

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF "JIN BATU" (STROBILANTHES CRISPUS) EXTRACT ON SERUM LIPID PROFILE AND ANTIOXIDANT STATUS OF HYPERCHOLESTEROLEMIA-INDUCED RABBITS

NURHAFZAN ANIS BINTI ISMAIL

FPSK(M) 2007 4

30 MAY 2008

EFFECTS OF "JIN BATU" (*STROBILANTHES CRISPUS*) EXTRACT ON SERUM LIPID PROFILE AND ANTIOXIDANT STATUS OF HYPERCHOLESTEROLEMIA-INDUCED RABBITS

NURHAFZAN ANIS BINTI ISMAIL

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

3 0 MAY 2008

EFFECTS OF "JIN BATU" (*STROBILANTHES CRISPUS*) EXTRACT ON SERUM LIPID PROFILE AND ANTIOXIDANT STATUS OF HYPERCHOLESTEROLEMIA-INDUCED RABBITS

By

NURHAFZAN ANIS BINTI ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

February 2007

To my beloved husband, mummy and papa with love.

.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF "JIN BATU" (*STROBILANTHES CRISPUS*) EXTRACT ON SERUM LIPID PROFILE AND ANTIOXIDANT STATUS OF HYPERCHOLESTEROLEMIA-INDUCED RABBITS

By

NURHAFZAN ANIS BINTI ISMAIL

February 2007

Chairman: Professor Maznah Ismail, PhD

Faculty : Medicine and Health Sciences

Hypocholesterolemic, anti-atherogenic, toxicity effects and changes in the antioxidant status of *Strobilanthes crispus* extract (SCE) in atherogenically induced animal model were studied. As much as, $58.05 \pm 1.08\%$ total dietary fiber (TDF), $54.61 \pm 3.92\%$ insoluble dietary fiber (IDF) and $6.01 \pm 0.82\%$ soluble dietary fibers (SDF) was found in the *Strobilanthes crispus* (SC) ground, dried leaves (AOAC method). At concentration of 0.32-5.12 mg/ml, SCE showed $3.76 \pm 7.45\%$ to $56.72 \pm 2.49\%$ scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with EC₅₀ of 2.21 mg/ml. The total flavonoids content in SC fresh leaves and ground, dried leaves were $0.99 \pm 0.04\%$ and $0.46 \pm 0.06\%$, respectively. Quercetin was found highest in SC ground, dried leaves, followed by kaempferol, luteolin and rutin while kaempferol was found highest in SCE, followed by quercetin, luteolin and rutin (HPLC method). Twenty-four adult female New Zealand white rabbits (1.8-2.5 kg) were randomly assigned into four groups (n=6/group) and fed with normal diet; negative control (NC),

0.25% high cholesterol diet (HCD); positive control (PC), 0.25% HCD + SCE (0.2% of diet); SC and 0.25% HCD + simvastatin (SV) (20 mg/kg body weight); SV for 12 weeks. Food and water were given ad libitum. Blood samples were biweekly drawn for serum lipid profiles, alanine amino transferase (ALT), gamma glutamic transpeptidase (GGT), urea, creatinine, conjugated diene (CD), malondialdehyde (MDA) levels of serum, liver, kidney, heart and brains. After being killed, ascending aorta, liver, kidney and heart tissue specimens were excised immediately and prepared for the histopathological studies. PC group showed significantly increased (p<0.05) TC, LDL and HDL levels, HDL/TC ratio, LDL/HDL ratio, atherogenic index, CD levels, serum, heart, liver and kidney MDA levels, and relative liver weight. Significantly (p<0.05) elevated HDL and reduced kidney MDA levels were observed in SC group, while significantly reduced (p<0.05) TC, LDL, heart, liver and serum MDA levels found in SV group. Massive macrophages, foam cells and atheroma plaque formation were detected, which slightly increased intima to media ratio and thickened the PC group's aorta. Moderate to fairly intense lymphocyte infiltration, slight macrovesicular lipid droplets, edematous hepatocytes, inconsistent binucleated cells and vacuolated cytoplasm were found in PC group's liver. Significantly prevented (p < 0.05) atheroma plaque formation, both treatment groups showed lesser aortas' thickening, irregular mild edematous hepatocytes, binucleated cells, vacuolated cytoplasm and lipid droplets inhibition. Though mild lymphocyte infiltration was found in SV, such changes were almost invisible in SC group. Briefly, SC plant may possess the hypocholesterolemic, anti-atherogenic and hepatoprotective effect due to the antioxidative properties of flavonoids, i.e. quercetin, kaempferol, luteolin, rutin and catechin.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN EKSTRAK JIN BATU (*STROBILANTHES CRISPUS*) TERHADAP PROFIL LIPID DAN STATUS ANTIOKSIDAN SERUM ARNAB TERARUH HIPERKOLESTEROLEMIA

