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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

MODIFIED SPLINE FUNCTIONS AND CHEBYSHEV POLYNOMIALS FOR
THE SOLUTION OF HYPERSINGULAR INTEGRALS PROBLEMS

By

LAWAN SIRAJO BICHI

December 2015

Chair: Prof. Madya. Zainidin Eshkuvatov, PhD
Faculty: Science

The research work studied the singular integration problems of the form

Hk(x , y) =



























∫∫

Ω

h(x , y)
| x̄− x̄∗0|

2−γ dA, 0≤ γ≤ 1, k= 1,

∫∫

Ω

h(x , y) log | x̄− x̄∗0|dA, k= 2,

where Ω=[a1,a2]×[b1, b2], x̄ =(x , y)∈Ω and fixed point x̄∗0=(x
∗
0, y∗0)∈Ω. The

density function h(x , y) is given, continuous and smooth on the rectangle Ω and
belong to the class of functions C2,γ(Ω).

Cubature formulas for double integrals with algebraic and logarithmic singular-
ities on a rectangle Ω are constructed using the modified spline function SΛ(P)
of type (0,2). Exactness of the cubature formulas for the two cases k∈ {1,2} to-
gether with tested examples are shown each for linear and quadratic functions.
Highly accurate numerical results for the cubature formulas are given for both
tested density function h(x , y) as linear and quadratic functions. The results
are in line with the theoretical findings.
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Further more, Hadamard type hypersingular integral (HSI) of the form

Hi(h, x) =
wi(x)
π

=

1
∫

−1

h(t)
wi(t)(t− x)2

d t, x ∈ (−1,1), i ∈ {1,2,3,4},

where w1(t) =
p

1− t2, w2(t) =
1

p

1− t2
, w3(t) =

√

√1− t
1+ t

and w4(t) =

√

√1+ t
1− t

are the weights and h(t) is a smooth function, are considered. Automatic
quadrature schemes (AQSs) in each case for i ∈ {1,2,3,4} are constructed via
approximating the density function h(t) by the first, second, third and fourth
kind truncated series of Chebyshev polynomials, respectively. Error estimations
in the cases i ∈ {1,2,3,4} are obtained via approximating the density function
by truncated series of Chebyshev polynomials of the first, second, third and
fourth kind, respectively, in the class of function CN ,α[−1,1]. Exactness of the
methods each for i ∈ {1,2,3,4} are shown for the degree 3 polynomial functions
and the results of tested examples are presented and discussed. Numerical re-
sults of the obtained quadrature schemes revealed that the proposed methods
are highly accurate for the tested density function h(t) as polynomial and ratio-
nal functions. Comparisons made with other known methods showed that the
automatic quadrature schemes (AQSs) constructed in this research has better
results than others. The results are in line with the theoretical findings.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

FUNGSI SPLIN TERUBAHSUAI DAN POLINOMIAL CHEBYSHEV BAGI
PENYELESAIAN MASALAH KAMIRAN HIPERSINGULAR

Oleh

LAWAN SIRAJO BICHI

Disember 2015

Pengerusi: Prof. Madya. Zainidin Eshkuvatov, PhD
Fakulti: Sains

Penyelidikan ini mengkaji masalah pengamiran singular dalam bentuk

Hk(x , y) =



























∫∫

Ω

h(x , y)
| x̄− x̄∗0|

2−γ dA, 0≤ γ≤ 1, k= 1,

∫∫

Ω

h(x , y) log | x̄− x̄∗0|dA, k= 2,

dengan Ω= [a1,a2]× [b1, b2], x̄ = (x , y) ∈ Ω dan titik tetap x̄∗0 = (x
∗
0, y∗0) ∈ Ω.

Fungsi ketumpatan h(x , y) diberi, selanjar dan mulus di atas segi empat Ω dan
tergolong dalam kelas fungsi C2,γ(Ω).

Formula pengkiuban untuk kamiran ganda dua dengan singulariti berbentuk
aljabar dan logaritma di atas segiempat Ω dibina menggunakan fungsi splin
terubahsuai SΛ(P) jenis (0,2). Ketepatan formula pengkiuban untuk kedua-
dua kes k ∈ {1,2} bersama-sama dengan contoh teruji bagi fungsi linear dan
kuadratik ditunjukkan. Keputusan berangka yang sangat tepat bagi formula
pengkiuban disertakan bagi kedua-dua fungsi ketumpatan teruji h(x , y) seba-
gai fungsi linear dan kuadratik. Keputusan yang diperolehi adalah selari den-
gan penemuan secara teori.
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Selanjutnya, kamiran hipersingular jenis Hadamard (KHH) dalam bentuk

Hi(h, x) =
wi(x)
π

=

1
∫

−1

h(t)
wi(t)(t− x)2

d t, x ∈ (−1,1), i ∈ {1,2,3,4},

dengan w1(t) =
p

1− t2, w2(t) =
1

p

1− t2
, w3(t) =

√

√1− t
1+ t

dan w4(t) =

√

√1+ t
1− t

adalah pemberat dan h(t) adalah fungsi mulus. Skim kuadratur automatik
(SKA) bagi setiap kes i ∈ {1,2,3,4} dibina dengan menghampirkan fungsi ke-
tumpatan h(t) dengan siri polinomial Chebyshev terpangkas jenis pertama, ke-
dua, ketiga dan keempat. Anggaran ralat bagi kes i ∈ {1,2,3,4} diperolehi den-
gan menghampirkan fungsi ketumpatan dengan siri polinomial chebyshev ter-
pangkas jenis pertama, kedua, ketiga dan keempat, dalam fungsi kelas
CN ,α[−1,1]. Ketepatan kaedah bagi kes i ∈ {1,2,3,4} dipamerkan untuk fungsi
polinomial berdarjah 3 dan keputusan bagi contoh teruji dibentangkan dan dib-
incangkan. Keputusan berangka bagi skim kuadratur yang diperolehi mende-
dahkan bahawa kaedah yang dicadangkan adalah sangat tepat untuk fungsi ke-
tumpatan teruji h(t) sebagai fungsi polinomial dan fungsi nisbah. Pembandin-
gan yang telah dibuat dengan kaedah lain yang diketahui menunjukkan bahawa
skim kuadratur automatik (SKA) yang telah dibina dalam penyelidikan ini mem-
punyai keputusan yang lebih baik berbanding dengan yang lain. Keputusan
yang diperolehi adalah setara dengan penemuan secara teori.
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CHAPTER 1

INTRODUCTION

1.1 Background

Splines can be considered as a mathematical model that associate a continuous
representation of a curve or surface with a discrete set of points in a given space
(Weston, 2002). The general form of cubic spline is given by

S(x) =



















s0(x), if x0≤ x ≤ x1,

s1(x), if x1≤ x ≤ x2,
...

