUBAKAR YAKUBU

Oktober 2015

Pengerusi : Professor Madya Zulkifly Abbas, PhD
Fakulti : Sains

Semakin banyak aplikasi dalam elektronik frekuensi tinggi dan telekomunikasi
yang dikehendaki bergantung kepada sifat-penyerapan bahan. Sifat
elektromagnet penyerap gelombang mikro dan bahan penyerap radar adalah isu
kritikal yang perlu diselesaikan dalam banyak aplikasi ketenteraan berurusan
dengan pengurangan isyarat radar pesawat dan kapal. Untuk aplikasi peralatan
industri dan perkakas rumah, Arahan Pematuhan Keserasian Elektromagnet
(ECCD), menuntut agar kesan sampingan gangguan elektromagnet dihapuskan
atau dikurangkan sedikit. Alat ini tidak boleh mengganggu radio dan
telekomunikasi serta peralatan lain. Tambahan pula ECCD juga mengawal
ketahanan peralatan untuk turut serta dan berusaha untuk memastikan bahawa
alat ini tidak diganggu oleh pancaran radio apabila digunakan seperti yang
sepatutnya. Banyak jenis bahan penyerapan boleh didapati secara komersial.
Walau bagaimanapun, kebanyakannya adalah mahal dan tidak mesra alam.

Tesis ini menerangkan sintesis dan pencirian zink oksida (ZnO) zarah nano
menggunakan penyinaran gelombang mikro dan ZnO-PCL nanokomposit
menggunakan teknik cair dan gabung. Dua jenis pelet dengan dimensi 6.0 cm X
3.6 cm dan 0.11 cm X 0.22 cm disediakan untuk mengukur ketelusan kompleks
yang berbeza peratusan komposit dengan menggunakan prob sepaksi hujung
terbuka (OEC), manakala dimensi yang kedua digunakan dalam pandu
gelombang segi empat tepat (RWG) untuk mengukur ketelusan dan
kebolehtelapan yang mempunyai peratusan komposit yang berbeza.

Perbandingan ketelusan antara keputusan OEC dan RWG telah dijalankan bagi
semua bahan-bahan yang digunakan dalam kajian ini (PTFE, PCL dan komposit
dengan peratusan yang berbeza ZnO nanopengisi). Kesan perbezaan
peratusan ZnO nanopengisi ke atas ketelusan bagi komposit juga disiasat.
Pengecilan, kehilangan kuasa dan penyerapan kerana ketebalan sampel dan
ZnO nanopengisi dimasukkan dalam komposit telah dikaji menggunakan kaedah
unsur terhinnga (FEM) dan kaedah RWG, manakala pekali penghantaran dan
pantulan diukur, disimulasi dan dikira menggunakan kaedah RWG, FEM, dan
Nicholson Ross Weir (NRW).
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Teknik mikrostrip dan FEM telah digunakan untuk menentukan pekali pantulan
dan penghantaran dan taburan medan elektrik untuk peratusan ZnO-PCL
nanokomposit pelet yang berbeza apabila diletakkan di atas mikrostrip.
Perbandingan parameter penyerakan yang diukur dan dikira juga dikaji.
Tambahan pula, keputusan yang diperolehi daripada parameter penyerakan
telah digunakan untuk menentukan pengecilan peratusan ZnO-PCL
nanokomposit pelet yang berbeza. Akhir sekali, kesan peratusan ZnO
nanopengisi yang berbeza pada medan elektrik telah dikaji dengan
menggambarkan corak taburan medan elektrik pada ZnO-PCL nanokomposit
pelet yang diletakkan di atas mikrostrip dengan menggunakan kaedah unsur
terhinnga. Penemuan daripada penyiasatan menunjukkan nilai-nilai ketelusan
kompleks diperolehi dengan menggunakan kaedah OEC yang diperolehi
bersetuju dengan teknik RWG, manakala kenaikan dalam peratusan ZnO
nanaopengisi dalam matriks polimer meningkatkan pemalar dielektrik, faktor
kehilangan, pengecilan, penyerapan, kebolehtelapan nyata, kebolehtelapan
bayangan dan pekali pantulan komposit tersebut. Pengecilan yang diperoleh
bagi 70% komposit nanopengisi iaitu -18 dB adalah bagus untuk penyerapan
mikrogelombang manakala teknik penyinaran mikrogelombang mampu
mensintesis zarah nano ZnO dengan saiz purata sebesar 57.5 nm.
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CHAPTER 1

