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Intrusion detection systems (IDSs) effectively balance additional security in a computer 

system by identifying intrusive activities on a computer system, and their 

enhancements are developing at a surprising rate. Detection methods based on 

statistical and data mining techniques are widely deployed as anomaly-based detection 

system (ADS). Although the statistical-based anomaly detection (SAD) method 

fascinates researchers, the low attack detection rates (also known as the detection of 

true positive) that reflect the effectiveness of the detection system generally persist. 

Specifically, this is due to the packets affected by the outlier data points (i.e., the data 

points that have a huge dissimilarity with the common data points) and the defined 

threshold size that is usually performed without any further analysis on the observed 

packet. It provides a significant effect in the process to determine which packet is more 

likely attributes to the anomalous behaviour.  In recent years, data mining based 

anomaly detection (DMAD), particularly classification methods, have been incessantly 

enhanced in differentiating normal and attack behaviour. Unfortunately, in such 

methods the outcomes, i.e., true positive, true negative, false positive and false negative 

detections that directly influence the rates of accuracy, detection, and false alarms are 

not much improved and thus raise a persistent problem in the employment of such 

systems. The specific drawback that causes this is the failure to differentiate the packets 

behaviour that resembles a similar behaviour more precisely, such as a normal 

behaviour having a similar anomalous content behaviour and vice versa. These 

inaccurate outcomes can compromise the reliability of IDSs and cause them to 

overlook the attacks. As ADS can process massive volumes of packets, the amount of 

processing time needed to discover the pattern of the packets is also increased 

accordingly and resulting in late detection of the attack packets. The main contributor 

for such a shortcoming is the need to re-compute every process for each packet despite 

the attack behaviour having been examined.  

 

 

This study aims to improve the detection of an anomalous behaviour by identifying the 

outlier data points in the packets more precisely, maximizes the detection of packets 

with similar behaviours more accurately while reducing the detection time. An 

Integrated Anomaly Detection Scheme ( IADS)  is proposed to overcome the aforesaid 
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drawbacks. The proposed scheme integrates an ADS and signature-based detection 

system (SDS) approach for better and rapid intrusion detection. Therefore, Statistical-

based Packet Header Anomaly Detection (SPHAD) and a hybridized Naive Bayes and 

Random Forest classifier (NB+RF) are considered for the ADS,  and Signature-based 

Packet Header Intrusion Detection (SPHID) is proposed as the SDS. In SPHAD, 

statistical analysis is used to construct a normal profile using statistical formula, 

scoring the incoming packets, and computing the relationships between historic normal 

behaviour as a dependent variable against observable packet behaviours as the 

independent variable through linear regression. Then the threshold measurement (size) 

is defined based on R2 and Cohen’s-d values in order to improve the attack detection 

rate by identifying a set of outlier data points which are present inside the packets more 

precisely. Subsequently, NB+RF, a hybrid classification algorithm is used to 

distinguish similar and dissimilar content behaviours of a packet. The Naive Bayes 

(NB) classifier is employed to construct the values of the posterior and the prior 

probability of a packet, then this information as well as the header values and statistical 

analysis information are fed to the Random Forest (RF) classifier to improve the 

detection of actual attacks and normal packets. SPHID then extracts the distinct 

behaviour of the packets which are verified as attacks by NB+RF and compute it as 

attack signatures for faster future detections, as the detection time will be reduced for 

the attack whose signature is already included in the signature database.  

 

 

The effectiveness of the IADS has been evaluated under different detection capabilities 

(i.e., false positive, false negative, true positive, true negative, false alarm, accuracy, 

detection rate, attack data detection rate, normal data detection rate) and detection times 

using the DARPA 1999 and ISCX 2012 intrusion detection benchmark datasets as well 

as with Live-data. Results from the experiments demonstrate that IADS could 

effectively detect attacks and normal packets more precisely compared to previous 

work and the ADS which performs intrusion detections without employing the SPHID 

method. In addition, the detection time of IADS is much improved as compared to 

ADS. Thus, IADS is a better solution for anomaly detection methods in detecting 

untrustworthy behaviour and to define attack and normal behaviours more accurately. 
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Sistem pengesanan pencerobohan (IDS) memperseimbangkan alat tambahan 

keselamatan secara efektif dengan mengenal pasti aktiviti pencerobohan pada sistem 

komputer, dan penambahbaikan alat ini kerap berlaku pada kadar yang tidak dijangka. 