...

sn−1(x), if xn−1≤ x ≤ xn,

(1.1)

where each si(x) is cubic polynomial for n data points say (x0, y0),(x1, y1),(x2,
y2), · · ·(xn, yn).

A cubic spline interpolant S, for given function h satisfies

1. S is a cubic polynomial, si(x) on [xi , xi+1], for i= 0,1, · · · ,n−1

2. S(xi) = h(xi), for i= 0,1,2, · · · ,n−1,n

3. Si+1(xi+1) = Si(xi+1), for i= 0,1,2, · · · ,n−2

4. S′i+1(xi+1) = S′i(xi+1), for i= 0,1,2, · · · ,n−2

5. S′′i+1(xi+1) = S′′i (xi+1), for i= 0,1,2, · · · ,n−2

6. One of the following boundary conditions is satisfied

• S′′(x0) = S′′(xn) = 0 (free or natural BCs)

• S′(x0) = h′(x0) and S′(xn) = h′(xn) (clamped BCs)

The subject of singular integrals is highly significant tool in the pure Mathemat-
ics as well as the applied mathematics. Significant contribution had been made
by many researchers in both singular and hypersingular integrals. The eval-
uation of HSI has been a case of interest to many researchers tackling many
unsolved problems. To achieve this, there is the need to implement various
techniques via approximate methods for evaluating HSI. In some cases, how-
ever, require the transformation of HSIs into singular or weakly singular inte-
grals by using various techniques proposed in Clenshaw and Curtis (1960); Mon-
egato (1960); Hasegawa and Torii (1991); Martin and Rizzo (1996); Eskhuvatov
et al. (2011); Eskhuvatov and Nik Long (2011); Tadeu and Antonio (2012). Oth-
ers, may require the numerical computation of finite part integrals by various
quadrature or cubature formulas as in the research work done in Kutt (1975);
Hui and Shia (1999); Colm and Rokhlin (2001); Yang (2012). Some ideas used
the quadrature formula as in the work of Clenshaw and Curtis (1960); Hasegawa



© C
OPYRIG

HT U
PM

and Torii (1991); Eskhuvatov et al. (2011); Obayis et al. (2013), which take ad-
vantage of the collocation points to solve the Cauchy principalvalue and hyper-
singular integrals problems.

Consider the Hadamard finite-part integral (or hypersingular integral) of the
form

Hp(a, b;s,h) = =

∫ b

a

h(t)
(t− s)p+1 , s ∈ (a, b), p= {1,2} (1.2)

with p+1-order singularity and s is the singular point.

Definition 1.1.1 (Boykov et al. (2009) and Zhang et al. (2009)) HSI (1.2)
must be understood in the Hadamard finite-part sense and is defined as

=

b
∫

a

h(t)
(t− s)p+1 d t = lim

ε→0







s−ε
∫

a

h(t)
(t− s)p+1 d t+

b
∫

s+ε

h(t)
(t− s)p+1 d t−

2h(p−1)(s)
ε







, (1.3)

h(t) is said to be finite-part integrable (or integrable in the Hadamard sense)
with the kernel (t− s)−p−1 if the limit on the right-hand side of (1.3) exist.

An important and widely used definition of HSI in the society of engineers is
that if h(t), a≤ t ≤ b, satisfies a Hölder continuous first-derivative condition

|h(t)−h(x)−(t− x)h′(x)| ≤ A|t− x |α+1, (1.4)

where A is a positive constant and α∈ (0,1].

The HSI is defined as

H(h, x) = =

1
∫

−1

h(t)
(t− x)2

d t = lim
ε→0

�

�

∫ x−ε

−1
+

∫ 1

x+ε

�

h(t)
(t− x)2

d t−
2h(x)
ε

�

, (1.5)

where this limits of integration exists and bounded. The high order accuracy
was obtained by Hui and Shia (1999) for hypersingular integrals with second-
order singularities of the form

H(h, x) = =

b
∫

a

w(t)h(t)
(t− x)2

d t, (1.6)

in which the Gaussian quadrature rule have been used based on the Legendre
and Chebyshev series expansion.
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Differentiation of Cauchy principle-value integral (CPVI)

C(h, x) = −

1
∫

−1

w(t)h(t)
t− x

d t (1.7)

with respect to the singular point x , gives

H(h, x) = =

1
∫

−1

w(t)h(t)
(t− x)2

d t =
d

d x
−

1
∫

−1

w(t)h(t)
t− x

d t, x ∈ (−1,1) (1.8)

which is also another definition of HSI according to Hui and Mukherjee (1997).
Thus HSI represent a natural extension of singular integrals in the Cauchy
principal-value (CPV). i.e

H(h, x) =
d

d x
C(h, x). (1.9)

In order to approximate integration in two or more dimensions, Let B designate
a closed region in d-dimensional Euclidean space and let dV designate the d-
dimensional volume element in Davis and Rabinowitz (1984). Find fixed points
P1, P2, · · · , Pn (preferably in B) and fixed weights w1,w2, · · · ,wn such that

∫

B
w(P)h(P)dV ≈

n
∑

k=1

wkh(Pk). (1.10)

This is a useful approximation to the integral on the left for a reasonably large
class of functions of d variables defined on B.

The problem of approximating double integral of the form

H(h) =

∫

D

∫

K(x , y)h(x , y)dA, (1.11)

where K(x , y) is a regular or singular kernel and D is closed bounded connected
set in R2 was studied by Eshkuvatov et al. (2013). In particular, the problem of
evaluations of double integrals with the function of algebraic singularity

H(h) =

∫

D
h( x̄)| x̄− x̄0|γ−2dA, 0<γ≤ 1, (1.12)

where D is a closed bounded simple connected region in R2 and x̄ = (x , y)∈ D
are variables and x̄0=(x0, y0) is a fixed point in D was studied. Double integral
in (1.12) has algebraic singularity at a point of the plane D where | x̄− x̄0| → 0.
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Therefore the numerical calculation of (1.12) requires a care about subtle point.
Various approximations of an integral

H(h) =

∫

Ω

W (x)h(x)dx,

where Ω∈ℜn, and W (x)≥ 0, ∀x∈ℜn, n≥ 2, by

H(h) =Q(h)+R(h),

where Q(h) is the cubature formula (CF) and R(h) is the remainder are pre-
sented by Cools and Rabinowitz (1993) and Cools (2003). To solve multivariate
singular integrals problems there is need to find an efficient approximate for-
mulas as in Stroud (1973); Davis and P. (1984); Evans (1993); Krommer and
Ueberhuber (1998).