Oleh

NURHAFZAN ANIS BINTI ISMAIL

Februari 2007

Pengerusi: Profesor Maznah Ismail, PhD

Fakulti : Perubatan dan Sains Kesihatan

Kesan hipokolesterolemik, anti-aterogenik, ketoksikan dan perubahan status antioksidan ekstrak *Strobilanthes crispus* (SCE) terhadap model haiwan diaruh aterogenik dikaji. Sebanyak 58.05 \pm 1.08% serat diet jumlah (TDF), 54.61 \pm 3.92% serat diet tak larut (IDF) dan 6.01 \pm 0.82% serat diet larut (SDF) telah diperolehi di dalam daun kering SC terkisar (kaedah AOAC). Pada kepekatan 0.32-5.12 mg/ml, SCE telah menunjukkan sebanyak 3.76 \pm 7.45% hingga 56.72 \pm 2.49% kesan perencatan terhadap radikal 1,1difenil-2-pikrilhidrazil (DPPH) dengan EC₅₀=2.21 mg/ml. Jumlah kandungan flavonoid yang terdapat di dalam daun *Strobilanthes crispus* (SC) segar dan kering terkisar ialah masing-masing sebanyak 0.99 \pm 0.04% dan 0.46 \pm 0.06%. Kuersetin didapati tertinggi di dalam daun kering SC terkisar, diikuti oleh kemferol, luteolin dan rutin, manakala kemferol didapati tertinggi di dalam ekstrak kasar SC diikuti oleh kuersetin, luteolin dan rutin (kaedah HPLC). Sebanyak 24 ekor arnab putih betina dewasa New Zea!and (1.8-2.5 kg) telah dibahagikan secara rawak kepada empat kumpulan (n=6/kumpulan); dan diberikan diet normal; kawalan negatif (NC), 0.25% diet berkolesterol tinggi (HCD); kawalan positif (PC), 0.25% HCD + SCE (0.2% daripada diet); SC dan 0.25% HCD + simvastatin (20 mg/kg berat badan); SV, selama 12 minggu. Arnab-arnab tersebut diberi makanan dan minuman tanpa halangan. Sampel darah diambil pada setiap dua minggu bagi analisis profil lipid, alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT), urea, kreatinin, diene terkonjugat (CD) serum dan malondialdehid (MDA) di dalam serum, hepar, ginjal, jantung dan otak. Setelah dibunuh, spesimen tisu aorta, hepar, ginjal dan jantung diambil dengan segera dan disediakan bagi kajian histopatologi. Kumpulan PC menunjukkan peningkatan kolesterol jumlah (TC), lipoprotein berketumpatan rendah (LDL) dan nisbah lipoprotein berketumpatan tinggi kepada kolesterol jumlah (HTR), nisbah LDL/HDL, indeks aterogenik, kepekatan MDA serum, jantung, hepar dan ginjal, kepekatan CD serum serta berat hepar relatif yang signifikan (p<0.05). Peningkatan paras lipoprotein berketumpatan tinggi (HDL) dan juga pengurangan paras MDA ginjal secara signifikan (p<0.05) telah didapati oleh kumpulan SC. Manakala kumpulan SV menunjukkan kesan penurunan paras TC, LDL, MDA jantung, hepar dan serum secara signifikan (p<0.05). Sejumlah besar makrofaj, sel buih dan lesi aterosklerosis telah dikesan, yang meningkatkan nisbah intima terhadap media dan menebalkan aorta kumpulan PC. Penyerapan limfosit dari yang sederhana ke agak padat, titisan kecil lipid makrovesikular, hepatosit beredema, kehadiran sel dengan dua nukleus dan sitoplasma bervakuol yang tidak konsisten dilihat pada kumpulan PC. Dengan percncatan pembentukan plak ateroma yang signifikan (p<0.05), kedua-dua kumpulan rawatan menunjukkan aorta yang kurang menebal, sedikit hepatosit beredema, sel dengan dua nukleus dan sitoplasma bervakuol yang tidak