Kaedah-kaedah sistem pengesanan pencerobohan berasaskan anomali (ADS), yang 

menggunakan algoritma perlombongan data mampu mengenal pasti serangan-serangan 

yang tidak dikenali. Walaupun kaedah pengesanan anomali berasaskan statistik (SAD) 

memikat penyelidik, kadar pengesanan pencerobohan yang rendah yang juga dikenali 

sebagai pengesanan benar positif, mencerminkan keberkesanan sistem pengesanan 

umumnya berterusan. Khususnya, ia disebabkan oleh paket yang terjejas akibat titik-

titik terpencil iaitu titik data yang mempunyai perbezaan besar dengan titik data biasa, 

dan saiz ambang yang biasanya ditakrifkan tanpa melakukan apa-apa analisa lanjutan 

terhadap paket yang diperhatikan. Ia memberi kesan yang ketara dalam proses untuk 

menentukan paket mana yang lebih cenderung kepada sifat-sifat tingkah laku yang 

beranomali. Sejak kebelakangan ini, pengesanan anomali berasaskan perlombongan 

data (DMAD), khususnya kaedah klasifikasi di tambah baik secara berterusan dalam 

membezakan tingkah laku normal dan pencerobohan. Malangnya, menerusi 

penggunaan kaedah ini, hasil output iaitu pengesanan packet normal dan pencerobohan 

yang secara langsung mempengaruhi kadar ketepatan, kadar pengesanan dan kadar 

‘false alarm’ tidak diperbaiki ke tahap yang lebih baik serta menimbulkan masalah 

dalam penggunaan sistem pengesanan anomali secara berterusan. Kelemahan khusus 

yang menyebabkan keadaan ini adalah akibat daripada kegagalan untuk membezakan 

tingkah laku kandungan paket yang menyerupai tingkah laku yang lain dengan lebih 

tepat, contohnya tingkah laku paket normal yang menyerupai tingkah laku paket 

beranomali dan sebaliknya. Hasil yang tidak tepat boleh menjejaskan kebolehpercayaan 

IDSs dan menyebabkan mereka terlepas pandang packet pencerobohan. 

Memandangkan ADS mampu memproses jumlah packets yang besar, jumlah masa 

pemprosesan yang diperlukan untuk menemui bentuk paket turut meningkat dan 

menyebabkan kelewatan dalam pengesanan paket pencerobohan.  Penyumbang utama 

untuk kekurangan ini ialah keperluan untuk mengira semula setiap proses bagi setiap 

paket walaupun tingkah laku pencerobohan yang terlibat sudah diperiksa sebelum ini. 

Kajian ini bertujuan untuk membaiki mahupun meningkatkan pengesanan tingkah laku 
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beranomali dengan mengenalpasti titik-titik data terpencil di dalam paket dan 

memaksimumkan pengesanan paket yang mempunyai tigkah laku yang sama dengan 

lebih tepat disamping mengurangkan masa pengesanan. Satu skim pengesanan anomali 

bersepadu (IADS) dicadangkan untuk mengatasi kelemahan-kelemahan di atas. Skim 

yang dicadangkan menyepadukan ADS dan pendekatan sistem pengesanan tanda kenal 

(SDS) untuk pengesanan pencerobohan yang lebih baik dan cepat. Oleh itu, 

pengesanan anomali pengepala paket berasaskan kaedah statistik (SPHAD) dan 

pengelas hibrid Naive Bayes dan Random Forest (NB+RF) yang dicadangkan 

dipertimbangkan sebagai sistem ADS, dan pengesanan intrusi pengepala paket 

berasaskan tanda kenal (SPHID) sebagai SDS. Analisa statistik digunakan untuk 

membina profil normal menerusi formula statistik, memberi skor kepada setiap paket 

yang masuk dan mengira perhubungan antara tingkah laku paket normal sejarah yang 

digunakan sebagai pembolehubah bersandar terhadap tingkah laku paket baharu yang 

boleh dicerap sebagai pembolehubah bebas melalui regresi linear di dalam SPHAD. 

Kemudian ukuran (saiz) ambang ditakrif berdasarkan nilai-nilai R2 dan Cohen’s-d 

untuk meningkatkan mahupun membaiki kadar pengesanan pencerobohan dengan 

mengenalpasti titik-titik data terpencil yang berada di dalam paket dengan lebih tepat. 

Selepas itu, NB+RF, algoritma pengelas hibrid digunakan untuk membezakan tingkah 

laku kandungan paket yang sama dan yang berbeza. Pengelas Naive Bayes (NB) 

digunakan untuk membina nilai-nilai kebarangkalian 'prior' dan 'posterior' sesuatu 

paket terlebih dahulu, kemudian nilai-nilai tersebut, kandungan nilai pengepala paket 

serta maklumat berkenaan analisa statistik disalurkan kepada pengelas Random Forest 

(RF) untuk meningkatkan mahupun membaiki pengesanan paket pencerobohan dan 

normal yang sebenar. SPHID mengekstrak tingkah laku paket yang unik yang 

ditentusahkan sebagai pencerobohan oleh NB+RF dan mengiranya sebagai tanda kenal 

pencerobohan untuk mengesan pencerobohan dengan lebih cepat pada masa akan 

datang, dimana masa pengesanan dapat dikurangkan sekiranya tanda kenal bagi sesuatu 

pencerobohan didapati wujud di dalam pangkalan data tanda kenal.  