1.2 Problem statement

Many problems of multivariate integration problems arise in applications but
the analytic solutions does not exist. Hence it become necessary to use the nu-
merical techniques to arrive at the solutions. One such approaches to numerical
solutions of double integrations problems is by using the spline interpolation.
Although the modified spline function SΛ(P) of type (0,2) was established the-
oretically to have interpolate the density functions in the double integration
problems, the justifications in the accuracy has not been established numeri-
cally.

In the evaluation of HSIs problems, there the need to develop accurate AQSs
via suitable approximations approach. Some researches have been conducted
previously, for the constructions of AQSs particularly with the weight functions

w0 = 1, w1 =
p

1− x2 and w2 =
1p

1−x2
for some HSIs problems. Additionally,

error estimation was obtained for w0 case only. Hence the need to investigate
constructions of AQSs for similar and other weight functions via different ap-
proximations approaches and also obtain the error estimations for those weight
functions that have not been considered. More investigations are needed for
the exactness of the AQSs.

1.3 Objectives of the thesis

The problems of double integrals of the form

Hk(x , y) =











∫∫

Ω

h(x ,y)
| x̄− x̄0|2−γ

dA, 0≤ γ≤ 1, k= 1,

∫∫

Ω

h(x , y) log | x̄− x̄∗0|dA, k= 2,
(1.13)
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where Ω = [a1,a2]× [b1, b2], x̄ = (x , y) ∈ Ω and fixed point x̄∗0 = (x
∗
0, y∗0) ∈ Ω,

the density function h( x̄) is assumed continuous and smooth enough on the
rectangle Ω and belong to the class of function C2,γ(Ω), i.e. h( x̄), hx ( x̄), hy( x̄),
hx x ( x̄), hy y( x̄) and hx y( x̄) = hy x ( x̄) in Ω are all continuous and all second
partial derivatives satify Hölder condition are considered. The aims of the thesis
here are:

• To construct cubature formulas and develop Maple codes for the constructed
cubature formulas in the two cases i ∈ {1,2} for double integrals with al-
gebraic and logarithmic singularities respectively, on a rectangle Ω using
the modified spline function SΛ(P) of type (0,2).

• To obtain the exactness and provide numerical results of the cubature for-
mulas for the two cases i ∈ {1,2} together with tested examples each for
linear and quadratic functions.

Furthermore, the problem of Hadamard type hypersingular integral (HSI) of the
form

Hi(h, x) =
wi(x)
π

=

1
∫

−1

h(t)
wi(t)(t− x)2

d t, x ∈ (−1,1), i ∈ {1,2,3,4}, (1.14)

where w1(t) =
p

1− t2, w2(t) =
1

p

1− t2
, w3(t) =

√

√1− t
1+ t

and w4(t) =

√

√1+ t
1− t

are the weights and h(t) is a smooth function are considered. The aims of the
thesis here are:

• To construct an automatic quadrature schemes (AQSs) together with their
Maple codes and obtain error estimations in each case for i ∈ {1,2,3,4}
via approximating the density function h(t) by the first, second, third and
fourth kind truncated series of Chebyshev polynomials, respectively.

• To obtain exactness for the degree 3 polynomial functions and obtain nu-
merical results of the AQSs each for i ∈ {1,2,3,4} for the tested density
function h(t) as polynomial and rational functions. However, compare the
efficiency and accuracy of the AQSs constructed with other known meth-
ods in the available literature.

1.4 Scope of the study

The research work was based on the following scopes;

• The solution of double integration problems in the rectangular domain us-
ing the modified spline function SΛ(P) of type (0,2).

• Use of Gauss chebyshev quadrature formula approaches to solve the hy-
persingular integrations problems by approximating the density functions
with first, second, third and fourth kind truncated series of chebyshev poly-
nomials.
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• Use of Maple 14 to develop the codes in both cubature formulas and auto-
matic quadrature formulas to solve the double and hypersingular integra-
tions problems.

1.5 Limitations of the study

Our investigation in this research work is limited the use of test function as
linear and quadratic function on the constructed cubature formulas (3.14) with
k ∈ {1,2} for double integration with algebraic and logarithmic singularities,
Hk(x , y) for k= 2 in (3.1). In an attempt to test the methods with the rational
function due to the large computations involved in the method and the number
of iterations needed to arrive at the solutions, it was found impossible to manage
this with smaller processing unit computers. A powerful and higher processing
computing machine (HPC) which understand the Maple computing is needed to
handle the job.

1.6 Outline of the thesis

In Chapter 1, motivation and reason of the research is given. Problem state-
ment, objectives, scope of the study, limitations, outline of the thesis and basic
concepts and definitions related to research work are discussed.

Chapter 2 is devoted to earlier research on cubature and quadrature in nu-
merical integration as well as their approach to the double integration and hy-
persingular integration problems, respectively.

Chapter 3 presents the concept of double integration by spline polynomial.
Demonstrated the construction of cubature formulas for double integration prob-
lems with algebraic and logarithmic singularities. Exactness of the obtained
cubature formulas each for linear and quadratic functions and finally numerical
results and discussion are provided and discussed.

Chapter 4 provides the mathematical concepts of the first and second kind
Chebyshev polynomials and hypersingular integrals. The detail construction
of automatic quadrature schemes for bounded and unbounded hypersingular
integrals and rate of convergence of the suggested methods are discussed. Ad-
ditionally, the exactness of the AQSs constructed each for polynomials of degree
3 are Shown and finally numerical results are given and discussed.

Chapter 5 provides the mathematical concepts of the third and fourth kind
Chebyshev polynomials and hypersingular integrals. The construction of au-
tomatic quadrature schemes for semi bounded solutions of hypersingular in-
tegrals and the rate of convergence of the suggested methods are presented.
Additionally, the exactness of the AQSs each for polynomials of degree 3 are
shown and finally numerical results are given and discussed.
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Finally, Chapter 6 gives conclusion of the research work. Some future works
are also suggested on Cubature and Quadrature formulas.

1.7 Basic concepts and definitions

To facilitate understanding in this thesis write up, the following concepts and
definitions are useful. Beginning with the continuous orthogonality which can
be seen from the following

Definition 1.7.1 (Mason and Handscomb (2003)) Two functions h1(t) and
h2(t) in L2[c1,c2] are said to be orthogonal on the interval [c1,c2] with respect
to weight function w(t) if

〈h1,h2〉=
∫ c2

c1

w(t)h1(t)h2(t)d t = 0. (1.15)

Infact, it is possible to convert continuous orthogonality relationship (1.15) into
a discrete orthogonality relationship by replacing the integral with a summation
and the result here is in general, only approximately true. Particularly, in case
of discrete orthogonality for trigonometric functions or Chebyshev polynomials,
there are many cases which the formulas have been shown to hold exactly by
Mason and Handscomb (2003).

