

UNIVERSITI PUTRA MALAYSIA

ANTIMICROBIAL AND WOUND HEALING ACTIVITIES OF THREE CASSIA SPECIES

ELYSHA NUR ISMAIL

FPSK(M) 2004 7

ANTIMICROBIAL AND WOUND HEALING ACTIVITIES OF THREE CASSIA SPECIES

By

ELYSHA NUR ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

November 2003

DEDICATION

"Dedicated especially to Dr Nazrul Hakim Abdullah (supervisor), my parents Ismail Ibrahim and Siti Mahfuzah, Mr. Reezal Ishak whose sacrifice and support has enabled me to complete this study successfully".

789

ANTIMICROBIAL AND WOUND HEALING ACTIVITIES OF THREE CASSIA SPECIES

By

ELYSHA NUR ISMAIL

November 2003

Chairman: Associate Professor Dr. Muhammad Nazrul Hakim Abdullah, Phd Faculty : Medicine and Health Sciences

Cassia alata, Cassia fistula and *Cassia auriculata* are largely used in traditional medicine for centuries, to improve health and well being of human civilizations in rural areas of developing countries worldwide. The objective of this study is to investigate the antimicrobial and wound healing activities of all three *Cassia* species. The first two experiments were conducted to investigate the antibacterial and antifungal activities of three *Cassia* species using disc diffusion methods. Ethanol and aqueous extract of all three *Cassia* species were tested *in vitro* against the bacteria *Escherichia coli, Salmonella enteritidis, Staphylococcus aureus* and *Bacillus subtilis*, and the fungi, *Candida albicans, Candida tropicalis, Microsporum canis* and *Aspergillus fumigatus*. All three *Cassia* species were effective against *Staphylococcus aureus* and *Bacillus subtilis* in a dose dependent manner, and were not effective against *Escherichia coli* antibiotics chloramphenicol (30 mg/ml), ampicilin (10 mg/ml), penicillin G (10 mg/ml), erythromycin (15 mg/ml), tetracycline (30 mg/ml)

and enrofloxacin (5 mg/ml). All three plants were only effective against the Grampositive bacteria. The ethanol leaf extract of the plants at concentration 80 mg/ml can be compared to the commercial antibiotic, penicillin against *Bacillus subtilis*. Only Cassia alata and Cassia auriculata has exhibited antifungal activity. Cassia fistula has no effect against all tested fungi. The ethanol and aqueous bark extracts from Cassia alata was only effective against Candida albicans, whereas the ethanol leaf and bark extract from Cassia auriculata was only effective against Microsporum canis. When comparing the two plants against each other, we found that the plant extracts was selective and has a very narrow spectrum against the tested fungi. The ethanol leaves extracts from all *Cassia* species were chosen for the third test, which was the wound healing activity in mice. Topical application over an incised wound showed progressive infiltration of inflammatory cells, increased blood vessel formation, and enhanced proliferation of cells because of treatment with Cassia fistula extract and acriflavine. Wound contraction in specimens from the groups treated, respectively, with Cassia fistula, acriflavine and control, showed significant structural improvement when compared to Cassia alata and Cassia auriculata, in which there were no signs of healing at the end of the experiment. It can be concluded that, ethanol extracts of the leaf and bark of Cassia alata, Cassia fistula and Cassia auriculata showed antibacterial and antifungal activity which may be attributed to the presence of chemical constituent such as flavonoids, chrysophanol antharaquinones, and chrysarobin. This study also showed the promising wound healing activity of Cassia fistula in mice and warrants detailed experimental and clinical studies. It also provides a rationale for the use of Cassia fistula in preparations of traditional medicine to promote wound healing.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEGIATAN ANTIMICROB DAN PENYEMBUHAN LUKA TIGA SPESIES CASSIA

Oleh

ELYSHA NUR ISMAIL

November 2003

Pengurusi: Professor. Madya Dr. Muhammad Nazrul Hakim Abdullah, PhD Fakulti : Perubatan dan Sains Kesihatan

