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Faculty: Computer Science and Information Technology

In email spam detection, not only different parts and content of emails are
important, but also the structural and special features of these emails have
effective rule in dimensionality reduction and classifier accuracy. For example,
the spammer changes patterns of message for making spam such as writing
the message by JavaScript, using different advertising images and words to
form features or attributes. Even the smart people are unable to report an
email as a spam when the spammer tries to defraud them.

The aim of data mining is to search and find undetermined patterns in huge
databases. A well known task is classification that predicts the class of new in-
stances using known features or attributes automatically. Major problems in
classification task are large amount of training data, large number of features
and different behavior of data streams that reduce accuracy and increase com-
putational cost in classifier training phase. Feature subset selection and clas-
sifier ensemble learning are familiar techniques with high ability to optimize
above problems. Recently, various techniques based on different algorithms
have been developed. However, the classification accuracy and computational
cost are not satisfied.

In order to address the challenges that mentioned above in this study, in the
first phase, a novel architecture based on ensemble feature selection techniques
include Modified Binary Bat Algorithm (NBBA), Binary Quantum Parti-
cle Swarm Optimization (QBPSO) Algorithm and Binary Quantum Gravita-
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tional Search Algorithm (QBGSA) is hybridized with the Multi-layer Percep-
tron (MLP) classifier in order to select relevant feature subsets and improve
classification accuracy. In the second phase, a classifier ensemble learning
model is proposed consisting of separate outputs: (i) To select a relevant
subset of original features based on Binary Quantum Gravitational Search
Algorithm (QBGSA), (ii) To mine data streams using various data chunks
and overcome a failure of single classifiers based on SVM, MLP and K-NN
algorithms.

An experimental analysis is conducted by several experiments to evaluate the
performance of the proposed ensemble methods which has been tested on the
4 benchmark datasets, namely LingSpam, SpamAssassin, Spambase and CS-
DMC2010. In comparison to different single algorithms for feature selection,
experimental results show that the proposed ensemble method is able to re-
duce dimensionality, the number of irrelevant features and produce reasonable
classifier accuracy. Experiments demonstrate that ensemble classifier learning
method produces better accuracy mining data streams and selecting subset
of relevant features comparing other single classifiers.

In addition, experiments prove that the ensemble algorithms select highly
relevant features to feed the MLP comparing individual techniques in terms
of classifier performance through lower false positive, higher accuracy, and
better CPU time.
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KAEDAH PEMBELAJARAN ENSEMBEL BAGI SISTEM
PENGESANAN EMEL SPAM BERASASKAN ALGORITMA

METAHEURISTIK

Oleh

AMIR RAJABI BEHJAT

Jun 2015

Pengerusi: Aida Mustapha, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

Dalam pengesanan spam e-mel, bukan sahaja bahagian-bahagian yang berbeza
dan kandungan e-mel adalah penting, tetapi juga ciri-ciri struktur dan is-
timewa e-mel ini mempunyai peraturan yang berkesan dalam pengurangan
dimensi dan ketepatan pengelas. Sebagai contoh, penceroboh itu menukar
corak mesej untuk membuat spam seperti menulis mesej dengan JavaScript,
menggunakan imej pengiklanan yang berbeza dan kata-kata untuk memben-
tuk ciri-ciri atau sifat-sifat. Malah orang pintar tidak mampu melaporkan
e-mel sebagai spam apabila pengiklan itu cuba untuk menipu mereka.

Tujuan perlombongan data adalah untuk mencari dan mendapati corak yang
belum ditentukan di dalam pangkalan data yang besar. Satu tugas yang
terkenal adalah pengelasan yang meramalkan kelas contoh baru menggunakan
ciri-ciri yang diketahui atau atribut secara automatik. Masalah utama dalam
tugas pengelasan adalah jumlah besar data latihan, bilangan besar ciri-ciri
dan tingkah laku yang berbeza aliran data yang mengurangkan ketepatan
dan meningkatkan kos pengkomputeran dalam fasa latihan pengelas. Ciri-
ciri pemilihan subset dan pembelajaran pengelas gabungan adalah teknik bi-
asa dengan keupayaan yang tinggi untuk mengoptimumkan masalah di atas.
Baru-baru ini, pelbagai teknik berdasarkan algoritma yang berbeza telah
dibangunkan. Walau bagaimanapun, ketepatan klasifikasi dan kos pengkom-
puteran tidak kepuasan.

