

UNIVERSITI PUTRA MALAYSIA

EPIDEMIOLOGY, TRANSMISSION AND ISOLATION OF NIPAH VIRUS IN LARGE FRUIT BATS (*PTEROPUS* SPECIES) IN PENINSULAR MALAYSIA

SOHAYATI ABD RAHMAN

FPV 2009 5

EPIDEMIOLOGY, TRANSMISSION AND ISOLATION OF NIPAH VIRUS IN LARGE FRUIT BATS (*PTEROPUS* SPECIES) IN PENINSULAR MALAYSIA

By

SOHAYATI ABD RAHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2009

DEDICATION

Dedicated with love and greatest gratitude to my parent, Abdul Rahman M. Diah and Rokiah Othman, my husband, Zaini Che Mamat, my children, M. Nazrin Asyraf and Nur Izzah Ayuni

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EPIDEMIOLOGY, TRANSMISSION AND ISOLATION OF NIPAH VIRUS IN LARGE FRUIT BATS (*PTEROPUS* SPECIES) IN PENINSULAR MALAYSIA

By

SOHAYATI ABD RAHMAN

February 2009

Chairman: Latiffah Hassan, PhD

Faculty: Faculty of Veterinary Medicine

Bats of the genus *Pteropus* are considered the natural reservoir hosts for NiV and other henipaviruses. The present study was carried out to investigate the epidemiology of NiV in *Pteropus* sp. in Malaysia. The specific objectives of this study are to describe the geographical distribution and population characteristics of *Pteropus* spp. in the peninsular, describe the geographical extent of NiV antibody in pteropid bats in the peninsular, identify the risk factors associated with the infection, determine the natural route of NiV excretion, transmission and serological patterns of the infection in captured *Pteropus*, estimate the seroprevalence and incidence rate of NiV seroconversion in the bats and investigate the possibility of viral recrudescence in naturally infected bats and in experimentally NiV immuno-suppressed seropositive bats

P. vampyrus and *P. hypomelanus* were found throughout Peninsular Malaysia. *P. hypomelanus* inhabits the islands surrounding the peninsular while *P. vampyrus* were found on the mainland. *P. vampyrus* was extremely sensitive even to low-level human activities. Physically, *P. vampyrus* was significantly bigger and heavier than *P. hypomelanus*. The physical characteristics of bats of both species differ significantly given age and sex. Both species had similar breeding pattern throughout the year.

The seroprevalence of NiV in *P. hypomelanus* and *P. vampyrus* were 11% and 32.5%, respectively. The odds ratio of seropositive for NiV was higher in *P. vampyrus* compared to *P. hypomelanus*. A repeated cross-sectional study show that NiV seroprevalence in a single population of *P. hypomelanus* ranged between 1% and 20%. The seroprevalence was found associated with time and the reproductive status of female bats. The bats that were either pregnant, lactating, carrying or nursing a pup were at a significantly higher risk to be seropositive when compared to dry bats.

A prospective study on the bats revealed at least 5 basic serological patterns: i) High Static Positive, ii) Low Static Positive, iii) Waned-off, iv) Waned-off and Rising and v) Static Negative. Passive immunity to NiV of pup born to seropositive dam was detected for a period of up to a year. This suggests that the maternal antibody against NiV may last up to a year in captive bats.

The isolation of the virus from a bat's urine from 'Waned-off and Rising' antibody pattern provides for the first time, the objective evidence of the possible viral recrudescent in *Pteropus* bats. The virus was excreted in very low concentration and in a

very short time period. This indicates that a very narrow window exist where NiV is shed by bats in the wild. The seroconvertion of another two bats within a month after the virus isolation suggests the possibility of horizontal transmission within the colony. The NiV incidence rate for seroconversion was 486 per 1000 bat-year.

Stress in seropositive bats induced chemically resulted in an increased neutrophil and decrease in lymphocytes count. However, no virus was discovered from samples collected during the experiment and from organs at the end of the study.