Cassia alata, Cassia fistula, dan *Cassia auriculata* sudah diguna di luar bandar di seluruh dunia, selama beberapa abad dalam pengubatan tradisional untuk meningkatkan kesihatan dan kesejahteraan manusia. Objektif kajian ini ialah menyelidik kegiatan antiimikrob dan penyembuhan luka tiga species *Cassia*. Dua ujikaji dijalankan untuk menyelidik kegiatan antibakteria dan antifungus ketiga-tiga *Cassia* ini dengan mengguna kaedah resapan cakera. Ekstrak etanol dan akues untuk ketiga-tiga spesies *Cassia* ini diuji secara *in vitro* terhadap *Escherichia coli, Salmonella enteritidis, Staphylococcus aureus* dan *Bacillus subtilis*, dan terhadap fungus *Candida albicans, Candida tropicalis, Microsporum canis* dan *Aspergillus fumigatus*. Ketiga-tiga *Cassia* ini berkesan terhadap *Staphylococcus aureus* dan *Bacillus subtilis*, dan secara bersandarkan dos, dan tidak berkesan terhadap *Escherichia coli* dan *Salmonella enteritidis*. Penemuan daripada ujian ini dibandingkan dengan antibiotik komersial kloramfenikol (30 mg/ml), ampisilin (10

mg/ml), penisilin G (10 mg/ml), eritromisin (15 mg/ml), tetrasiklin (30 mg/ml), dan enroflosaksin (5 mg/ml). Ekstrak etanol daun daripada ketiga-tiga tumbuhan pada kepekatan 80 mg/ml boleh dibandingkan kepada antibiotik komersial, penisilin terhadap Bacillus subtilis. Hanya Cassia alata dan Cassia auriculata menunjukkan aktiviti antikulat. Cassia fistula tidak menunjukkan kesan terhadap kesemua kulat yang diuji. Ekstrak etanol dan akues batang daripada Cassia alata hanya berkesan terhadap Candida albican, manakala ekstrak etanol daun dan batang daripada Cassia auriculata hanya berkesan terhadap Microsporum canis. Apabila dibandingkan kedua-dua tumbuhan itu sesama sendiri, kami dapati bahawa extrak tumbuhan memilih dan mempunyai spectrum yang kecil terhadap kulat yang diuji. Ekstrak etanol daun daripada ketiga-tiga Cassia dipilih untuk ujian ketiga, iaitu kegiatan penyembuhan luka pada mencit. Penggunaan secara topikal kepada luka hirisan menunjukkan penyusupan sel keradangan secara progresif, dan peningkatan pemproliferatan sel yang diperlaku dengan ekstrak Cassia fistula dan akriflavin. Pengecutan luka dalam spesimen daripada kumpulan terperlaku dengan Cassia fistula, akriflavin, dan kawalan, menunjukkan pembaikkan struktur secara tererti apabila dibandingkan dengan Cassia alata dan Cassia auriculata, di mana tiada petanda yang menunjukkan bahawa berlakunya penyembuhan pada ahkir ujikaji tersebut. Apa yang boleh disimpulkan ialah, ekstrak etanol untuk daun dan batang Cassia alata, Cassia fistula dan Cassia auriculata menunjukkan kegiatan antibakteria dan antifungus spectrum luas tererti, disabitkan kepada wujudnya unsur kimia seperti flavonoid, krisofanol, antrakuinon dan krisorabin yang mungkin bertanggungjawab kepada kegiatan antimikrob tersebut. Kajian ini mengesahkan bahawa kegiatan penyembuhan luka Cassia fistula berpotensi dalam mencit dan adalah wajar ujikaji dan kajian klinikal yang lebih mendalam dijalankan. Kajian ini

juga menunjukkan yang penggunaan Cassia fistula dalam persediaan ubatan tradisional untuk merangsang penyembuhan luka adalah rasional.

ACKNOWLEDGEMENTS

In the name of Allah, Most gracious, Most merciful All gratifications are referred to Allah

The preparation of this thesis has been aided by significant contribution from many individuals, which are gratefully acknowledged.

Assoc. Prof. Dr. Muhd. Nazrul Hakim Abdullah, my sincere appreciation for his support and guidance, constantly providing valuable advice and ideas for this project.

Assoc. Prof. Dr. Abdul Rahim Mutalib for providing facilities at the Bacteriology Laboratory.

Dr. Wan Nordin Wan Mahmud for providing facilities at the Histology Laboratory.

Pn. Indu Bala and Encik Razali from Malaysian Agricultural and Research Development Institute (MARDI) for the identification of the plants.

I am delighted to acknowledge all the staff of Histology Laboratory; Puan Sapiah, Physiology Laboratory; En. Kufli, the staff of Bacteriology Laboratory: En Hajaraih and Encik Jefri.

I wish to express my sincere gratitude to my friends, Azmahani Abdullah, Nor Shahida Abdul Rahman, and Soleha Mohd Hassan and most of all to Reezal Ishak for his everlasting support and guidance throughout this course.