Dalam usaha untuk menangani cabaran-cabaran yang dinyatakan di atas
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dalam kajian ini, dalam fasa pertama, seni bina novel berdasarkan teknik-
teknik pemilihan ciri gabungan termasuk Modified Binary Bat Algoritma
(NBBA), Binary Kuantum Zarah Swarm Optimization (QBPSO) Algoritma
dan Binary Graviti Kuantum Carian algoritma (QBGSA) adalah hibrid den-
gan Multi-lapisan Perceptron (MLP) pengelas untuk memilih subset ciri yang
berkaitan dan meningkatkan ketepatan pengelasan. Dalam fasa kedua,model
gabungan pembelajaran pengelas adalah dicadangkan terdiri daripada dua
peringkat: (i) Untuk memilih subset yang berkaitan dengan ciri-ciri asal
berdasarkan Binary Kuantum Graviti Cari Algoritma (QBGSA), (ii) untuk
melombong data menggunakan pelbagai ketulan data dan mengatasi kega-
galan penjodoh tunggal berdasarkan SVM, MLP dan algoritma K-NN.

Analisis eksperimen dijalankan oleh beberapa eksperimen untuk menilai prestasi
kaedah gabungan yang dicadangkan yang telah diuji pada 4 dataset penanda
aras, iaitu LingSpam, SpamAssassin, Spambase dan CSDMC2010. Berband-
ing dengan algoritma tunggal yang berbeza untuk pilihan ciri, keputusan
eksperimen menunjukkan bahawa kaedah gabungan yang dicadangkan mampu
mengurangkan kematraan, bilangan ciri-ciri yang tidak relevan dan meng-
hasilkan ketepatan pengelas berpatutan. Eksperimen menunjukkan bahawa
kaedah pembelajaran gabungan pengelas menghasilkan yang lebih baik per-
lombongan ketepatan aliran data dan memilih subset ciri-ciri yang berkaitan
membandingkan penjodoh tunggal lain.

Di samping itu, eksperimen membuktikan bahawa algoritma gabungan pilih
ciri-sangat relevan untuk memberi makan MLP membandingkan teknik in-
dividu dari segi prestasi pengelas melalui positif palsu yang lebih rendah,
ketepatan yang lebih tinggi, dan masa CPU yang lebih baik.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Electronic mails (e-mails) are the most efficient and effective communication
in the world. Recently, this technology has posed a serious spamming problem
via spam or junk emails over the Internet (Wu et al., 2010). Large number
of spam and junk emails consumes high bandwidth resources in a network
environment. They are also able to quickly block a server by occupying stor-
age space, which is highly risky for large sites that have thousands of users
(Jindal and Liu, 2007; Lee et al., 2010). In a more recent development, spam
emails have started to alter the content of emails. As the patterns of spam
emails change over time, existing detection models that are built on old data
has become unsuitable for classifying new incoming emails (Aggarwal, 2012).
This scenario motivates a continuous effort in building better spam detection
systems with higher accuracy.

In general, a spam detection system is related to a classification problem with
two classes; spam or non-spam. The aim of spam detection is to separate
spam and non-spam emails accurately (Batista, 2000; Islam et al., 2005; Mo-
hammad and Zitar, 2011) with the lowest error rate and the highest accuracy
(Michalak and Kwasnicka, 2006; Chang and Poon, 2009). Although there are
a number of studies that have attempted various classification techniques to
classify emails into spam and non-spam, the researches are constantly chal-
lenged by the large number of features in email content (Androutsopoulos,
Koutsias, Chandrinos, Paliouras and Spyropoulos, 2000; Chuan et al., 2005),
high computational cost for feature extraction and classification (Mohammad
and Zitar, 2011; Androutsopoulos, Paliouras, Karkaletsis, Sakkis, Spyropou-
los and Stamatopoulos, 2000), gap in the size of training data, unstable error
rate (Fawcett, 2003; Fan, 2004), changes in spam email content over time, and
finally imbalance between False Positive (FP) rate and False Negative (FN)
rate (Blanzieri and Bryl, 2008).