vi

konsisten dan perencatan titisan lipid. Walaupun penyerapan limfosit yang rendah telah dikesan di dalam kumpulan SV, perubahan tersebut hampir tidak kelihatan di dalam kumpulan SC. Kesimpulannya, tumbuhan SC mungkin memiliki ciri-ciri hipokolesterolemik, anti-aterogenik dan perlindungan hepar disebabkan ciri-ciri antioksidatif flavonoid, contohnya kuersetin, kemferol, luteolin dan rutin serta katekin.

ACKNOWLEDGEMENTS

In the name of Allah S.W.T. and Rasullulah S.A.W., I would like to express my utmost gratitude to ALLAH the almighty for without His consent, inspiration and help, this study would have not been completed successfully.

First and foremost, I would like to acknowledge the kind and untiring guidance, support and constructive criticism, especially given by my supervisor, Professor Dr. Maznah Ismail, and my committee members, Professor Dr. Suhaila Mohamed, Associate Professor Dr. Khozirah Shaari and Dr. Norhaizan Mohd. Esa. Without their wisdom and idea during our discussion, this study would not have been implemented and executed well.

I would also like to acknowledge the staff of Faculty of Medicine and Health Sciences, in particularly Dr. Zulkhairi Amom, Dr. Maizaton Atmadini Abdullah, Ms. Siti Muskinah Mansor, Mr. Abdul Rahman Hassan, Ms. Nurzillah Maliki, Ms. Ghania Naji and other colleagues as well as Ms Hadijah from Mardi for their assistance.

Last but not least, I would like to dedicate special thanks for the endless support of my most beloved parents Mr. Ismail Abdullah, Ms. Rahimah Abdul Ghani and husband Mr. Saiful Irwan Zubairi for their guidance, spiritual, mental and physical support that has allowed me to continue and complete this study, Amin.

30 MAY 2008

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX

CHAPTERS

1	INT	RODUCTION	1
	1.1	Research background	1
	2.1	Objectives	6
	3.1	Contribution of the study	7
2	LITI	ERATURE REVIEW	8
	2.1	Introduction to lipid	8
	2.2	Lipoproteins	10
		2.2.1 Chylomicrons	12
		2.2.2 Very Low Density Lipoprotein (VLDL)	13
		2.2.3 Low Density Lipoprotein (LDL)	13
		2.2.4 High Density Lipoprotein (HDL)	14
	2.3	Cholesterol	15
	2.4	Bile acids	17
	2.5	Atherosclerosis	19
		2.5.1 Atherosclerosis risk factors	20
		2.5.2 Development of atherosclerosis	24
	2.6	Hypercholesterolemia and toxicity	27
		2.6.1 Alanine Amino Transferase (ALT)	27
		2.6.2 Gamma-Glutamyl Transpeptidase (GGT)	29
		2.6.3 Urea	30
		2.6.4 Creatinine	32
	2.7	Free radicals and lipid peroxidation	33
	2.8	Hypercholesterolemia and antioxidants	36
		2.8.1 Endogenous antioxidant	37
		2.8.2 Dietary antioxidant	39
		2.8.3 Flavonoids	40