Last but not least to my beloved parents, Ismail Ibrahim and Siti Mahfuzah bte. Sheikh Abdul Kadir for their supports.

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVALS	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS/NOTAIONS/GLOSSARY OF TERMS	xviii

CHAPTER I

Ι	INTRODUCTION	1
	Objective of Study	5
II	LITERATURE REVIEW	6
	The Plants	6
	Cassia alata	11
	Plant Description	11
	Habitat	12
	Uses	12
	Previously Isolated Active Compounds	12
	Folk Medicine	13
	Contemporary Medicine	14
	Cassia fistula	
	Plant Description	18
	Habitat	18
	Uses	19
	Previously Isolated Constituent	19
	Folk Medicine	20
	Contemporary Medicine	21
	Cassia auriculata	24
	Plant Description	24
	Habitat	25
	Uses	25
	Previously Isolated Active Compounds	25
	Folk Medicine	25
	Contemporary Medicine	26

	Bacteria	28
	Gram-positive Bacteria	28
	Staphylococcus aureus	28
	Bacillus subtilis	30
	Gram-negative Bacteria	31
	Escherichia coli	31
	Salmonella enteriditis	32
	Fungi	33
	The Moulds	34
	Aspergillus fumigatus	34
	Microsporum canis	35
	The Yeast	36
	Candida albicans and Candida tropicalis	36
III	<i>IN VITRO</i> ANTIBACTERIAL ACTIVITY OF <i>CASSIA</i> SPP	39
	Introduction	39
	Materials and Methods	40
	Preparation of Plant Extracts	40
	Agar Preparation	41
	Microorganism and Medium	42
	Antibacterial Sensitivity Test	42
	Statistical Analysis	42
	Results	43
	Cassia alata	43
	Cassia fistula	45
	Cassia auriculata	47
	Discussion	61
IV	IN VITRO ANTIFUNGAL ACTIVITY OF CASSIA SPP	66
	Introduction	66
	Materials and Methods	67
	Preparation of Plant Extracts	67
	Agar Preparation	67
	Microorganism and Medium	67
	Antifungal Sensitivity Test	68
	Statistical Analysis	69
	Results	69
	Discussion	78
v	IN VIVO WOUND HEALING ACTIVITY OF THREE	82
	CAESALPINIACEAE	
	Introduction	82
	Materials and Methods	83
	Preparation of Plant Extracts	83
	Chemicals	83
	Experimental Animals	83
	Skin Samples Taken at Day 0, 3, 6 and 9	85
	Statistical Analysis	86
	Results	87
	Discussion	97
		1

VI	GENERAL DISCUSSION AND CONCLUSION	101
	Summary	104
	BIBLIOGRAPHY	106
	APPENDICES	114
	BIODATA OF THE AUTHOR	138

LIST OF TABLES

Table		Page
1	Chemical constituent of three Cassia plants	10
2	The folk use of Cassia alata	14
3	The folk use of Cassia fistula	21
4	Toxin and enzymes produced by <i>Staphylococcus</i> aureus	29
5	The inhibitory zone value (mean \pm S.D) of <i>Cassia alata</i> against tested bacteria.	45
6	The inhibitory zone value (mean \pm S.D) of <i>Cassia fistula</i> against tested bacteria	47
7	The inhibitory zone value (mean \pm S.D) of <i>Cassia</i> auriculata against tested bacteria	49
8	The inhibitory zone value of standard antibiotics	61
9	The inhibitory zone value of <i>Cassia alata</i> against tested fungi.	71
10	The inhibitory zone value of <i>Cassia auriculata</i> against tested fungi.	72
11	The inhibitory zone value of standard antifungal drugs	79
12	Wound healing division of mice in groups of ten	87
13	Attributed score of inflammation and cicatrisation.	88
14	Score of inflammation	89
15	Score of cicatrisation	89