The challenge in classification of emails is mainly attributed to their content;
the large number of features, which are mostly words. A high number of
features increases the number of examples during the training phase, therefore
simultaneously increases the complexity and computational cost (Aha et al.,
1991). When the number of words in emails, whether spam or non-spam, is
large, the amount of undesired features increases the speed of training. On
the other hand, a small number of features is not equally desireable because
it may be insufficient for the training phase and to mask messages. In effort
to decrease dimensionality of header and content features in spam detection
systems, feature selection is highly critical to train only a subset of features
from the entire set, hence removing all irrelevant features (Gomez et al., 2012).
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This research formulates the feature selection problem in spam email detection
as an optimization problem, for which it is to find the best solution from all
feasible solutions. In spam detection system, this is essentially the task of
finding the best set of features that accurately represents the spam emails
from all features available in the email content. One obvious avenue to tackle
an optimization problem is by exploring metaheuristic algorithms, which are
widely recognized as a practical approach for optimization.

Metaheuristic algorithms follow the biological behavior in the nature (Yang,
2011), for example, the Particle Swarm Optimization (PSO) is based on fish
schooling and birds flocking behaviors. These algorithms are applied as in-
dividual feature selection algorithm in most spam detection systems. They
suffer from the risk of choosing a wrong feature as a solution among many
equally optimal features in the feature space. Most algorithms are also prone
to get trapped in local optimum and maybe not be truly functioning to select
the exact relevant features (Saeys et al., 2008; Yang, 2010a; Faritha Banu
and Chandrasekar, 2013). Because, the algorithm uses the sigmoid function
as fitness function such as in updating particle position (x) in the Binary
Particle Swarm Optimization (BPSO), where it decreases the performance of
this algorithm and trap it into local optima. These problems are the same
in other binary heuristic algorithms such as Bat Algorithm (BA) that follows
the principles of BPSO.

To push the performance of metaheuristic algorithms, this research explores
ensemble approach in feature selection and classification. In ensemble ap-
proach, instead of executing individual feature selection algorithms, we com-
bine various metaheuristic algorithms to improve robustness of feature se-
lection model and classification performance. Our main hypothesis is that
ensemble approach will overcome the disadvantages in an individual meta-
heuristic algorithm by balancing the number of features, decreasing the fea-
ture set dimensionality, and finally enhancing the classification performance.
The literature has also shown several detection and filtering models that ap-
plied ensemble classifiers to detect spam emails such as by Wang et al. (2003),
but to the best of our knowledge there is no work on ensemble feature subset
selection for spam detection.

In effort to enhance the global search ability in the proposed metaheuristic
algorithms as well as to increase the speed of evolutionary algorithms, this
research also explores into merging the evolutionary computation and quan-
tum computing. These algorithms are based on the principles in quantum
mechanics such as qubit representation that have ability of processing huge
numbers of quantum states. Unlike Quantum Computing (QC), Quantum
Evolutionary Algorithm (QEA) does not work with a quantum machine. For
example, Binary Quantum Particle Swarm Optimization (BQPSO) and Bi-
nary Quantum Gravitational Search Algorithm (BQGSA) are algorithms for
solving optimization problems based on quantum computing rules and riding
on BPSO and BGSA algorithms.

2
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1.2 Problem Statement

Although data mining techniques have improved classification accuracy, be-
cause spammer constantly changes the pattern in emails. Feature selection
techniques select a subset of relevant features within original features in or-
der to improve classification performance. Mentioned that one of the familiar
techniques that is able to decrease dimensionality is feature selection, where
the subset of features is selected from the whole set of features in order to
remove irrelevant features. A useful subset of features for a classifier may
be useful for other classifiers in the same time. As the result, an individual
technique selects a relevant subset of features, but possibly out of a set of
irrelevant features (Gomez et al., 2012).

Nonetheless, although ensemble approach has provided an environment to
overcome shortcomings of individual algorithms (Saeys et al., 2008; Valentini
and Masulli, 2002; Attik, 2006), the performance of such approach needs to
be improved by changing a number of parameters in classifiers or feature
selection algorithms to increase classification accuracy. One example is Binary
Particle Swarm Optimization (BPSO) algorithm that has been previously
applied in solving optimization problems such as feature subset selection. New
algorithms including the Bat Algorithm (BA) use the advantages of BPSO to
improve optimization process. However, there are two main problems in BBA
whereby the algorithm is often trapped the search into local optimum, hence
causing overfitting.