1.7.1 Standard Quadrature Formula of Gauss-type

A quadrature rule is an approximation of the definite integral of a function, usu-
ally stated as a weighted sum of function values at specified points within the
domain of integration (Teubner and Leipzig, 1993). An n-point Gaussian quadra-
ture rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to
yield an exact result for polynomials of degree 2n−1 or less by a suitable choice
of the points xi and weights wi for i = 1, · · · ,n. The domain of integration for
such a rule is conventionally taken as [−1, 1], so the rule is stated as

1
∫

−1

h(x)d x ≈
n
∑

i=1

wih(xi). (1.16)

Gaussian quadrature as above will only produce accurate results if the function
h(x) is well approximated by a polynomial function within the range [-1, 1]. The
method is not, for example, suitable for functions with singularities. However,
if the integrated function can be written as h(x) =ω(x)g(x), where g(x) is
approximately polynomial and ω(x) is known weight function, then alternative

weights w
′

i and points x
′

i that depend on the weighting function ω(x) may give
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better results, where

1
∫

−1

h(x)d x =

1
∫

−1

ω(x)g(x)d x ≈
n
∑

i=1

w
′

ih(x
′

i). (1.17)

Common weighting functions includeω(x)=1/
p

1− x2 (Gauss Chebyshev) and

ω(x) = e−x2
(Gauss Hermite).

1.7.2 Change of interval

If integral over [c1,c2] need to be changed into an integral over [−1,1] then this
change of interval can be done in the following way:

c2
∫

c1

w(x)h(x)d x =
c2− c1

2

1
∫

−1

w1(z)h(
c2− c1

2
z+

c2+ c1
2
)dz (1.18)

≈
n
∑

i=1

wih(
c2− c1

2
zi+

c2+ c1
2
). (1.19)

1.7.3 Gaussian rules

Let υn(x) denote a sequence of polynomials, where υn(x) ∈ P and the poly-
nomials υn(x) are orthogonal with respect to a weight function w(x) over the
interval [c1, c2]. We can write υn(x) = bnpn(x)+ bn−1pn−1(x)+ · · ·+ b0, where
bn 6= 0 is the coefficient of xn in υn(x), and pn(x) is an orthogonal polynomial.
Then

c2
∫

c1

w(x)υi(x)υ j(x)d x = 0, for i 6= j. (1.20)

with the Chrstoffel-Darbourx identity

n
∑

k=0

υk(x)υk(y)
γk

=
υn+1(x)υn(y)−υn(x)υn+1(y)

αnγn(x− y)
, (1.21)

where

αn=
bk+1

bk
, γn=

c2
∫

c1

w(x)υ2
k(x)d x . (1.22)

8



© C
OPYRIG

HT U
PM

Now, let y = xi , where xi are the zeros of υn(x), then

n−1
∑

k=0

υk(x)υk(xi)
γk

=
υn+1(x)υn(xi)−υn(x)υn+1(xi)

αnγn(x− xi)
. (1.23)

Multiply both sides of (1.23) by w(x)υ0(x) and integrate over [c1, c2], then
applying (1.20) we have

υ0(xi) =−
υn+1(xi)
αnγn

c2
∫

c1

w(x)
υ0(x)υn(x)

x− xi
d x . (1.24)

Recalling the definition of the Lagrangian interpolation polynomial

li(x) =
πn(x)

(x− xi)π′n(xi)
=

υn(x)
(x− xi)υ′n(xi)

, (1.25)

and since for some constant υ0(x) = c, we find from (1.24) and (1.25) that

1 = −
υn+1(xi)
αnγn

c2
∫

c1

w(x)
υn(x)
x− xi

d x

= −
υn+1(xi)υ′n(xi)

αnγn

c2
∫

c1

w(x)li(x)d x

= −
υn+1(xi)υ′n(xi)

αnγn
wi (1.26)

where

wi =−
bn+1γn

bnυn+1(xi)υ′(xi)
for i= 1, · · · ,n. (1.27)

The error is given by

En=
γn

b2
n(2n)!

h(2n)(ξ), c1<ξ< c2. (1.28)

9



© C
OPYRIG

HT U
PM

Note that for the Legendre polynomials Pn(x) these formulae give

γn =

1
∫

−1

P2
n (x)d x =

2
2n+1

,

bn =
(2n)!

2n(n!)2
,

wi = −
2

(n+1)Pn+1(xi)P′n(xi)
, (1.29)

En =
22n+1(n!)4

(2n+1)[(2n)!]3
h(2n)(ξ). (1.30)

Consider quadrature rules of the form

I
c2
c1
(h) =

c2
∫

c1

h(x)d x =
m
∑

i=0

wih(xi), (1.31)

where xi are not equally spaced. Replacing h by an interpolating polynomial
pn(x) constructed at the points xi , i = 0,1, · · · ,n, then the polynomial will have
Lagrangian form

pn(x) = l0(x)h(x0)+ · · ·+ ln(x)h(xn), (1.32)

where li(x), i= 0,1, · · · ,n, are defined by

li(x) =
n
∏

j=0, j 6=i

x− x j

xi− x j
. (1.33)

By integrating (1.32) over c1 ≤ x ≤ c2, we get the right hand side of (1.31), in
which case the weights wi are given by

wi =

c2
∫

c1

li(x)d x , 0≤ i≤ n, (1.34)

For an equally-spaced nodes xi this procedure leads to a different method of
deriving the Newtons-cotes quadrature formulas. The error term

E(x) = (x− x0)(x− x1) · · ·(x− xn)
hn+1(ξ)
(n+1)!

, c1<ξ< c2 (1.35)
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hn+1(ξ) is continuous and ξ depends on x on integration over the interval
[c1, c2] gives

I
c2
c1

h−
n
∑

i=0

wih(xi) =
1

(n+1)!