The findings from the study have contributed significantly to the understanding on the distribution of NiV among healthy *Pteropus* bats, transmission and persistency of the virus within the colony, and the basic bat immune response due to NiV infection.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

EPIDEMIOLOGI, PENYEBARAN DAN PENGASINGAN VIRUS NIPAH DALAM KELUANG (SPESIS *PTEROPUS*) DI SEMENANJUNG MALAYSIA

Oleh

SOHAYATI ABD RAHMAN

Februari 2009

Pengerusi: Latiffah Hassan, PhD

Fakulti: Perubatan Veterinar

Keluang dari genus *Pteropus* seringkali dikaitkan sebagai perumah reservoir semulajadi untuk NiV dan virus henipavirus lain. Kajian ini dijalankan untuk mengkaji dengan lebih terperinci mengenai epidemiologi NiV dalam *Pteropus* sp. di Semenanjung Malaysia. Objektif khusus untuk kajian ini adalah untuk menerangkan taburan geografi dan ciri-ciri populasi kedua-dua jenis spesis *Pteropus* dalam semenanjung, menerangkan taburan geografi antibodi NiV dalam keluang di semenanjung, mengenal pasti faktor-faktor risiko yang berkaitan dengan jangkitan pada keluang, menentukan laluan perkumuhan semulajadi NiV dari badan keluang termasuk cara ia disebarkan serta pola serologi jangkitan NiV dalam keluang dan juga untuk mengkaji kemungkinan kemunculan kembali NiV (dari jangkitan pendam) dalam keluang yang terjangkit secara semulajadi

dan dalam keluang berstatus seropositif kepada NiV dibawah aruhan `immunosuppresion'

Pteropus vampyrus dan P. hypomelanus boleh ditemui dihampir keseluruhan Semenanjung Malaysia. Pteropus hypomelanus boleh ditemui di pulau-pulau sekitar semenanjung sementara P. vampyrus boleh ditemui di tanah besar semenanjung. Pteropus vampyrus didapati sangat sensitif dengan aktiviti manusia walau pada tahap yang rendah. Secara fisikal, P. vampyrus didapati lebih besar dan berat dari P. hypomelanus. Ciri-ciri fizikal kedua-dua spesis keluang memiliki perbezaan yang bererti diantara umur dan jantina. Kedua-dua spesis keluang ini memiliki pola pembiakan yang hampir serupa untuk sepanjang tahun.

Seroprevalens NiV dalam *P. hypomelanus* dan *P. vampyrus* adalah 11%. dan 32.5%, setiapnya. Risiko untuk menjadi seropositif kepada NiV adalah lebih tinggi dalam *P. vampyrus* berbanding *P. hypomelanus*. Dalam kajian rentas berulang didapati seroprevalens terhadap NiV pada salah salah satu koloni *P. hypomelanus* adalah diantara 1% hingga 20%. Seroprevalens ini didapati berkait rapat dengan masa dan status pembiakan keluang betina. Keluang yang samaada sedang mengandung, membawa atau menyusukan anak didapati memiliki risiko yang lebih tinggi untuk menjadi seropositif berbanding keluang betina yang tidak aktif dalam pembiakan.

Dari kajian prospektif yang dijalankan didapati sekurang-kurangnya 5 pola serologi asas NiV dalam keluang: i) Positif Statik Tinggi ii) Positif Statik Rendah iii) Penurunan iv) Penurunan dan Peningkatan dan v) Negatif Statik. Immuniti pasif NiV dalam anak

keluang yang lahir dari ibu yang berstatus seropositif telah dikesan untuk jangkamasa yang menghampiri setahun. Ini mencadangkan bahawa yang antibodi terhadap NiV yang diperolehi dari ibu mungkin dapat bertahan selama setahun dalam anak keluang yang dikurung bersama ibu.

Pengasingan virus dari air kencing salah seekor keluang dari pola serologi `Penurun dan Peningkatan' merupakan bukti kepada pengaktifan semula jangkitan dari jenis pendam atau `latent' NiV dalam keluang. Virus telah dirembeskan pada kadar kepekatan yang sangat rendah dan dalam masa yang sangat singkat. Ini menunjukan bahawa penyebaran virus yang berlaku dalam keadaan semulajadi adalah sangat terhad. Kadar jangkitan berdasarkan 'seroconversion' dalam kajian ini adalah 486 per 1000 tahun keluang.