	2.9	3-Hydroxy-3-methylglutaryl-Coenzyme A	
		(HMG-CoA) reductase inhibitors	42
		2.9.1 Relationship with atherosclerosis	43
	2.10	Atherosclerosis and experimental animals	46
	2.11	Strobilanthes Crispus	48
3	MAT	ERIALS AND METHODS	51
	3.1	Materials	51
		3.1.1 Strobilanthes Crispus	51
		3.1.2 Chloroform:Methanol (2:1) extraction	51
	3.2	Chemicals and reagents	52
		3.2.1 Quantification of Total Dietary Fiber (TDF)	52
		3.2.2 Quantification of the scavenging effect of	
		Strobilanthes Crispus extract on DPPH radical	52
		3.2.3 Quantification of the flavonoids by using	
		HPLC method	53
		3.2.4 Quantification the Total Flavonoids by using	
		two complimentary method	53
		3.2.5 In vivo study	54
	3.3	Quantification of Total Dietary Fiber (TDF)	55
	3.4	Quantification of the scavenging effect of Strobilanthes	
		Crispus extract on DPPH radical	55
	3.5	Quantification of the flavonoids by using HPLC method	56
	3.6	Quantification the Total Flavonoids by using two	
		complimentary method	57
		3.6.1 Aluminium Choride Colorimetric method	58
		3.6.2 2,4-Dinitrophenylhydrazine Colorimetric method	58
	3.7	In vivo study	59
		3.7.1 Animals	59
		3.7.2 Ethical approval	59
		3.7.3 Experimental design	60
		3.7.4 Preparation of experimental diets	63
		3.7.5 Lipid profile analysis	63
		3.7.6 Total Antioxidant Status Analysis (TAS)	67
		3.7.7 Toxicity profile	67
		3.7.8 Lipid peroxidation	71
		3.7.9 Evaluation of atheroslerotic plaque	73
		3.7.10 Histological analysis by light microscopy	74
	3.8	Statistical analysis	77
4	RES	ULTS AND DISCUSSION	78
	4.1	Total Dietary Fiber (TDF)	78 [·]
	4.2	Scavenging effect of Strobilanthes Crispus extracts	
		on DPPH radicals	80
	4.3	Flavonoids content by HPLC	84
	4.4	Total flavonoids content	91

	4.5 In vivo	study	95
	4.5.1	Daily food consumption	95
	4.5.2	Weekly body weight	97
	4.5.3	Relative brain, heart, kidney and liver weight	100
	4.5.4	Lipid profile	101
	4.5.5	Total Antioxidant Status (TAS) level	116
	4.5.6	Toxicity profile	119
	4.5.7	Lipid peroxidation	130
	4.5.8	Atheroslerosis plaque evaluation	140
	4.5.9	Aortic histological quantitative and qualitative	
		assessment	144
	4.5.10	Liver, heart and kidney histological qualitative	
		assessment	149
5	CONCLUSIC	ON AND RECOMMENDATIONS	180
REFERENC	ES		184
APPENDIC	ES		212
BIODATA O	F THE AUTH	IOR	224

-

LIST OF TABLES

Fable		Page
3.1	Nutritional composition of normal rabbit pellet	60
3.2	Tissue dehydration in a tissue processor machine (TP1020)	75
3.3	Colouration with Hematoxyline and Eosin (H&E)	76
4.1	Fiber content of Strobilanthes crispus leaves (%)	78
4.2	The Effective Concentration (EC ₅₀) values of all tested samples	83
4.3	The amount of flavonoids in both Strobilanthes crispus ground, dried leaves and Strobilanthes crispus crude extracts	87
4.4	Comparison of Flavonoid Content (%) of fresh and dried leaves using aluminium chloride (AlCl ₃) colorimetric method and 2,4-dinitrophenylhydrazine (2,4-D) colorimetric method	94
4.5	Relative Organ Weight (ROW)	101
4.6	The extent of atherosclerosis of the thoracic aorta as indicated by the mean percentage of the lesion area	140
4.7	Histology analysis of the rabbits' aorta	145

xv

LIST OF FIGURES

Figure		Page
2.1	The structure of lipoprotein	11
2.2	Model for lipoprotein transport in humans	11
2.3	Molecular structure of cholesterol	17
2.4	Molecular structure of cholic acid	18
2.5	Molecular structure of chenodeoxycholic acid	18
2.6	Molecular structure of deoxycholic acid	19
2.7	Molecular structure of lithocolic acid	19
2.8	Various stages of atherosclerotic lesions in comparison with the normal artery wall	26
2.9	Mechanism of lipid autoxidation	34
2.10	Molecular structure of flavonoids	41
2.11	Molecular structure of flavans	41
3.1	Experimental design of in vivo study	61
4.1	Scavenging effect of methanolic extracts from <i>Strobilanthes crispus</i> on DPPH radicals with different concentrations	81
4.2	Calibration curve of quercetin (peak area)	84
4.3	Calibration curve of rutin (peak area)	85
4.4	Calibration curve of kaempferol (peak area)	85
4.5	Calibration curve of luteolin (peak area)	86
4.6	Molecular structure of quercetin	88
4.7	Molecular structure of rutin	89