∫ c2

c1

πn+1(x)h
n+1(ξ), (1.36)

where πn+1(x) = (x − x0)(x − x1) · · ·(x − xn). Thus, the quadrature rule (1.31)
is exact if h ∈Pn because since hn+1(x)≡ 0 the right side of (1.36) vanishes.
The rule (1.31) is exact for any linear combination of functions h and g if it is
exact for the functions h and g separately. Thus, if α and β are any arbitrary
real numbers, we have

∫ c2

c1

(αh(x)+β g(x))d x = I
c2
c1

h+ I
c2
c1

g =
n
∑

i=0

wi [αh(xi)+β g(xi)] . (1.37)

This shows that the rule (1.31) is exact for h∈Pn if it is exact for the monomials
1, x , x2, · · · , xn. In fact, the rule (1.31) is exact for x j if

∫ c2

c1

x jd x =
n
∑

i=0

wi x
j
i . (1.38)

Since the left side of (1.38) is known, we take j = 0,1, · · · ,2n+1 and obtain a
system (2n+2) equations to solve 2n+2 unknowns wi and for i = 0,1, · · · ,n. If
this system has a solution, the resulting quadrature rule will be exact for h∈Pn
for j,k< n, so that

n
∑

i=0

wi p j(xi)pk(xi) =

∫ c2

c1

w(x)p j(x)pk(x)d x =δ jk. (1.39)

Thus

〈h, g〉=
n
∑

i=0

wih(xi)g(xi). (1.40)

We will develop the error (1.36) in terms of the divided differences. Since

h(x)− pn(x) =πn+1(x)h[x , x0, · · · , xn], (1.41)

we have

I
c2
c1

h−
n
∑

i=0

wih(xi) =

∫ c2

c1

πn+1(x)h[x , x0, · · · , xn]d x . (1.42)
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If h[x , x0, · · · , xn] ∈Pm, m> 0, then h[x , x0, · · · , xk+1] ∈Pm−1. This result fol-
lows from

h[x , x0, · · · , xn] =
h[x0, · · · , xn]−h[x , x0, · · · , xn−1]

xn− x0
, (1.43)

called a divided difference, which gives

h[x , x0, · · · , xk+1] =
h[x0, · · · , xk+1]−h[x , x0, · · · , xk]

xk+1− x
, (1.44)

and since the numerator on the right side is a polynomial of degree m and
has (x − xk+1) as one of the factors, then h ∈ Pm−1. Hence, if h ∈ P2n+1, we
can show by induction that h[x , x0, · · · , xn] ∈ Pn. Now, let {p0, p1, · · · , pn+1}
be a set of orthogonal polynomials [c1, c2], and let pr ∈Pr , r = 0,1, · · · ,n+1.
Then for some set of real numbers α0,α1, · · · ,αn, we have h[x , x0, · · · , xn] =
α0p0+α1p1+ · · ·+αnpn. Then, because of the orthogonality relations

∫ c2

c1

pr(x)ps(x)d x

(

0, for r 6= s,

||ps||2, for r = s,
(1.45)

the right side of (1.42) is zero if πn+1(x) =αpn+1(x) for some real α 6= 0.

The Gaussian quadrature rules cannot in general be used for functions that
are defined only at discrete points since such rules require that the functions
be evaluated at specific points ξt which are the zeros of the related polynomi-
als. However, in some experimental cases where there is complete freedom of
choosing the data of functional values at the specific nodes ξ, the correspond-
ing Gaussian rules can be used to evaluate I

c2
c1
(h). The error bounds are virtually

impossible to obtain in such cases. But if the data is mostly error free, then a
very high order interpolating polynomial may be effectively used to obtain a sig-
nificantly accurate result. There is no practical advantage in using a Gaussian
quadrature if the data is noisy and some smoothing is needed prior to the appli-
cation of a specific Gaussian quadrature rule.

It must also be noted that the Gaussian rules of all orders are also Riemann
sums. These rules integrate exactly polynomials of any degree by a formula of
the form (1.31).

1.7.4 Extended Gaussian Rules

The extended (repeated or compund) Gaussian rules are similar to the repeated
trapezoidal, midpoint and Simpson’s rules.

Theorem 1.7.1 (Abramowitz and Stegun (1972)) If p2n+1(y)∈P2n+1, then

12



© C
OPYRIG

HT U
PM

the formula

∫ c2

c1

w(x)p2n+1(y)d y =
m
∑

j=0

γi p2n+1(yi)

is exact if the points y j , j = 0,1, · · · ,m, are the zeros of the orthogonal polyno-
mial υm+1, and γ j are defined by

γ j =

∫ c2

c1

w(x)l j(x)d x

Theorem 1.7.2 (Johnson and Riess (1977)) Gaussian quadrature formula has
precision 2m+1 only if the points x j , j= 0,1, · · · ,m, are the zeros of υm+1.

Theorem 1.7.3 (Abramowitz and Stegun (1972)) Let h(y) ∈ C2m+2[c1,c2],
then the error in the Gaussian quadrature is

I
c2
c1
− Im=

h2m+2(ξ)
(2m+2)!

∫ c2

c1

w(y)T2
m+1(y)d y

where Tm is the Chebyshev polynomial of the first kind.

1.7.4.1 Gauss-Jacobi Rule

The Jacobi polynomials P(γ,σ) are the orthogonal with weight function w(y) =
(1− y)γ(1+ y)σ, γ > −1, σ > −1. The Gauss-Jacobi rule (also known as the
Mehler quadrature formula) is defined by

∫ 1

−1
(1− y)γ(1+ y)σh(y)d y =

m
∑

j=1

w jh(y j)+ E, (1.46)

where

w j =−
2m+γ+σ+2
2m+γ+σ+1

Γ (m+σ+1)Γ (m+γ+σ+1)
(m+1)!Γ (m+γ+σ+1)

×
2γ+σ

P′(γ+σ)m (y)P(γ+σ)m+1 (y)
.(1.47)

and the series form of Jacobi polynomials P(γ,σ) (Prem and Michael, 2005) is

P(γ,σ)(y) =
1

2m

[m/2]
∑

k=0

�

m+γ
k

��

m+σ
m−k

�

(y−1)m−k (y+1)k , (1.48)
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and the error term Em in the m-point rule is

Em=
Γ (m+γ+1)Γ (m+σ+1)Γ (m+γ+σ+1)
(2m+γ+σ+1)[Γ (2m+γ+σ+1)]2

×
m!22m+γ+σ+1

(2m)!
h2m(ξ), ξ∈ (−1,1). (1.49)

The Gauss-Legendre rule is a special case of formula (1.47) with γ=σ= 0. The

Gauss-Chebyshev rule is another special case with γ=σ=−
1
2

For integrands

with the Jacobi weight function w(y) = (1− y)γ(1+ y)σ in (Piessens and Bran-
ders, 1973) use the formulas

∫ 1

−1
(1− y)γ(1+ y)σg(y)≈

M
∑

k=0

bkGk(γ,σ)+ E′M , (1.50)

∫ 1

−1
(1− y)γ(1+ y)σ ln

1+ y
2

g(y)d y ≈
M
∑

k=0

bk Ik(γ,σ)+ E2
M , (1.51)

where g(y) is assume to have a rapidly convergent Chebyshev series expansion

g(y) =
∞
∑

k=0

′

akTk(y), (1.52)

and

bk =
2
M

∞
∑

k=0

′′

g(yi)Tk(yi), yi = cos
iπ
M

, (1.53)

Gm(γ,σ) = 2γ+σ+1 Γ (γ+1)Γ (σ+1)
Γ (γ+σ+2)

3F

�

m,−m,γ+1
1
2 ,γ+σ+2

;1

�

, (1.54)