Tekanan (stress) dibawah aruhan bahan kimia pada keluang seropositif telah menyebabkan peningkatan kiraan sel neutrofil dan penurunan sel leukosit. Walau bagaiamana pun, tiada virus ditemui dari sampel yang diambil semasa kajian dan dari organ-organ keluang berkenaan diakhir kajian.

Penemuan dari kajian ini telah menyumbang kepada pemahaman dan pengetahuan terhadap taburan NiV dikalangan keluang yang sihat, cara penyebaran dan bagaimana virus boleh terus kekal dalam koloni keluang, serta asas kepada pengetahuan terhadap tindak balas immuniti keluang terhadap jangkitan NiV.

ACKNOWLEDGEMENTS

"With the name of Allah which is the most generous and loving creator"

I would like to express my appreciation to the main supervisor Dr. Latiffah Hassan for her supervision, advice, as well as for giving me the freedom and independence to carry out my work while providing me unflinching encouragement and support in various ways. To supervisory committee member, Dr Sharifah Syed Hassan, for her continual scholarship and spirit in regard to research, also for her expertise in virology. To Dato' Dr. Abdul Aziz Jamaluddin and Associate Professor Dr. Siti Suri Arshad for their guidance, advice, and encouragement throughout the course of study and in the preparation of this thesis.

I acknowledge Dr. Peter Daszak and Dr. Jonathon H. Epstein from the Consortium for Conservation Medicine, NY and Dr. Hume Field from Biosecurity Queensland, Department of Primary Industries and Fisheries, AUS for the their crucial contribution and support on the project of ecology of Nipah virus in *Pteropus* sp. in Malaysia.

I am especially grateful to the Department of Veterinary Services Malaysia for giving me the opportunity to be involved in this project and to further my study. Many thanks to the Department of Public Services Malaysia for providing the four years scholarship to perform this study.

Special thanks to the internal fund of Veterinary Research Institute and 'NIH/NSF-'Ecology of Infectious Disease" award through the Consortium for Conservation Medicine for funding this four years project.

In addition, I thank the previous and current director of Veterinary Research Institute, Department of Veterinary Services Malaysia, for granting permission to use the facilities in the institute, especially Biosafety Level 2 and 3 laboratories. Thanks are also extended to Department of Wildlife and National Parks Malaysia for their guidance and granting permission to sample bats throughout Peninsular Malaysia, and to Zoo Taiping and Night Safari for granting permission to use the facilities, especially Animals Quarantine station.

I am indebted to the field and laboratory crews for their assistance for sampling and laboratory work over the years; in particularly to M. Shamsyul Naim, Norhayati M. Noor, N., Zaini Che Mamat, Azizi Mat Yatim, Amir Nordin, Karim Abdul Hamid, and Thomas Hughes. I thank Mr. Shuhaili Abu Bakar, Roseman Abu Bakar, Adnan Rashid and Ibrahim Md. Hassim of transport unit, Veterinary Research Institute for their services in getting the crewmembers to sampling destinations and for lending an extra hand during sample collection.

I thank the bat hunters for the information of their activities and granting me permission to collect samples from their hunted bats. Thanks are also extended to the local resident in Pulau Tioman, Pulau Kapas and Pulau Perhentian for their cooperation and curiosity during the bats sampling.

My gratitude to a number of colleagues; Dr Maizan Mohamed, Mrs. Suriani M. Noor, Mrs Sharina and Miss Shamsiah of Avian virology laboratory in Veterinary Research Institute, Malaysia for their technical guidance in PCR and assistance in gene sequencing. Staff from the Monoclonal laboratory; Adam Lee, Ali A. Rahman and Fauad Tuah for technical guidance in viral isolation and IFAT technique.

I sincerely appreciate the assistance of Dr. Kim Halpin, Dr. Alex Hyatt, Dr. Chris Morrissy and Greer Mehan of the Immunology Laboratory in Australian Animals Health Laboratory, Australia for the confirmation of the SNT. My appreciation to all colleagues in Veterinary Research Institute and Henipa Ecology Research Group (HERG) for their warm friendship and kindness.