The first problem in the BBA algorithm concerns the sigmoid function. Con-
ceptually, the high value of bat speed towards a negative or positive value
shows that the bat position should change for a more specific dimension. In
the binary algorithm, the speed steer the bat position towards 0 or 1. Ad-
ditionally, the velocity (v) near to 0 shows that the position of bat (x) is
satisfied and the sigmoid function demonstrates an equal probability of 0 or
1 for bat position. The second problem in BBA concerns on means to update
the bat position (x). In the average of initial iterations, all bats come up
the optimal solution; however after several iterations these bats keep out the
optimal solution. While the optimal solution is near to 0, but the probability
of 0 or 1 decrease to 50% within this time (Yang, 2010a; Izui et al., 2008).
Since accurate models use thousands of features, most of the detection model
overfit the feature dataset.

The ensemble learning approach needs to consider streaming data in email
spam detection system. Most of data mining techniques mine stream data
from large amount of data with limited memory. These techniques scan train-
ing data severally, so their performance (accuracy) is unsuitable in the higher
rate data environment (Wang et al., 2003; Fan, 2004). Other mining methods
are incremental or online data stream methods that refine and modify new
arrived data. These methods update the model trained costly (Hulten et al.,
2001; Katakis et al., 2006). Many studies have mined data stream based on

3
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single model that show the whole data stream. Their techniques consumes
time and space with low efficiency such as decision trees (Domingos and Hul-
ten, 2000). Ensemble learning is a famous method for mining data stream and
concept drift by using statistical-based weighted voting technique. However,
discarding old data based on the time creates the problem of conflicting and
overfitting concepts (Fan, 2004).

1.3 Research Objectives

The main objective of this research is to propose novel ensemble learning
methods that consist of ensemble feature selection and ensemble classifica-
tion based on metaheuristic algorithms to improve classification accuracy. To
achieve the objective, the following tasks are to be undertaken:

• To propose a novel wrapper-based ensemble feature selection method
based on three metaheuristic algorithms, which are Binary Gravita-
tional Search Algorithm (BGSA), Quantum Binary Particle Swarm Op-
timization (QBPSO), and Modified Binary Bat Algortihm (MBBA).
This method selects a set of relevant features to decrease dimensionality
obtaining a better classification accuracy comparing individual feature
selection methods.

• To propose MBBA and NBPSO algorithms to prevent overfitting and
trapping algorithm in local optimum during feature selection process.

• To propose an ensemble feature selection approach based on New Bi-
nary Particle Swarm Optimization (NBPSO)using three parts of email
(header, subject, body) in order to select relevant features. This tech-
nique proves a set of relevant features may be not suitable for different
classifiers in the same time. Due to this, this research proposes an en-
semble feature selection method to identify a relevance of features in
various parts of email based on different partition of training data.

• To propose a new ensemble learning classifiers using Quantum Binary
Gravitational Search Algorithm (QBGSA)using Multi-Layer Perceptron
(MLP), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN)
to avoid conflicting and overfitting data problem in classification prob-
lem instead of discarding data based on arrival time. In mining data
streams in order to detect concept drifts, decrease computational cost,
the increase of accuracy and efficiency of learning algorithms, QBGSA
selects relevant features after desired iteration instead of discard training
data according arrival time.

4
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1.4 Research Scope

The feature selection problem studied in this research is scoped to email spam
detection system and covers both structural and content-based features from
email such as the header, subject and body. This research focuses on feature
selection in spam detection system based on ensemble feature selection meth-
ods using metaheuristic algorithms in order to decrease dimensionality and
training data while at the same time improving the classifier accuracy and
computational cost. -

1.5 Research Significance

The main contributions of this research is the spam detection framework for
ensemble learning in feature selection and classification. Ensemble feature
selection method concerns on selection of a set of relevant features in spam
emails using metaheuristic algorithms such as BGSA, NBPSO, QBPSO and
MBBA algorithms. Ensemble classification concerns on high prediction ac-
curacy using combination of Multi-Layer Perceptron (MLP), Support Vector
Machine (SVM), and K-Nearest Neighbor (KNN) based on Quantum Binary
Gravitational Search Algorithm (QBGSA). The detailed contributions in en-
semble learning are as follows:

• The ensemble feature selection method is based on three metaheuristic
algorithms, which are Binary Gravitational Search Algorithm (BGSA),
Quantum Binary Particle Swarm Optimization (QBPSO), and Modified
Binary Bat Algorithm (MBBA). In this technique, the metaheuristic al-
gorithms are improved to overcome the defects of individual basic algo-
rithms. This proposed technique is able to achieve a subset of features
based on three feature selection algorithms by aggregate their results
for better classifier accuracy.