E1
k ≈ ak+1(Gk+1(γ,σ)− Ik−1(γ,σ)), (1.55)

E2
k ≈ ak+1(Ik+1(γ,σ)− Ik−1(γ,σ)), (1.56)

and Im(γ,σ) are obtained from the recurrence relation

(γ+σ+m+2)Im+1(γ,σ)+2(γ−σ)Im(γ,σ)+(γ+σ−m+2)Im−1(γ,σ)
= 2Gm(γ,σ)−Gm−1(γ,σ)−Gm+1(γ,σ). (1.57)

1.7.4.2 Gauss-Legendre Rule

This rule is a special case of the Gauss-Jacobi formula (1.47) with γ= σ = 0.
The weight function w(y) = 1 and the orthogonal polynomials υ j(y) are the
Legendre polynomials Pj(y), j = 0, · · · , with p j(1) = 1. This rule on the interval
[−1,1] is given by (1.31), where the nodes y j are the j− th zero of Pm; the
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weight are given by

w j =
2

(1− y2
j )[P

′
m(y j)]2

; (1.58)

and the remainder is

Rm=
22m+1(m!)4

(2m+1)[(2m)!]3
h2m(ξ),−1<ξ< 1. (1.59)

The Gauss-Legendre rule fore arbitrary interval [c1,c2] is

∫ c2

c1

h(y)d y =
c2− c1

2

m
∑

j=1

w jh(y j)+Rm (1.60)

where the nodes are

yi =
� c2− c1

2
x j+

c2+ c1
2

�

; (1.61)

the related nodes x j and the weights wi are defined above; and

Rm=
(c2− c1)2m+122m+1(m!)4

(2m+1)[(2m)!]3
h2m(ξ), c1<ξ< c2. (1.62)

The rule (1.31) are exact for h∈P2m+1.

Using the first legendre polynomial

P0(y) = 1, P1(y) = y, P2(y) = (3y2−1)/2, P3(y) = (2y3−3y)/2,

we get:

1. For m=2 in (1.31) we have the Gauss-Legendre rule with one node at y=0
which is the zero of P1(y) : I1−1h= 2h(0), which is exact for h∈P1. This is
comparable to the midpoint rule.

2. For m=1 in (1.31) we have the Gauss-Legendre rule with two nodes at y =
±1/
p

3 which are the zeros of P2(y) : I1−1h= h(−1/
p

3)+h(1/
p

3), which
is exact for h∈P3. This is comparable to the Simpson’s rule.

3. For m= 2 in (1.31) we have the Gauss-Legendre rule with three nodes at
y = 0,±

p

3/5 which is the zero of P3(y) : I1−1h= 2[5h(−
p

3/5)+8h(0)+
5h(0)+5h(

p

3/5)]/9, which is exact for h∈P5.

For the Gauss-Legendre rule, an interval [c1,c2] can be transformed into [−1,1]
by using the transformation

c1=
c2+ c1

2
+

c2− c1
2

ξ, ξ∈ [−1,1]. (1.63)
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Then the Gauss-Legendre quadrature rule becomes

Hh=
c2− c1

2

m
∑

k=1

wkh(ξk). (1.64)

where the nodes ξk are the m zeros of the n− th degree Legendre polynomials.

1.7.4.3 Gauss-Laguerre Rule.

A Gaussian quadrature over the interval [0,∞)with weight function w(x)= e−x

(Davis and Rabinowitz, 1984) is Gauss-Laguerre. The abscissae for quadrature
order n are given by the roots of the Laguerre polynomials Ln(x). The weights
are

wi =−
An+1γn

AnL′n(xi)Ln+1(xi)
=

An
An−1

γn−1

Ln−1(xi)L′n(xi)
, (1.65)

where An is the coefficient of xn in Ln(x), given by An =
(−1)n

n! . Thus,
An+1
An
=

− 1
n+1 , and

An
An−1

=−1
n . Also, γn=

∫∞
0 w(x)[Ln(x)]2d x = 1, which gives

wi =
1

(n+1)L′n(xi)Ln+1(xi)
=

1

nLn−1(xi)L′n(xi)
,

=
1

xi[L′n(xi)]2
=

xi

(n+1)2[Ln+1(xi)]2
(1.66)

The error term is given by

En=
(n!)2

(2n)!
h(2n)(ξ). (1.67)

1.7.4.4 Gauss-Hermite Rule.

This is a Gauss quadrature over the interval (−∞,∞) with weight function

w(x) = ex2
(Davis and Rabinowitz, 1984). The nodes for quadrature of order n

are given by the roots xi of the Hermite polynomials Hn, which occur symmet-
rically about 0. Th weights are

wi =−
An+1γn

AnH′n(xi)Hn+1(xi)
=

An
An−1

γn−1

Hn−1(xi)H′n(xi)
, (1.68)

where An is the coefficient of xn in Hn(x). For Hermite polynomials, An = 2n,
so

An+1
An
= 2. Additionally, γn=

p
π2nn!, so (see Abramowitz and Stegun 1968, p.
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890).

wi =−
2n+1n!

p
π

Hn+1(xi)H′n(xi)
=

2n(n−1)!
p
π

Hn−1(xi)H′n(xi)

=
2n+1n!

p
π

�

H′n(xi)
�2 =

2n+1n!
p
π

�

Hn+1(xi)
�2 =

2n−1n!
p
π

n2 [Hn−1(xi)]
2 , (1.69)

where the following recurrence relations is used:

H′n(x) = 2nHn−1= 2xHn(x)−Hn+1(x).

The error term is

En=
n!
p
π

2n(2n)!
h(2n)(ξ). (1.70)

The nodes and weights can be computed analytically for small n as:

n= 2 : xi =±
p

2, wi =
1
2

p
π, i ∈ {1,2}

n= 3 : x0= 0, wi =
2
3

p
π,

xi =±
1
2

p

6, wi =
p
π

6
, i ∈ {1,2}

n= 4 : xi =±

√

√3−
p

6
2

, wi =
p
π

4(3−
p

6)
, i ∈ {1,2}

xi =±

√

√3+
p

6
2

, wi =
p
π

4(3+
p

6)
, i ∈ {3,4}.