My parents deserve special mention for their support and prayers. Words fail me to express my appreciation to my husband Mr. Zaini Che Mamat, whose dedication, love and persistent confidence in me, has taken the load off my shoulder. To my son Muhammad Nazrin Asyraf and my daughter Nur Izzah Ayuni, you are the source of my strength and perseverance.

Finally, I would like to thank everyone who has contributed to the successful realisation of this thesis, as well as expressing my apology that I could not mention them personally one by one.

I certify that a Thesis Examination Committee has met on 29 May 2009 to conduct the final examination of Sohayati binti Abd Rahman on her thesis entitled "Epidemiology, Transmission and Isolation of Nipah virus in Large Fruit Bats (*Pteropus* Species) in Peninsular Malaysia" in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Saleha Abdul Aziz, PhD Professor Faculty of Graduate Studies Universiti Putra Malaysia (Chairman)

Dato' Munn-Sann Lye, PhD

Professor Faculty of Graduate Sutdies Universiti Putra Malaysia (Internal Examiner)

Abdul Rani Bahaman, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Joanne Meer, PhD

Associate Professor Faculty of Graduate Studies Universiti Putra Malaysia (Enternal Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 May 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Latiffah Hassan, PhD

Associate Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Dato' Abdul Aziz Jamaluddin, PhD

Director Department of Veterinary Services of Malaysia (Member)

Siti Suri Arshad, PhD

Associate Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

Syarifah Syed Hassan, PhD

Associate Professor Faculty of Medicine University Monash (Sunway Campus) (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 June 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SOHAYATI ABD RAHMAN

Date: 6 July 2009

TABLE OF CONTENTS

	Page
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	vii
ACKNOWLEDGEMENTS	Х
APPROVAL	xiii
DECLARATION	XV
LIST OF TABLES	xxi
LIST OF FIGURES	xxiv
LIST OF ABBREVIATIONS	xxix

CHAPTER

1	INT	RODUCTION		1
2	LIT	ERATURE REV	IEW	
	2.1	History Of Nip	ah Virus Infection	6
		2.1.1	The Emergence of Nipah virus in Malaysia	6
		2.1.2	Clinical Signs and Lesions in Pigs Naturally Infected with Nipah virus	7
		2.1.3	Control And Eradication of Nipah virus in Malaysia	9
		2.1.4	Retrospective Studies of Archival Sample for Nipah virus Infection	11
	2.2	Nipah virus		11
		2.2.1	Biological Characteristics of Nipah virus	11
		2.2.2	Molecular Characteristics of Nipah virus	13
	2.3	Diagnosis of N	ipah virus	19
		2.3.1	Virus Isolation	19
		2.3.2	Reverse Transcriptase-Polymerase Chain Reaction	20
		2.3.3	Serum Neutralisation Test	20
		2.3.4	ELISA	21
		2.3.5	Immunohistochemistry	23
	2.4	Methodology for	or Investigating Wildlife Reservoir of Disease	23
	2.5	The Role of Infection	Bats in the Epidemiology of Nipah virus	24
		2.5.1	Global Distribution of Pteropus Bats	25
		2.5.2	Malaysian Pteropid Bats	25
		2.5.3	Pteropus hypomelanus (P. hypomelanus)	26
		2.5.4	Pteropus vampyrus (P. vampyrus)	28

2.6	Nipah virus Res	ervoir	29
2.0	2.6.1	Serological and Prevalence of Nipah virus	30
	2.0.1	Infection in Bats of Malaysia, Cambodia,	50
		Thailand and Indonesia	
	2.6.2	Clinical Signs and Lesions in Bats	32
	2.0.2	Experimentally Infected with Nipah virus	52
		Experimentary infected with Ripan virus	
GEN	ERAL MATER	IALS AND METHODS	
3.1	Target and Stud	y Population	34
3.2	Estimating Popu	ulation Size	35
	3.2.1	Mark and Capture	35
	3.2.2	Head Count Method	37
3.3	Sample Size		38
3.4	Bats Sampling		38
	3.4.1	Hunt Method	39
	3.4.2	Trap Method	40
	3.4.3	Bat Immobilisation	50
3.5	Biological Sam	pling	53
	3.5.1	Sampling of Live Bats	53
	3.5.2	Sampling of Dead Bats	56
3.6	Data Collection		59
	3.6.1	Global Positioning	59
	3.6.2	Identification Number	59
	3.6.3	Commutation/Interview with Hunter and	59
		Local Residents	
	3.6.4	Bats Biological Data	60
3.7	-	and Storage of Samples	64
3.8	Laboratory Ana		65
	3.8.1	Viral Isolation	65
	3.8.2	Detection of Specific Antibody to Nipah	67
		virus using Serum Neutralization Test	
		(SNT)	
	3.8.3	Detection of Viral RNA using the Reverse	73
		Transcriptase Polymerase Chain Reaction	
•		(RT-PCR)	
3.9	Data Analysis		76
	3.9.1	Descriptive Data	76
	3.9.2	Seroprevalence	77
	3.9.3	Odds Ratio of Seropositivity	77
	3.9.4	Confidence Interval	78
	3.9.5	Incidence Rate	79