INTRODUCTION

The need for microwave absorbers and radar-absorbing materials is on the rise
in military applications dealing with reduction of radar signature of aircraft and
ships, whilst in civilian applications dealing with reduction of electromagnetic
interference among electronic and telecommunication components.
Nanocomposite absorber that uses zinc oxide nanoparticles in conjunction with
a polymer matrix produces flexibility for fabrication and properties control, as the
composite can be manipulated through changes in both the nanoparticle filler
and the host matrix. Depending on the application for which the absorber is
intended, the percentage of filler and the host matrix are two important factors to
be understood. In addition, microwave absorption properties are determined by
the complex permittivity and permeability, sample thickness, microstructure of
the absorber, and class of material. The suppression of eddy current due to
electromagnetic interference are enhanced by sizes of particles in the absorber
material.  In this regard, metal type nanocomposites were widely used for EM
wave absorption. Magnetic particles encapsulated in carbon nanotube (CNT)
composites and magnetic particles coated with carbon have been the focus for
EM wave absorbers (Tang et al, 2014; Wen et al, 2011). However, the process
involved in the fabrication of magnetic particles doped (CNT) is unfavourable for
the application of absorbing nanocomposites. This condition has led to the push
in looking for new absorbing nanocomposites materials. This search has led
scientists to ZnO nanoparticles which can be used as high efficiency microwave
absorbing materials due to its high complex permittivity and complex
permeability (Tan et al, 2014; Cao, et al, 2007).

Shown in Figure 1.1 and 1.2 are areas in telecommunication where zinc-oxide -
polycaprolactone (ZnO-PCL) nanocomposites can be applied in
telecommunication as absorbing material (Wahab, et al, 2013; Liu, et al, 2008),
with worldwide consumption of ZnO in a wide range of applications, ranging from
tyres to ceramics, from pharmaceuticals to agriculture, and from chemicals to
electronics (Kołodziejczak-Radzimska & Jesionowski, 2014).
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Figure 1.1: Schematic representation of application of ZnO-PCL
nanocomposites

The advantages of using ZnO-PCL nanocomposites is the ease in realizing large
scale synthesis of ZnO nanoparticles which is cost effective. Due to ZnO unique
geometrical morphology, cage like ZnO/SiO2 nanocomposites exhibited a strong
attenuation of microwave at X band frequency (Cao et al, 2007).
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Figure 1.2: Worldwide consumption of ZnO

Su et al, (2014), reported that ZnO nanowire polyester composites are strong
absorption materials for microwave at X band frequency which is due to its
interfacial multi-polarization at the interface between the polyester and the ZnO
nanowires with a high surface to volume ratio. The anisotropic energy of nano
sized particles might be increased due to the surface anisotropic field affected
by very small size effect. This phenomenon causes a shift in the resonance peak
to higher frequency value which is important for EM wave absorption at higher
frequency.

Detailed studies in measurement of permittivity of solid materials using open
ended coaxial probe (OEC) has not been carried out.  In the light of the above,
measurement of complex permittivity using OEC technique will be investigated
and the results will be compared with standard recommended technique like the
rectangular waveguide method (RWG). Other investigations will involve the
effect of different (%) ZnO nanofiller inclusion in the host matrix on materials
complex permittivity, complex permeability, scattering parameters, absorption,
attenuation, power-loss, and electric field distribution. Further understanding in
the applications of dielectric materials can be found in (Pozar, 2009; Pozar, 2012;
Laverghetta, 2005).