1.7.4.5 Gauss-Radau Rule.

A Gaussian quadrature-like formula for numerical estimation of integrals. It
requires m+1 points and fits all polynomials to degree 2m, so it effectively fits
exactly all polynomials of degree 2m−1. It uses a weight function w(x) = 1 in
which the endpoint -1 in the interval [−1,1] is included in a total of n abscissae,
r−n−1 free abscissae. The general formula is

∫ 1

−1
h(x)d x =

2
n2 h(−1)+

n
∑

i=2

wih(xi). (1.71)
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The free nodes for i = 2, · · · ,n are the roots of the polynomial
Pn−1(x)+Pn(x)

1+x ,
where Pn(x) is a Legendre polynomial. The weights of the free nodes are

wi =
1− xi

n2 [Pn−1(xi)]
2 =

1

(1− xi)
�

P′n−1(xi)
�2 , i= 1, · · · ,n. (1.72)

The error term is

En=
22n−1n[(n−1)!]4

[(2n−1)!]3
h(2n−1)(ξ), −1<ξ< 1. (1.73)

1.7.4.6 Gauss-Lobatto Rule.

Also known as Lobatto quadrature (Abramowitz and Stegun, 1972), named after
Dutch mathematician Rehuel Lobatto. It is similar to Gaussian quadrature with
the following differences:

1. The integration points include the end points of the integration interval.

2. It is accurate for polynomials up to degree 2n−3, where n is the number
of integration points (Quarteroni et al., 2000) .

Lobatto quadrature of function h(x) on interval [−1, 1]: When the Gaussian for-
mula (1.31) is used with the polynomials P′n−1(x), where Pn(x) are the Legendre
polynomials, we get Lobatto’s rule:

∫ 1

−1
h(x)d x =

2
n(n−1)

[h(1)+h(−1)]+
n−1
∑

i=1

wih(xi)+Rn, (1.74)

where the quadrature points xi is the (i−1)−st zero of P′n−1(x); this formula is

exact if h∈P2n−1, and the weights wi =
2

n(n−1)[Pn−1(x i)]2
for xi 6= 1; and

Rn=
−n(n−1)322n−1[(2n−1)!]4

(2n−1)[(2n−2)!]3
h2n−2(ξ), −1<ξ< 1. (1.75)

The 3−point Lobbato rule is Simpson’s rule.

1.7.4.7 Gauss-Chebyshev Rule.

In the quadrature rule

c2
∫

c1

w(x)h(x)d x =
n
∑

i=0

wih(xi), (1.76)

the weight wi and the nodes xi can be found for different orthogonal polynomi-
als approximations of h(x) such that formula (1.76) is exact for all h ∈P2n+1.
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Thus, in particular, if [c1,c2] is taken as [−1,1] and w(x) = (1− x2)−1/2, the
orthogonal polynomial are the Chebyshev polynomials TN (x) of the first kind,
and the resulting formulas are known as the Gauss-Chebyshev rule. Thus, by
taking the interpolating polynomials as

pn(x) =
n
∑

i=0

li(x)h(xi), (1.77)

where xi are the zeros of Tn(x). Then, in view of (1.47) the weights wi are given
by

wi =−
π

Tn+1(xi)T ′n(xi)
. (1.78)

Putting x = cosθ , we have Tn(x) = cosnθ , and T ′n(x) =
nsinnθ

sinθ . Now we write
xi = cosθi . Then

Tn+1(xi) = cos(n+1)θi = cosnθi cosθi−sinnθi sinθ

=∓
p

1− xi ,

since cosnθ = 0,

T ′n(xi) =
nsinnθi

sinθi
=

±n
Ç

1− x2
i

,

which gives

wi =
π

n
(1.79)

This shows that for all Chebyshev rules the weights are all equal. The error in
the n−point rule is given by

En=
2π

22n(2n)!
h(2n)(ξ), −1<ξ< 1. (1.80)

If we choose [c1,c2]= [−1,1], w(x)= (1− x2)−1/2, and the polynomials qi(x) as
the normalized Chebyshev polynomials

qi(x) =







q

2
πTi(x) for i= 1,2, · · · ,n−1

q

1
πT0(x) for i= 0.

The nodes ξi for the n−point quadrature are zero of Tn(x), defined by

ξi = cos
(2i−1)π

2n
, i= 1,2, · · · ,n. (1.81)

19



© C
OPYRIG

HT U
PM

The rule with ξi given by (1.82) and the weight (1.78) is of degree 2n−1, and is
known as the open Gauss-Chebyshev rule, since the endpoints are not included
as the nodes. The word ’open’ is generally omitted since all Gaussian rules with
positive weight function are of the open type. This rule is also known as Fejér’s
first integration formula

∫ 1

−1
h(x)d x =

n
∑

i=1

wih
�

cos
(2i−1)π

2n

�

, h∈Pn−1 (1.82)

where the weights wi are given by

wi =
2
π



1−2
[n/2]
∑

k=1

cos(2kθk)
4k2−1



 . (1.83)

The (open) Gauss-Chebyshev rule is related to the midpoint rule with w(x) = 1,
which is defined by

H
c2
c1

h≈ h
n
∑

i=1

h
�

c1+
(2i−1)h

2

�

, h=
c2− c1

2
. (1.84)

This is easily seen by setting [c1,c2] = [0,π] and x = cosθ ; then the above mid-
point rule changes to

∫ 1

−1

h(cos−1 x)
p

1− x2
d x ≈

π

n

n
∑

i=1

h
�

(2i−1)π
2n

�

. (1.85)

We can, however, constructed the ’closed’ Gauss-Chebyshev rule by including
the endpoints ξ0 = 1 and ξn =−1 as additional nodes. Then we get a rule with
nodes ξi = cos(iπ/n), i= 0,1 · · · ,n, and weights wi =π/n for i= 1,2, · · · ,N , and
w0=wn=π/(2n). Thus, the ’closed ’ Gauss-Chebyshev rule is

∫ 1

−1

h(x)
p

1− x2
d x ≈

π

n

n
∑

j=0

′′

h
�

cos
iπ
n

�

. (1.86)

This rule can be obtained from the repeated trapezoidal rule by the same method
as used in showing the relationship of the open Gauss-Chebyshev rule to the
midpoint rule, although the relation does not clarify why the rule is of high de-
gree. In practice we do not generally use the closed rule because sometimes it
is not possible to include the endpoint nodes. However, the closed rule has the
advantage in a situation where closed rule the n points ξi are the subject of the
2n points ξi , and the previous function evaluations can be used again.

There are two Gauss-Chebyshev Rules on an arbitrary interval [c1,c2] :
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1. Using the Gauss-Chebyshev polynomials of the first kind, Tn(x), where
Tn(1) = 1/2n−1, we have

∫ c2

c1

h(y)
p

(y− c1)(c2− y)
d y =

c2− c1
2

n
∑

i=1

wih(yi)+Rn, (1.87)

where the nodes yi =
c2+c1

2 + c2−c1
2 xi , with xi = cos (2i−1)π

2n ; the weights are
the same as above.