• Relevant and robust features are obtained by the proposed ensemble fea-
ture selection technique that they may not be achieved using individual
feature selection methods. In the large feature space, there are many
relevant feature subsets with equal efficiency. Some individual feature
selection algorithms are trapped in local optimum such as BPSO and
BBA finding the best solution or feature, thus useful feature subsets
unable to reach in feature selection process. As the result, the ensemble
feature selection technique is able to decrease the risk of choosing an
irrelevant feature subset by aggregating the results from various feature
selection algorithms.

• The NBPSO and the MBBA algorithms are proposed to select a set
of relevant features in the ensemble feature selection technique based
on new fitness function. We also update the new position of particles
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and bats in NBPSO and MBBA respectively. These modified algorithms
prevent trapping algorithm in local optimum and over fitting for increase
of ensemble feature selection efficiency and better classifier accuracy.

• A novel ensemble feature selection method in spam detection system
based on three parts of spam email (header, subject and body) using
NBPSO algorithm as a feature selector, to identify a relevancy of fea-
tures in three different parts of email. The relevant selected features
increase the classifier accuracy and improve computational cost.

• A weighted ensemble classifiers based on QBGSA algorithm is able to
mine data stream and concept drifts instead of single model application.
This algorithm is trained by different data chunks. One of the impor-
tant points in streaming data is keeping the balance data in order to
avoid conflicting and over fitting training data. Thus, classifier ensem-
ble method in this research applies QBGSA to decrease or delete old
data by decrease irrelevant features instead of data arrival time in spam
detection system.

1.6 Thesis Organization

This thesis is organized in accordance to the standard structure of thesis
dissertations for Universiti Putra Malaysia. The thesis is divided into seven
chapters.

Chapter 1 – Introduction. This chapter introduces the background of the re-
search. It defines the problem area and explains the objectives of the research.

Chapter 2 – Literature Review. This chapter reviews the related field of study
and similar researches. It introduces spam emails and traditional filters as well
as novel methods based on machine learning techniques that are available in
detecting spam. Then it explains the feature selection methods and current
methods that have been applied in spam detection. In addition, this chap-
ter presents few studies that focus on ensemble methods in spam detection
including data stream mining. This chapter also discusses the efficiency of
feature selection algorithms using different classifier and ensemble methods.

Chapter 3 – Framework for Ensemble Learning. This chapter presents the
methodology adopted for the current research and how it is conducted. The
methodology is clarified by flowcharts and figures that give detailed informa-
tion of the research process.

Chapter 4 – Ensemble Feature Subset Selection Method. This chapter pro-
poses a new feature subset selection method based on metaheuristic algo-
rithms as an ensemble feature selection method in spam detection. It also
explains how to select a subset of relevant features from different parts of
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email such as header, subject, body and attached files are explained using
MLP classifier.

Chapter 5 – Ensemble Classification. This fifth chapter discusses the en-
semble classifiers combined with QBGSA as a hybrid system. This chapter
explains ensemble classifiers how prevent overfitting and conflicting in data
stream classification and detect concept drifts using QBGSA feature selector
to improve classifier accuracy.

Chapter 6 – Results and Discussions. In this chapter, a comprehensive ex-
perimental study is presented based on various experiments based on meta-
heuristic algorithms as feature selection methods and three methods of en-
semble feature selection. At first, the experiments show the performance of
metaheuristic algorithms and the second phase, the role of ensemble feature
selection methods in the spam detection system in terms of classifier accuracy
and computational cost is discussed. All the experimental results are obtained
by charts and graphs.

Chapter 7 – Conclusion and Recommendations. This chapter concludes the
research findings and introduces some suggestions for future work.
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