1.1 Nanocomposites

The term nanocomposites materials could be explained in different ways
depending on the perspective with which it is viewed. Simply put,
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nanocomposites are compounds which encompasses two or more unlike
components mixed together at a nano-meter scale. The composites materials
could either be organic or inorganic in nature. In the inorganic state, the
composite could be three dimensional, two dimensional, one dimensional and
even zero dimensional. In nanocomposites there is a tendency of mixing different
properties together that are so far impossible within a single material (Zhao, et
al, 2008). Within the class of nanocomposites, the polymeric nanocomposites
have a promising future because of its high performance properties. The four
types of polymeric nanocomposites are the clay-polymer nanocomposites, the
metal-polymer nanocomposites, the oxides-polymer nanocomposites, and the
carbon nanotubes nanocomposites. The two main methods employed in
obtaining oxide-polymer nanocomposites are the ex-situ synthesis and in-situ
synthesis method. The changes in properties of nanocomposites are mainly
caused by phenomena such as size confinement, predominance of interfacial
phenomena and quantum mechanisms (Liang, 2007). The dependence of bulk
properties of nanocomposites is mainly due to (Kochetov, 2012);

 properties of the filler
 filler size,
 filler type,
 host matrix:
 crystallinity,
 nature (thermoplastic or thermosetting),
 degree of dispersion and of agglomeration,
 Synthesis methods.

1.2 Properties of Polymer Nanocomposite

The dielectric properties of polymer composite are mainly controlled by the
conductive fillers. Consequently, the nature or type of fillers determines the
dielectric characterisation of polymer composites. Examples of conductive fillers
are semiconductors, metals, carbonic materials and intrinsic conductive
polymers (Saini and Arora, 2012; Xu et al, 1999). Polymer that are conductive
have attracted a lot of interest in the recent due to their excellent flexibility and
easy preparation procedures as against conventional inorganic semiconductors.
They are applied in areas of electronics as flexibility conductors and shielding
devices especially with regards to electromagnetic radiation (Saini and Arora,
2012; Ma, et al, 2005). In conventional conductive composites, carbon black
particles of micro-meter sizes are used to achieve desired electrical
characteristics. Researches have shown that large filler contents lead to a poor
composite (He and Tjong, 2014; Liang, 2007). The use of nano sized reinforced
polymers has led to the production of nanocomposites with unique dielectric and
mechanical properties. Nanofiller material comes in different forms, these forms
could be in metals, semiconducting oxides, dielectric ceramics and carbon
materials (Liang, 2007).
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1.2.1 Polymer-Semiconductor Nanocomposites

Nanofillers with unique chemical, physical and mechanical properties that are
intermixed with polymers comprises of composite materials with great advantage
for technological breakthrough. Conventional metal oxides such as barium
titanate (BaTiO3), titania (TiO2), alumina (Al2O3) and silica (SiO2) are widely
known as effective reinforcement materials to enhance the dielectric and
mechanical properties of polymers. In the last decade, semiconducting oxides
(ZnO, NiO, and MgO) have attracted much interest due to their potential for
diverse electronic and photonic device applications (Murugadoss, 2012; Heo et
al, 2004).

Recent research has demonstrated that the polymer-oxides nanocomposites
exhibit excellent luminescent, optical, dielectric and bio-sensitivity properties.
Studies have been conducted on the electrical properties of polymer-oxides
nanocomposites prepared by in-situ polymerization and melt blending (Milani et
al, 2013; Tripathi et al, 2013).

Hong, et al (2003), investigated the electrical properties of low density
polyethylene-ZnO composites prepared by melt compounding. They reported
that the nanocomposites exhibited a lower percolation limit and a slower
decrease in resistivity with filler content when compared to conventional micro-
composites. The dielectric breakdown strength was also found to be higher for
the nanocomposites for all filler concentration.

Kango et al, (2013) reported that addition of inorganic nanoparticles into a
polymer host material will definitely change the properties of the host matrix.
They added that the resulting composite might show enhanced mechanical,
thermal, electrical, and optical properties. They concluded that properties of
polymer composites largely depend on type of nano filler, sizes and shape,
concentration and their interactions with the polymer matrix.