4 POPULATION CHARACTERISTICS OF PTEROPUS VAMPYRUS AND PTEROPUS HYPOMELANUS IN PENINSULAR MALAYSIA

4.1 Introduction

3

80

4.2	Materials and	Methods	81
	4.2.1	Definitions on Terms	81
	4.2.2	Data Collection	81
	4.2.3	Data Analysis	81
4.3	Results	5	82
	4.3.1	P. hypomelanus	82
	4.3.2	P. vampyrus	93
4.4	Discussion	I J J J J J J J J J J J J J J J J J J J	111
4.5	Conclusion		114
SPA	TIAL DISTRI	BUTION OF NIPAH VIRUS INFECTION	
		ECIES IN PENINSULAR MALAYSIA	
5.1	Introduction		115
5.2			116
	5.2.1	Study design	116
	5.2.2	Bats Sampling	116
	5.2.3	Data Collection	117
	5.2.4	Samples Collection	117
	5.2.5	Samples Transportation and Storage	117
	5.2.6	Laboratory Analysis	117
	5.2.7	Data Analysis	118
5.3	Results		119
	5.3.1	Viral Isolation and Seroprevalence of Nipah virus in <i>P. hypomelanus</i> between Regions	119
	5.3.2	Viral Isolation and Seroprevalence of Nipah virus in <i>P. vampyrus</i> between Regions	120
	5.3.3	Comparison of Seroprevalence between <i>P. hypomelanus</i> and <i>P. vampyrus</i>	121
5.4	Discussion	1. hypometanas and 1. vampyras	123
5.5	Conclusion		125
NIP	AH VIRUS INI	TRIBUTION AND RISK FACTORS OF FECTION IN A COLONY OF <i>MELANUS</i> IN PULAU TIOMAN,	
	IANG	MILLANUS IN I OLAU HOMAN,	
6.1	Introduction		126
6.2	Materials and	Methods	120
0.2	6.2.1	Study Design	127
	6.2.2	Bats Sampling	127
	6.2.3	Data Collection	127
	6.2.4	Samples Collection	128
	6.2.5	Samples Conection Samples Transportation and Storage	128
	6.2.6		128
	6.2.0	Laboratory Analysis	128
6.3		Data Analysis	129
0.5	Results 6.3.1	Dessive Immunity of the Voung Discours	130
	0.3.1	Passive Immunity of the Young Pteropus	131

5

6

		(Pup)	
	6.3.2	Prevalence (%) of Nipah virus and the	131
	0.0.2	Distribution of Nipah virus Positive Titre	
	6.3.3	Logistic Regression Analysis	134
6.4	Discussion		136
0.4	6.4.1	Sampling Time	130
	6.4.2	Age	130
	6.4.3	Sex	137
	6.4.4	Reproductive Status	138
	6.4.5	Viral Isolation	140
6.5	Conclusion		141
		PAH VIRUS FROM	
		RUS IN CAPTIVITY	140
7.1	Introduction	Matha da	142
7.2	Materials and I		142
	7.2.1 7.2.2	Study Population	142 143
	7.2.2	Study Design	143 143
	7.2.3	Study Location and Sample Size Data Collection	145 144
	7.2.4		144
	7.2.6	Samples Collection	144
	7.2.0	Samples Transportation and Storage Laboratory Analysis	145
	7.2.8	Data Analysis	145
7.3	Results	Data Analysis	145
7.5	7.3.1	Overall Seroprevalence	140
	7.3.2	Seroprevalence in Dams with Pup (at Entry	140
	1.3.2	Point) and Dams that gave Birth in the	140
		Captive Colony	
	7.3.3	Seroprevalence in Pups Carried by Dams	148
	1.5.5	(on Entry) and Newborn in the Captive	140
		Colony	
	7.3.4	Serological Patterns or Profiles	152
	7.3.5	Incidence Rate	152
	7.3.6	Virus Isolation and Detection	159
7.4	Discussion		162
	7.4.1	Serological Profiles	162
	7.4.2	Seroprevalence in Newborns, Pups and	166
		Dams	
	7.4.3	Nipah virus Isolation and Detection	167
	7.4.4	Viral Recrudescence	168
	7.4.5	Horizontal Transmission	170
7.5	Conclusion		171