4.8	Molecular structure of kaempferol	90
4.9	Molecular structure of luteolin	91
4.10	Calibration curve of quercetin (absorbance)	93
4.11	Calibration curve of naringenin (absorbance)	93
4.12	Average food consumption during treatment	96
4.13	Rabbits weekly body weight (Kg)	98
4.14	Total Cholesterol (TC) level for each group	102
4.15	HDL level for each group	104
4.16	LDL level for each group	106
4.17	TG level for each group	107
4.18	LDL/HDL ratio for each group	109
4.19	HDL/TC ratio for each group	110
4.20	Atherogenic Index (AI) for each group	112
4.21	TAS level in each group	117
4.22	ALT level in each group	120
4.23	GGT level in each group	121
4.24	Urea level for each group	125
4.25	Creatinine level for each group	127
4.26	Malondialdehyde (MDA) level in rabbits serum	131
4.27	MDA level in the heart, liver, brain and kidney for each group	133
4.28	Conjugated Diene (CD) level in rabbits serum	135
4.29	Representative photograph of initial surface of the thoracic aortas from NC and PC groups	142

4.30	Representative photograph of initial surface of the thoracic aortas from SC and SV groups	143
4.31	Photomicrograph of a section in the rabbit's aorta	146
4.32	A section in Figure 4.31	147
4.33	Liver tissue of an NC group	155
4.34	Portal vein of an NC group liver	155
4.35	Portal vein of NC group liver	156
4.36	Portal vein of NC group liver	156
4.37	Portal vein of a PC group liver	157
4.38	A section in Figure 4.37	157
4.39	Portal tract of a PC group liver	158
4.40	Hepatocytes of a PC group liver	158
4.41	A PC group liver	159
4.42	A section in Figure 4.41	159
4.43	Hepatocytes of a PC group liver	160
4.44	Hepatocytes of an animal treated with S. crispus	160
4.45	Hepatocytes of an animal treated with S. crispus	161
4.46	A section in Figure 4.45	161
4.47	Portal tract of an SV group liver	162
4.48	A section in Figure 4.47	162
4.49	Portal tract of an SV group liver	163
4.50	A section in Figure 4.49	163
4.51	Cardiac tissue of an NC group	164
4.52	Cardiac tissue of a PC group	165

4.53	Cardiac tissue of a PC group	166
4.54	Cardiac tissue of an SC group	167
4.55	Cardiac tissue of an SC group	168
4.56	Cardiac tissue of an SV group	169
4.57	Cardiac tissue of an SV group	170
4.58	An NC group rabbit's renal cortex	171
4.59	An NC group rabbit's renal medulla	172
4.60	A PC group rabbit's renal cortex	173
4.61	A PC group rabbit's renal medulla	174
4.62	A PC group rabbit's renal cortex	175
4.63	An SC group rabbit's renal cortex	176
4.64	An SC group rabbit's renal medulla	177
4.65	An SV group rabbit's renal cortex	178
4.66	An SV group rabbit's renal medulla	179

LIST OF ABBREVIATIONS

AOAC	Association of Official Analytical Chemists
Аро	Apolipoprotein
ALT	Alanine Aminotransferase
ANOVA	Analysis of Variance
BHT	Butylated hydroxyl toluene
CHD	Coronary Heart Disease
CVD	Cardiovascular Disease
CD	Conjugated Diene
GGT	Gamma Glutamyltranspeptidase
H&E	Hematoxylin and Eosin
HDL	High Density Lipoprotein
HMG-CoA	3-hydroxy-3-methylglutaryl Coenyzme A
HPLC	High Performance Liquid Chromatography
HTR	High Density Lipoprotein to Total Cholesterol Ratio
IDF	Insoluble Dietary Fiber
LDL	Low Density Lipoprotein
LM	Light Microscopy
MDA	Malondialdehyde
NC	Negative Control
PC	Positive Control
SDF	Soluble Dietary Fiber

SV	Simvastatin
SC	Strobilanthes crispus
TAS	Total Antioxidant Status
TBA	Thiobarbituric Acid
TBARS	Thiobarbituric Acid Reactive Substances
TC	Total Cholesterol
TDF	Total Dietary Fiber
TG	Triglycerides
VLDL	Very Low Density Lipoprotein

.