1.2.2 Polymer-Metal Nanocomposites

Metals exhibit the most excellent electrical conductance among materials known.
Metal nanoparticles, e.g. Ag, Cu, Al, Fe and Ni have been introduced into
polymers to enhance the electrical, mechanical and dielectric properties of
composite materials. Electrical conductivity of polymer nanocomposite can be
greatly enhanced by metal nanoparticles at very low loading levels as a result of
large surface area. Gonon and Boudefel (2006), investigated the electrical
behavior of nanocomposites made of epoxy resin and Ag nanoparticles with
particle size of 70 nm. Their result showed a very low percolation threshold as a
result of filler segregation in the epoxy matrix.
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Nanocomposites filled with metal nanoparticles can be synthesized via in-situ,
polymerization and ex-situ processing routes. In-situ, vapor deposition
polymerization of monomers with organometallic compounds and metal-
monomer co-condensates has been reported (Kharissova et al, 2013; Sakai and
Alexandridis, 2006). The method involves a gradual layer-by-layer deposition of
metal and monomer vapors on substrate plates at a low temperature of about 77
K. The layer to layer deposition produces composites with very low concentration
of about 0.01-1.0 wt % of metal particles in sub-micrometer dimension (Nicolais
and Carotenuto, 2005). Current advances in the preparation of metal
nanoparticles via chemical vapor deposition (CVD), laser induced gas phase and
spray conversion procedure techniques have changed the way researchers
understand polymer reinforcement (Bahlawane et al, 2012; Schubert and
Husing, 2012). Ex situ polymerization of nanocomposite is the direct combination
of nanoparticles into polymers via melt-compounding method.

1.3 Characterization Techniques

When discussing propagation of waves, the characteristics of microwaves and
light waves are typically the same since both waves travel in a straight line. The
characteristics of travelling in a straight line enable them reflect, refract, diffract,
scatter, and interfere at boundary points with interacting media. Their mode of
interaction at the interface of these media varies due to their different
wavelength. Microwave wavelengths range from 1 m to 1 mm corresponding to
frequency range of 0.3 GHz to 30 GHz. This singular characteristic allows
microwaves to interact with materials and structures on a macroscopic scale. For
example, microwaves are capable of penetrating most non-metallic materials,
reflecting and scattering from internal boundaries and interacting with molecules
(Bahr, 1982) as cited by (Soleiman 2009).

1.3.1 Permittivity and Permeability

Measurements of complex permittivity and complex permeability are required not
only for scientific but also for industrial applications. Example of areas in which
knowledge of the properties of materials at microwave frequencies are
microwave heating, biological effects of microwaves, and nondestructive testing
(Weir, 1974).

Dielectric properties measurement is an important factor in defining the physical
and chemical properties related to storage and energy loss in various kind of
materials (Wee, et al, 2009).

The term dielectric constant is some time misleading, the dependence on
frequency of dielectric materials causes it to have two parts, that is the real and
imaginary permittivity. The ratio of the imaginary part to the real part of
permittivity is called loss tangent (Kittel, 1996).
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Permittivity and permeability are complex numbers of which the imaginary part
is associated with losses.

Scattering parameter, permittivity, permeability of materials measured using
microwaves components are controlled by the basic properties of microwaves.
In good conducting materials, microwave has low penetrating depth. For this
reason, they are usually used to test non- conducting materials which include
low-loss and lossy dielectric materials. To investigate the interaction between
microwaves and materials, Maxwell’s equation is often employed. Properties like
propagation mode, reflection, refraction, transmission and impedance are
defined from the equation. The broad nature of material properties allows the
use of different techniques for measurement at microwave frequency range. A
number of methods have been used in the measurements of electromagnetic
properties at microwave frequencies. Amongst these methods are the
transmission and reflection line technique, free space measurement technique,
open ended coaxial probe technique, and resonant method (Agilent Tech, 2011).
Details of these techniques would be discussed in the ensuing chapters.

1.3.2 Morphological Properties

X ray diffraction (XRD) is a non-destructive technique for the characterization of
semi crystalline and crystalline materials. XRD investigates crystalline materials
structure, phases, atomic orientations, and other structural parameters, such as
average crystallite size, crystallinity, strain, and imperfections. X ray diffraction
peaks are produced by constructive interferences of monochromatic beam of x
rays scattered at specific angles from each set of lattice planes in a sample. The
XRD technique is based on observing the scattered intensity of an X-ray beam
striking a sample as a function of incident and scattered angle, polarization, and
wavelength or energy.

Atomic force microscope (AFM) studies can be divided into topographical
applications and force curves in which forces are measured as a function of
distance. Topographical applications involve getting an image of the sample
surface to observe its structural or dynamic features. The method has been
applied to a different types of surfaces including semiconductors, biological
systems, nanostructures and polymers with imaging reaching the nanometer
range and the atomic scale in some cases. For the force curves approach, the
study allows the understanding of inter and intramolecular forces, and
manipulate samples following dissection, dragging and cut. The method has also
been used to study polymers systems and interfacial phenomena in various
systems (Leite et al, 2007).