7

8			AMETHASONE-INDUCED STRESS ON ROPOSITIVE <i>PTEROPUS VAMPYRUS</i>	
	8.1	Introduction		172
	8.2	Material and N	Aethods	173
		8.2.1	Bats	173
		8.2.2	Experimental Design	174
		8.2.3	Laboratory Analysis	174
		8.2.4	Data Analysis	175
	8.3	Result	5	176
		8.3.1	Hematological Responses to	176
			Dexamethasone-induced Stress	
		8.3.2	Viral Isolation	176
	8.4	Discussion		177
	8.5	Conclusion		183
9		IMARY, CONC R FUTURE RES	CLUSIONS AND RECOMMENDATIONS SEARCH	184
REFEI APPEN				196 207
		F STUDENT BLICATIONS		210 211

LIST OF TABLES

Table		Page
3.1	Analysis of VRI SNT (various antibody titre) Based on Geelong SNT at seropositive antibody titre at ≥ 5	72
3.2	Cross-tabulation Between SNT Results from AAHL and VRI	72
3.3	Sequence, Location and Characterization of the Primers used in RT-PCR of Nipah virus	75
3.4	The 2 x 2 Contingency Table for Measurement of Association	78
4.1	Distribution of <i>P. hypomelanus</i> in Pulau Tioman from Repeated Cross-sectional Study Based on Sex, Reproductive Stage and Sampling Time	83
4.2	Distribution of <i>P. hypomelanus</i> from Other Islands in Cross- sectional Study Based on Sex, Reproductive Status and Sampling Time	84
4.3	Measurements of Body Weight Lengths of Forearm, Body and Head of <i>P. hypomelanus</i> in Pulau Tioman	89
4.4	Measurements of Body Weight, Lengths of Forearm, Body and Head of Adult Male <i>P. hypomelanus</i> from Other Islands	93
4.5	Measurements of Body Weight, Lengths of Forearm, Body and Head of Adult Female <i>P. hypomelanus</i> from Other Islands	93
4.6	Distribution of <i>P. vampyrus</i> Captured in Perak Based on Sex, Reproductive Status and Sampling Time	97
4.7	Distribution of <i>P. vampyrus</i> Captured in Pahang Based on Sex, Reproductive Status and Sampling Time	100
4.8	Distribution of <i>P. vampyrus</i> Captured in Johor Based on Sex, Reproductive Status and Sampling Time	103
4.9	Measurements of Body Weight, Length of Forearms, Body and Head of <i>P. vampyrus</i> in Peninsular Malaysia	105
4.10	Measurements of Body Weight, Lengths of Forearm, Body and Head of Adult <i>P. hypomelanus</i> and <i>P. vampyrus</i>	108