CHAPTER 1

INTRODUCTION

1.1 Research Background

The World Health Organization (WHO) attributes 12 million deaths a year worldwide to cardiovascular diseases (CVD). The disease involves disorders of the blood circulation system and pathological changes in blood vessels associated mainly with the heart and brain (Cruez, 2005). Among the specific cardiovascular disease, ischaemic heart disease (IHD), often called coronary heart disease (CHD), and ischaemic stroke (insufficient blood flow to a region of the brain) accounted for the main causes of mortality.

According to a study by Khoo *et al.* (1991), in 1950 CVD was the third biggest killer in Malaysia. Twenty years later, the disease has emerged as the number one killer in Malaysia. In this new millennium era, CVD remains as prevalent as ever. The disease has been reported as the most deadly disease in developing countries (WHO Monica Project, 1988). The dietary pattern in these countries have become westernized after rapid growth of their economies. For instance, according to a data from the Nutrition Society of Malaysia, in 1961 Malaysians consumed 70% vegetables and 30% animal products. However, in 1997 Malaysians were eating 45% vegetables and 55% animal products. There has been an increase in the consumption of refined carbohydrates such as simple sugars in coffee, cookies, cakes and increase in fats in the diet, especially

saturated fats from animal sources. As a result, the number of people suffering from diet-related diseases such as obesity, diabetes, hypertension, CVD and various cancers has increased significantly (Krauss *et al.*, 1998; Kritchevsky, 1995; Sabaratnam, 2003).

Atherosclerosis is the underlying disorder in the majority of patients with CVD. Atherosclerosis refers to the build up of fatty material in the arterial wall, which leads to narrowing of an artery with potential blockage. Elevated levels of plasma or serum low density lipoprotein (LDL) cholesterol is associated with atherosclerosis (Linder, 1991; Leys *et al.*, 2002). It is now well established that statins (also known as HMG-CoA Reductase inhibitors) are potent and effective but expensive drugs for treating hypercholesterolemia. According to the Health Ministry of Malaysia (MOH), expenditure to treat heart diseases increased from RM 226 millions in 1996 to RM 751 millions in 2003. The use of statins in the primary prevention of atherosclerosis alone cost nearly RM 10 millions annually (Cruez, 2005). Apart from this, subsidy payments for National Heart Institute (IJN) to treat civil servants and poor patients rose from RM 31.3 million between September 1992 and August 1993 to RM 144.5 million between September 2003 and August 2004. These statistics reflect the financial burden borne by the Government due to CVD.

Coronary heart diseases increased from 27% of total cardiovascular deaths in 1985 to 30.5% in 2002 (Cruez, 2005). In 2003, cardiovascular diseases accounted for 120,295 admissions in government hospital or 7% of total admissions. From this, 5,162 were terminal cases representing 14.2% of all terminal cases (MOH, 2003).

Recently, the trend of going back to nature is getting popular in Malaysia and globally. Demand for natural health supplements (e.g.: vitamins and herbal remedies) is increasing since modern medicine and synthetic drugs have not been totally successful in solving health problems such as cancer and heart disease. Despite the beneficial LDL cholesterol lowering potential of statins, liver function test monitoring is required with the statins treatment since statins is related with possible hepatic dysfunction, myopathy together with muscle pain, tenderness or weakness. Therefore, the growing public alarm about the hazards associated with excessive use of synthetic drugs has revived the interest in the use of herbal medicines.

More Malaysians are taking active measures off illnesses and maintain good health by taking supplements. There has also been an increasing worldwide recognition of the important role of traditional herbal medicine. For example, the WHO promotes the use of herbal medicines for certain conditions such as arthritis, asthma, diabetes, stroke and vaginitis (Natila, 2002). Locally, the Forest Research Institute of Malaysia (FRIM), together with a private company is helping to upgrade the traditional medicine industry and preserve trees and herbal plants with medicinal values.

The current global trend shows that herbal therapy enters the mainstream medicine as being observed from 1970 to 2000 (Wazir, 2003). Herbs and medicinal plants are mainly used for flavours and fragrance, biopesticides, pharmaceutical and nutraceuticals. Most of Malaysian pharmaceutical products are mainly analgesics, antacids, diuretics, antibiotics and anti-histamines in the form of tablets, capsules, drops,