The Scanning electron microscope (SEM) is the most widely used analytical
tools due to the detailed images it provides within a short time. It provides high
resolution and thick depth of images of samples surface and near surfaces with
wide magnification range. Application of SEM includes failure analysis,
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dimensional analysis, process characterization etc. SEM comprises of other sub
function like the secondary electron imaging (SEI) signal, the backscattered
electron imaging (BEI) signal. These signals provide “near surface” interpretation
of sample morphology and information regarding sample composition, density
and surface geometry respectively. To determine the elements and compounds
of the sample, Energy Dispersive X-ray Analysis (EDX) is applied.

In Transmission Electron Microscopy (TEM) focused beam of electrons is used
instead of light to see through the sample. TEM is a type of electron microscopy
developed and programmed on light transmission microscopy. TEM is used to
ascertain the followings (Ismayadi et al, 2009);

 The size, shape and arrangement of the particles which make up the
sample as well as their relationship to each other on the scale of atomic
diameters.

 The arrangement of atoms in the sample and their degree of order,
detection of atomic-scale defects in areas with a few nanometers in
diameter.

 The elements and compounds of the sample are composed of their
relative ratios, in areas that a few nanometers in diameter exist.

Fourier Transform Infrared Spectroscopy (FTIR) analyses, and uses spectrum
of molecular vibration in sample in order to identify or characterize organic
materials such as polymers, lubricants, adhesives and cleaning agents. For
semiconductor, FTIR is used to make quantitative measurement of hydrogen
bonds and to measure the interstitial oxygen content in bulk.

1.4 Problem Statement and Hypothesis

The addition of ZnO nanoparticles into the polycaprolactone matrix is expected
to enhance the dielectric properties, attenuation, absorption, and power-loss as
well as decrease the prepared composites transmission coefficient making it a
better microwave absorbing material. ZnO-PCL nanocomposites have been
used extensively in many microwave applications. However, its potential has not
been exploited fully due to lack of detailed information on the relationship
between the filler composition and electromagnetic properties. The dielectric
properties, transmission and reflection coefficients of ZnO-PCL nanocomposites
of various filler content and types, host matrix and material properties were not
analyzed in detailed both theoretically and experimentally. The conventional
method to determine the complex permittivity of the ZnO-PCL nanocomposites
materials is to place the sample in a closed waveguide. The technique is difficult
as the sample must be inserted tightly into the waveguide without any air gaps.
In this work, both the open ended coaxial probe (OEC) and waveguide
techniques were investigated.
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Dielectric measurement in a waveguide is usually calculated using the Nicholson
Ross analysis. However, the technique does not offer an insight on the
electromagnetic field distribution in the sample. Additionally, Nicholson Ross
Weir method was originally designed for thick samples where the effect of
multiple reflection is assumed to be negligible. In this work, the Finite Element
Method (FEM) was used to discretize the sample into small meshes allowing
accurate calculation of the scattering parameters and eventual visualization of
the electromagnetic fields.

The microwave attenuation due to sample does not only depend on the complex
permittivity but also the sample thickness.  Thick sample measurements are
always problematic when using waveguide technique due to air gap problems.
In this work, the attenuation of the samples was also analyzed using the
microstrip technique by placing a 6cm long ZnO-PCL nanocomposites on top of
the open microstrip. Visualization of the effect of nanocomposites on the
microstrip overlays is also carried out using FEM.

1.5 Specific Objectives

The objectives of this study are enumerated below;

 To synthesize ZnO nano particle and ZnO-PCL nano-composites using
microwave irradiation and melt blend method so as to study the effect of ZnO
nanofillers on the complex permittivity and permeability of ZnO-PCL
nanocomposites.

 To measure the dielectric constant and loss factor of ZnO-PCL
nanocomposites using open ended coaxial probe and rectangular
waveguide techniques. The latter technique is also used to measure the
permeability of the nanocomposites.