5.1	Seroprevalence of 119 <i>P. hypomelanus</i> Sampled at Multiple Locations (Islands) Surrounding Peninsular Malaysia between 2004 and 2006 for Evidence of Nipah virus Infection	120
5.2	Seroprevalence, OR and 95% CI of 252 <i>P. vampyrus</i> Sampled at Multiple Locations in Peninsular Malaysia between 2004 and 2006 for Evidence of Nipah virus Infection	121
5.3	Antibody Titer Range to Nipah virus in <i>P. vampyrus</i> Based on Regions in Peninsular Malaysia	121
5.4	Seroprevalence of 367 <i>Pteropus sp.</i> Sampled at Multiple Locations in Peninsular Malaysia between 2004 and 2006 for Evidence of Nipah virus Infection	122
5.5	Antibody Titer Range to Nipah virus between <i>Pteropus sp.</i> in Peninsular Malaysia	122
6.1	Univariate Association between Independent Variables and Nipah virus Serostatus of 632 <i>P. hypomelanus</i> Surveyed in Pulau Tioman, from January 2004 to October 2006	132
6.2	The Binary Logistic Regression of Risk Factors for Nipah virus Infection Based on Nipah virus Serostatus in Non-randomly Sampled <i>P. hypomelanus</i> Surveyed in Pulau Tioman, from January 2004 to October 2006	135
7.1	The IDs and Characteristics of 19 <i>P. vampyrus</i> Bats at Entry Point into the Study	147
7.2	Nipah virus Antibody Titer Range in <i>P. vampyrus</i> Based on Sex and Age Groups	147
7.3	Serial Antibody Titre of Two Pairs of Dams with Pups Carried at the Entry Point of the Study between June 2004 and June 2005	149
7.4	Serial Antibody Titre of Two Pairs of Dams with Newborn Pups at the Entry Point of the Study between June 2004 and June 2005	150
7.5	Correlation Between Antibody Titre of Dam and Pup	150
7.6	'Static High Positive' Serological Profile: Serial antibody titres of two bats with two-fourfold or greater fluctuations over a minimum 6 months period	154

- 7.7 Static Low Positive' Serological Profile: Serial antibody titres of 155 four with two-fold or less fluctuation over a minimum 6 months period
- 7.8 `Waned-off' Serological Profile: Serial antibody titres of four bats 156 those were seropositive on entry and later waned-off to become seronegative over a minimum 6 months period
- 7.9 'Waned-off and Rising' Serological Profile: Serial antibody titres 157 of three bats that were seropositive on entry and later waned off to become seronegative and later reise to a four fold increase over over a minimum 6-month period
- 7.10 The IDs and Weeks at Risk to Nipah virus of 19 Captive *P*. 158 *vampyrus* Bats between June 2004 and June 2005
- 7.11Number of Samples from the 19 Bats in the Captive Colony that159was Examined for Nipah virus in June 2004 and June 2005
- 8.1 Total leucocytes (WBC) and various Types of White Blood Cells 180 (WBC) Counts in Captive *P. vampyrus* (bat ID 33 & 26) following Dexamethasone-induced Immuno-Sepression
- 8.2 Serial Antibody Titre to Nipah virus of Two Seropositive *P*. 181 *vampyrus* following Dexamethasone-induced Immuno-Sepression

LIST OF FIGURES

Figure		Page
2.1	The Spread of Nipah Virus from Tambun to the North and South of the Country	8
2.2	Timeline of the Emergence of Henipavirus	10
2.3	Structure of Henipavirus	14
2.4	The Henipavirus Genome	15
2.5	A Phylogenic Tree Based on the Deduced Amino Acid Sequences of the Matrix Protein of Member of the Family <i>Paramxoviridae</i>	16
2.6	The Phylogenetic Relationship Between the N Gene Sequences of the 4 Human Nipah virus Isolates from the Bangladesh Outbreak in 2004 and the N Gene Sequences from Pig and Human Nipah virus Isolates from Malaysia	18
2.7	The Phylogenetic Tree of Partial M-Gene Nucleotide Sequences of Siliguri (India) Nipah virus Isolates from the Bangladesh and Malaysia Isolates	18
2.8	The Global Distribution of Megachiroptera and <i>Pteropus</i> Species	25
2.9	Geographic Distributions of P. hypomelanus in Southeast Asia	27
2.10	Geographic Distributions of P. vampyrus in Southeast Asia	29
3.1	Sampling Locations <i>P. vampyrus</i> and <i>P. hypomelanus</i> in Peninsular Malaysia	36
3.2	A Hunter Aiming at the Bats	40
3.3	Bats Shot Down During Hunting Activity	41
3.4	Erecting the Pole from the Tip at Pulau Tioman	44
3.5	Second (Bottom) Pulley Mounted using Nylon Rope	45