2. Using the Chebyshev polynomials of the second kind

Un(x) =
sin[(n+1)arccos x]

sin(arccos x)
, (1.88)

we get

∫ c2

c1

h(y)
Æ

(y− c1)(c2− y)d y =
� c2− c1

2

�2 n
∑

i=1

wih(yi)+Rn, (1.89)

where the nodes are yi and the weights are the same as in 1 above.

1.7.5 Gauss-Kronrod rules

A (2n+1)-point Gauss-Kronrod rule by DIRK (1997) for the integral

Ih=

∫ c2

c1

h(x)ds(x), (1.90)

where s is a nonnegative measure on the interval [c1,c2], is a formula of the
form

K(2m+1)h=
2m+1
∑

i=1

wih(xi) (1.91)

with the properties:

• m nodes of K(2m+1) coincide with those of the m-point Gaussian quadra-
ture rule G(n) for the same measure;

• K(2m+1)h= Ih whenever h is polynomial of degree less than or equal to
3n+1.

To approximate definite integrals of the form

c2
∫

c1

h(x)d x (1.92)
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by using n-point Gaussian quadrature

c2
∫

c1

h(x)d x ≈
n
∑

i=1

wih(xi), (1.93)

where wi , xi are the weights and points at which to evaluate the function h(x).
If the interval [c1, c2] is subdivided, the Gauss evaluation points of the new
subintervals never coincide with the previous evaluation points (except at the
midpoint for odd numbers of evaluation points), and thus the integrand must be
evaluated at every point. Gauss Kronrod formulas are extensions of the Gauss
quadrature formulas generated by adding n+1 points to an n−point rule in such
a way that the resulting rule is of order 3n+1. These extra points are the zeros
of Stieltjes polynomials. This allows for computing higher-order estimates while
reusing the function values of a lower-order estimate. The difference between a
Gauss quadrature rule and its Kronrod extension are often used as an estimate
of the approximation error.
Patterson (1968) showed how to find further extensions of this type.

In numerical mathematics, the Gauss-Kronrod quadrature formula is a method
for numerical integration (calculating approximate values of integrals). Gauss
Kronrod quadrature is a variant of Gaussian quadrature, in which the evalua-
tion points are chosen so that an accurate approximation can be computed by
re-using the information produced by the computation of a less accurate ap-
proximation. It is an example of what is called a nested quadrature rule: for the
same set of function evaluation points, it has two quadrature rules, one higher
order and one lower order (the latter called an embedded rule). The difference
between these two approximations is used to estimate the calculational error of
the integration.

These formulas are named after Alexander Kronrod, who invented them in the
1960s, and Carl Friedrich Gauss. Gaussian quadrature is used in the QUAD-
PACK library, the GNU Scientific Library, the NAG Numerical Libraries and R
(Hazewinkel and Michiel, 2001).

1.7.6 Other Forms of Gauss Quadrature

The integration problem can be expressed in a slightly more general way by
introducing a positive weight function ω(x) into the integrand, and allowing an
interval other than [−1,1] say [c1,c2]. That is, the problem is to calculate

c2
∫

c1

ω(x)h(x)d x (1.94)
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for some choices of c1, c2, and ω(x). For c1 = −1, c2 = 1, and ω(x) = 1, the
problem is the same as that considered above (section 1.1). Other choices lead
to other integration rules mentioned in the table below.

Table 1.1: Details are given in Abramowitz and Stegun (1972)

Interval ω(x) Orthogonal polynomials QT

[−1,1] 1 Legendre polynomials GLQ

(−1,1) (1− x)α(1+ x)β , α,β >−1 Jacobi polynomials (β = 0) GJQ

(−1,1) 1p
1−x2 Chebyshev polynomials (first kind) GChQ

[−1,1]
p

1− x2 Chebyshev polynomials (second kind) GChQ

[0,∞) e−x Laguerre polynomials GLgQ

[0,∞) xαe−x , α>−1 Generalized Laguerre polynomials GLgQ

(−∞,∞) e−x2
Hermite polynomials GHQ

1.7.7 Fundamental theorem

Let pn be a nontrivial polynomial of degree n such that

c2
∫

c1

ω(x)xkpn(x)d x = 0,for all k= 0,1,2, · · · ,n−1 (1.95)

If we pick the n nodes xi to be the zeros of pn, then there exist n weights wi
which make the Gauss-quadrature computed integral exact for all polynomials
h(x) of degree 2n−1 or less. Furthermore, all these nodes xi will lie in the open
interval (c1,c2) (Stoer and Bulirsch, 2002).

The polynomial pn is said to be an orthogonal polynomial of degree n associ-
ated to the weight function ω(x). It is unique up to a constant normalization
factor.

The idea underlying the proof is that, because of its sufficiently low degree,
h(x) can be divided by pn(x) to produce a quotient q(x) of degree strictly lower
than n, and a remainder r(x) of still lower degree, so that both will be orthogo-
nal to pn(x), by the defining property of pn(x). Thus

c2
∫

c1

ω(x)h(x)d x =

c2
∫

c1

ω(x)r(x)d x (1.96)
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Because of the choice of nodes xi , the corresponding relation

n
∑

i=1

ωih(xi) =
n
∑

i=1

ωi r(xi) (1.97)

holds also. The exactness of the computed integral for h(x) then follows from
corresponding exactness for polynomials of degree only n or less (as is r(x)).

1.7.8 Errors of Gauss-Quadrature formula

The error of a Gaussian quadrature rule can be stated as follows (Stoer and
Bulirsch, 2002). For an integrand which has 2n continuous derivatives,

c2
∫

c1

w(x)h(x)d x−
n
∑

i=1

wih(xi) =
h2n(ζ)
(2n)!

〈pn, pn〉 (1.98)

for some ζ ∈ (c1, c2), where pn is the monic (i.e. the leading coefficient is 1)
orthogonal polynomial of degree n and where

〈h, g〉=

c2
∫

c1

w(x)h(x)g(x)d x (1.99)

In the important special case of w(x) = 1, we have the error estimate (Kahaner
et al., 1989)

(c2− c1)2n+1(n!)4

(2n+1)[(2n)!]3
h2n(ζ),c1<ζ< c2 (1.100)

In the research work of Stoer and Bulirsch (2002) remark that this error es-
timate is inconvenient in practice, since it may be difficult to estimate the or-
der 2n derivative, and furthermore the actual error may be much less than a
bound established by the derivative. Another approach is to use two Gaussian
quadrature rules of different orders, and to estimate the error as the difference
between the two results.

Important consequence of the above equation is that Gaussian quadrature of
order n is accurate for all polynomials up to degree 2n−1.

1.8 Summary

In this chapter we discussed on background of the research study, provided
the problem statement, presented the objectives of the research work, gives
the scope of the study, presented the limitations of the study, briefly gives the
outline of the thesis and provided the basic concepts and definitions useful in
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understanding the study area of the research.
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