LIST OF FIGURES

Figure		Page
1	Medicinal plant used in this study, Cassia alata.	7
2	Medicinal plant used in this study, Cassia fistula.	8
3	Medicinal plant used in this study, Cassia auriculata	9
4	Inhibition zone of ethanol extracts of <i>Cassia alata</i> against <i>Staphylococcus aureus</i> .	50
5	Inhibition zone of ethanol extracts of <i>Cassia alata</i> against <i>Bacillus subtilis</i> .	51
6	Inhibition zone of ethanol extracts of <i>Cassia fistula</i> against <i>Staphylococcus aureus</i> .	52
7	Inhibition zone of ethanol extracts of <i>Cassia fistula</i> against <i>Bacillus subtilis</i> .	53
8	Inhibition zone of ethanol extracts of <i>Cassia auriculata</i> against <i>Staphylococcus aureus</i> .	54
9	Inhibition zone of ethanol extracts of <i>Cassia auriculata</i> against <i>Bacillus subtilis</i> .	55
10	The mean of ethanol leaf extracts of <i>Cassia alata</i> in different concentration.	56
11	The mean of ethanol leaf extracts of <i>Cassia fistula</i> in different concentration.	57
12	The mean of ethanol bark extracts of <i>Cassia fistula</i> in different concentration.	58
13	The mean of ethanol leaf extracts of <i>Cassia auriculata</i> in different concentration.	59
14	The mean of ethanol bark extracts of <i>Cassia auriculata</i> in different concentration.	60
15	The inhibitory zone values of ethanol and aqueous extract of <i>Cassia alata</i> against <i>Candida albicans</i> .	73

LIST OF FIGURES

16	The inhibitory zone values of ethanol and aqueous extraction of Cassia auriculata against Microsporum canis.	74
17	The mean of ethanol bark extracts of <i>Cassia alata</i> in different concentration.	75
18	The means of aqueous bark extracts of <i>Cassia alata</i> in different concentration.	76
19	The mean of ethanol leaf extracts of <i>Cassia auriculata</i> in different concentration.	77
20	The mean of ethanol bark extracts of <i>Cassia auriculata</i> in different concentration.	78
21	Effects of inflammation at day 3	91
22	Effects of inflammation at day 6	92
23	Effects of inflammation at day 9	93
24	Effects of cicatrisation at day 3	94
25	Effects of cicatrisation at day 6	95
26	Effects of cicatrisation at day 9	96

LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

AIDS	Acquired Immunodeficiency Syndrome
ANOVA	Analysis of variance
ALP	Alkaline phosphatase
APACHE	Acute Physiology and Chronic Health Evaluation
CNS	Central nervous system
DNA	Deoxyribonucleic acid
IBS	Institute of Bioscience
MARDI	Malaysian Agricultural and Research Development Institute
MIC	Minimum inhibitory concentration
р	Significant value
SD	Standard division
UPM	Universiti Putra Malaysia

CHAPTER I

INTRODUCTION

Medicinal plants are widely used by all sections of people either directly as folk remedies in different indigenous system of therapy or indirectly in the pharmaceutical preparation of modern medicines. Recent years have witnessed an upsurge in worldwide used of medicinal plants, plant parts and/or active ingredients interest among scientific institutions, biological research societies and in health care providers (Fransworth *et al.*, 1985).

In developing countries, particularly in the rural areas and among the urban poor, herbal medicine is, in most cases, the only form of health care. It is woven with magical-religious elements and sick persons would immediately turn to "someone who knows" and only as a last resort will consult a regular physician.

Many medical practitioners with training in pharmacology and pharmacognosy are well aware of the number of modern therapeutic agents that have been derived from tropical forest species. In fact, over 120 pharmaceutical products currently in use are plant-derived; some 75% of these discovered by examining the use of these plants in traditional medicine (Fransworth *et al.*, 1985).

Herbs have been used for centuries to improve health and well being of civilization (Lindley, 1981). Initially, the term "herb" only applied to non-woody plants, but today, "herb" refers to any part of a plant used for medicinal or flavouring purposes. An "herb" may be a fruit, a bark, a flower, a leaf or a root as well as non-woody plant (Usher, 1974).

It is estimated that fifty-six percent of low-income world's population use herbal medicine and supplementation for their primary health care (Planta *et al.*, 2000).

Respiratory infections, diarrhea, fungal/bacterial infections, diabetes and malaria are among the common health problems occurring in the rural communities in tropical developing countries. Numerous tropical medicinal plants are used traditionally and have been shown *in vivo* to possess biological activities against these diseases (Pinn, 2000).

Antimicrobial agents are the synthetic and natural compounds/drugs to suppress growth of microorganism. A bactericidal agent kills bacteria, whereas a bacteriostatic agent inhibits their growth but does not kill them (Levinson and Jawetz, 1998).