 To study the effect ZnO-PCL nanocomposites thickness on scattering
parameters, absorption, power loss using rectangular waveguide technique.
The scattering parameters results are compared theoretically using Finite
element method (FEM) and Nicholson Ross Weir (NRW) methods.

 To determine the attenuation of ZnO-PCL nanocomposites pellets using
rectangular waveguide and microstrip methods and compare with calculated
FEM results.

 To study the effect of ZnO nanofillers on both transmission and reflection
coefficients of ZnO-PCL nanocomposites using microstrip technique and
FEM and to visualize their electric field distribution using FEM.

1.6 Scope and Relevance of Study

In this study, an easy and lesser time consuming technique for preparing ZnO
nanoparticle and ZnO-PCL nanocomposites using the microwave irradiation and
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melt blending technique via Thermo Haake melt blending machine were carried
out.

The effect of the different % ZnO nanofiller on the dielectric properties were
measured using open ended coaxial probe and rectangular waveguide
techniques. The effect of ZnO nanofiller on the transmission and reflection
coefficient of the ZnO-PCL nanocomposite pellets were also studied. It also
proposes to use FEM COMSOL software in calculating scattering parameters
and for simulating electromagnetic wave excited through ZnO-PCL
nanocomposites samples when placed inside a rectangular wave guide and on
top a microstrip. The result obtained for scattering parameter through
measurement, simulation and calculation were also compared. Error analysis for
the comparison is determined for both FEM and NRW techniques. The
visualization of electric field of ZnO-PCL nanocomposites when placed on top a
microstrip is pioneered in this study using finite element method. The micro-
structural characteristics of materials with respect to sample size, bonding,
surface roughness and filler dispersion were also studied for the pure PCL,
prepared ZnO nanoparticles and ZnO-PCL nanocomposites.

1.7 Thesis layout

There are five chapters in this thesis with appendices attached at the end of the
chapters. Chapter 1 briefly outlines generally on polymer nanocomposites,
morphological and dielectric characterization, problem statements, and
objectives of study, the scope of the study and finally, the thesis layout.

Chapter 2 presents reviews on ZnO-polymer nanocomposites, electromagnetic
radiation (EM) measurement technique and limitations of some measurement
techniques.  Numerical methods associated with rectangular waveguide were
also discussed.

In chapter 3, theories used in the research work are briefly outlined. Bragg’s law,
Maxwell equations, wave equation and FEM theory were all discussed. FEM
formulation techniques on transmission and reflection coefficients calculation
was also discussed.

Chapter 4 encompasses the entire method used in this study. The preparation
of ZnO nanoparticle and ZnO-PCL nanocomposites were explicitly discussed.
The use of FEM, PNA-L, NRW, OEC, RWG and microstrip methods are fully
discussed in relation to microwave characterization. The morphological
characterization using components like the XRD, TEM, SEM, EDX, AFM and
FTIR were all discussed in details.
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Chapter 5 is divided into five subsections. Section 5.1 deals with the morphology
and characterization of all the samples used in this work. Section 5.2 deals with
the dielectric characterization of the all the samples used in this research work
using the open ended coaxial probe and rectangular wave guide methods. The
effect of the ZnO nano inclusion on the permittivity of the composites was also
investigated. Comparison between dielectric constant obtained using the two
methods are shown. Section 5.3 details on the effect of sample thickness on the
scattering parameters using rectangular waveguide and FEM. Absorption of the
electromagnetic waves based on the scattering parameters was also discussed.
Finally, the scattering parameters obtained from theory, calculation and
measurement were compared.

Section 5.4 deals with the attenuation of the ZnO-PCL nanocomposites pellets
using rectangular waveguide and microstrip methods. FEM was used to
calculate the field intensity of samples when placed inside a rectangular
waveguide and simulation of their field distribution. Finally, the attenuation from
both methods were compared with their respective FEM calculated attenuations.

Section 5.5 deals with the measurement of scattering-parameters of ZnO-PCL
nanocomposites pellets placed on top a microstrip. Comparisons between
measured and calculated S11 and S21 magnitudes using microstrip and FEM
were presented.

Visualization of electric field of the different percentages of the ZnO-PCL
nanocomposites were simulated using Finite Element Method.

Finally, chapter 6 will draw conclusions based on findings and give suggestions
for future studies.
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