Bacteria are minute, unicellular, plant-like, microscopic organisms, which differ from true plants in that they lack chlorophyll. They reproduce by binary fission. They are widely distributed in soil, air, water, and milk, on the surface of

fruits and vegetables, and in various parts of the body such as the alimentary canal and skin (Davies, 1994).

Gram-positive bacteria are prokaryotic cell whose cell wall consists chiefly of peptidoglycan and lack of the outer membrane of gram-negative cells. Gram-positive bacteria is, bacteria that take the initial stain of the Gram stain and are not decolourised, so that they appear purple (Madigan *et al.*, 1997). Two common bacteria, which cause serious diseases in human, were chosen for this study, *Staphylococcus aureus* and *Bacillus subtilis*.

Gram-negative bacteria are prokaryotic cell whose cell wall contains relatively little peptidoglycan but has an outer membrane composed of lipopolysaccharide, lipoprotein, and other complex macromolecules. The lack of peptidoglycan, makes the bacteria loses the initial stain of the Gram stain, is decolourised, and takes the colour of the final stain; red (Madigan *et al.*, 1997). Two common Gram negative bacteria, which cause serious diseases in human, were chosen for this study, *Escherichia coli* and *Salmonella enteritidis*.

Fungi are nonphototrohic eukaryotic microorganisms that contain rigid cell walls. Fungi can be differentiated from prokaryotes by the fact that fungal cells are usually much larger and contain a nucleus, vacuoles, and mitochondria, which are typical of eukaryotic cells. There are three groups of fungi with major practical importance, the moulds, yeast and mushrooms. In this study, only the moulds and yeast are used (Madigan *et al.*, 1997).

The habitats of fungi are quite diverse. Some are aquatic, living primarily in fresh water, and a few marine fungi are known. Most fungi have terrestrial habitats, in soil or on dead plant matter, and these types often play crucial roles in the mineralization of organic carbon in nature. A large number of fungi are parasites of terrestrial plants, a few fungi are parasitic on animals, including humans, although in general fungi are less significant as animal pathogens that are bacteria and viruses (Madigan *et al.*, 1997).

Moulds are filamentous fungi. They grow as long filament (hyphae) and become mat (mycelium). They are widespread in nature and are commonly seen on stale bread, cheese, or fruit. *Aspergillus fumigatus* and *Microsporum canis* are used in this study. Both moulds are from clinical isolates.

Yeast are unicellular (single cells) fungus and grows asexual budding, most of them are classified with the Ascomycetes. Yeast usually flourishes in habitats where sugars are present, such as fruits, flowers, and the bark of trees. A number of yeast species live symbiotically with animals, especially insects, and a few species are pathogenic for animals and humans. The yeast used in this study is *Candida albicans* and *Candida tropicalis*. Both *Candida* species are from clinical isolates.

Wound healing is a complex sequence of events is initiated by the stimulus of injury to tissues. A positive stimulus may result from the release of some factors by the wounding of tissues (Allison, 1992). This sequence of physiologic events occurs by a process of connective tissue repair. These events involve the migration, proliferation, adhesion and differentiation of the epithelial cells (Raghow, 1994).

Objective of the study

- To evaluate the effects of ethanol and aqueous of leaves and barks extracts from *Cassia alata*, *Cassia fistula* and *Cassia auriculata* against several bacteria *in vitro*.
- 2) To evaluate the effects of ethanol and aqueous of leaves and barks extracts from *Cassia alata, Cassia fistula* and *Cassia auriculata* against fungi *in vitro*.
- To determine the ethanol leaves extracts of *Cassia alata*, *Cassia fistula* and *Cassia auriculata* in promoting wound healing in mice.

CHAPTER II

LITERATURE REVIEW

The plants

Cassia is an herbaceous plant belonging to Caesalpiniaceae tribe of Leguminose family. *Cassia alata, Cassia fistula* and *Cassia auriculata* are largely used in traditional medicine for centuries, to improve health and well being of civilizations in rural areas of developing countries worldwide. All three plants continued to be used as major source of medicine in primary health care. Their usage varies around the world and concentrated on treatment of skin diseases (ringworm) externally (Usher, 1974).

The extracts of *Cassia alata*, *Cassia fistula* and *Cassia auriculata* have similar composition, with a slight variation in the amount of their active components and each is purported to have different therapeutic properties. However, little has been done to compare the effectiveness of the three species (Percival, 2000).

Although many of the active components of *Cassia* have been identified (Table 1), their mechanism of action is not completely known nor is the bioavailability, relative potency or the synergistic effects of the active compounds known (Giron, 1991).