 

 

Keberkesanan IADS telah dinilai di bawah keupayaan pengesanan yang berbeza iaitu 

positif palsu, negatif palsu, positif benar, negatif benar,kadar  'false alarm',  kadar 

ketepatan, kadar pengesanan, kadar pengesanan data pencerobohan dan kadar 

pengesanan data normal serta tempoh masa pengesanan menggunakan data-data 

penanda aras pengesanan pencerobohan seperti DARPA 1999, ISCX 2012 serta data 

hidup. Keputusan eksperimen menunjukkan bahawa IADS dapat mengesan paket-paket 

pencerobohan dan normal dengan lebih tepat berbanding dengan kajian sebelum ini 

serta ADS, yang merupakan skim yang melakukan pengesanan pencerobohan tanpa 

menggunakan kaedah SPHID. Tambahan pula, pengesanan masa IADS adalah baik 

berbanding dengan kaedah ADS. Oleh itu, IADS merupakan satu penyelesaian yang 

lebih memuaskan untuk kaedah ADS dalam mengesan tingkah laku yang tidak 

dipercayai dan mendefinisi paket pencerobohan dan normal dengan lebih tepat. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background 

 

 

Protecting an organization’s assets against threats from the network has become a 

major challenge in the wake of increasing network-based attacks. In addition, the 

confidential assets and vulnerabilities of computer and network systems could be 

exposed to cyber attacks if not well protected with security defenders. Cyber attacks are 

invasive tactics or operations used by unethical parties either from corporations or 

individuals against vulnerable systems (i.e., computer systems, computer networks, 

computer infrastructures, and computer information) in an attempt to modify, steal 

and/or destroy them (Kuang, 2007). Denial-of-service, Web site defacement, password 

sniffing, web browser exploits, and breach of access are examples of the consequences 

which could result from cyber attacks. In addition, these attacks have become more 

sophisticated and harmful as the Stuxnet (Karnouskos, 2011; Vida et al., 2014) worm 

recently showed.     

 

 

Consequently, it is extremely important to develop mechanisms for intrusion detection 

in view of the conviction that suspicious activities can be detectable by taking measures 

to avoid their further breeding against computer networks or systems. Intrusion 

detection is the process of monitoring the activities taking place in a computer or 

network system and scrutinizing them for indications of potential intrusions and in 

determining suspicious activities there. Thus, intrusion detection systems (IDSs) are 

formed to detect cyber attack activities attempting to compromise the confidentiality, 

integrity, and availability (CIA) of interconnected computing systems (Zhou, 2005). 

Nowadays, IDS are the most extensively applied and significant components in 

computer security. 

 

1.2 Motivation 

 

 

Electronic transactions, online banking, hosting portals, etc., have raised Internet usage 

dramatically and cover almost the entire globe. Unfortunately, these trends also fuel 

hacking activities and dangerous cyber attacks that are able to breach even the strongest 

firewalls. Data from the Malaysia Computer Emergency Response Team (MyCERT)1 

show a significant growth in cyber attacks in 2014 (Figure 1.1).  Total cyber incidents 

from 2000 to 2014 are presented in Figure 1.2. 

` 

  

Cyber attacks have become an novel weapon of war around the world and their 

persistent growth against computer and network systems makes it critical to integrate 

more accurate IDS capable of maximizing correctly detectable data (i.e., true positives 

and negatives) and minimizing falsely detectable data (false positives and negatives) as 

                                                 
1 http://www.mycert.org.my 
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Figure 1.1: Statistic of Reported Incidents, 2014 

 

 

Jan Feb Mac Apr May Jun Jul Aug Sept Oct Nov Dis

Spam 40 23 32 36 61 55 385 530 548 671 735 534

Malicious Codes 251 78 101 55 47 48 29 14 22 13 16 42

Intrusion Attempt 3 11 24 157 63 75 21 241 649 12 19 27

Intrusion 109 76 216 70 15 28 43 47 104 105 178 134

Denial of Service 1 2 3 2 4 1 3 1 6 3 0 3
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Figure 1.2: Number of Reported Incidents, 2000-2014 
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as well as reducing the detection time to enable prompt identification of attacks. 

 

 

Anomaly-based detection systems (ADS) which employ statistical analysis and data 

mining, particularly classification methods is a significant field to be explored for 

attaining the above mentioned capabilities. The necessity for continuous enhancement 

of intrusion detection capabilities, detection time, and its numerous approaches is the 

motivation for this research.   

 

 

1.3 Problem Statement  

 

 

Creating an anomaly-based detection system (ADS) model using statistical analysis and 

data mining approaches is demanding in a field of IDSs. Although various improved 

methods have been developed and introduced every year in statistical-based anomaly 

detection, the problem to identify the correct attack packet is still not satisfactory. 

Moreover, many such detection methods have a low attack detection rate (also referred 

as the detection rate of true positives) is an essential key indicator used to assess a 

statistical-based anomaly detection method. It is due to the use of anomaly scores in 

defining threshold measurement in identifying attack packet, which is affected from 

outlier data points (the data points that have a huge dissimilarity with the common data 

points called outlier data points)  and the threshold size that usually defined without 

performing any further analysis on the observed packet. It gives a great impression in 

the process to determine the packet which is more likely to be anomalous. For example, 

such situation will get worse if there is more than one outlier data points in every single 

packet headers. Generally, this detection method generates maximum false alarms 

(false positives) due to the difficulty in accurately separating normal packet that is not 

visibly different from attack packet. Consequently, data mining approaches, 

particularly classification methods, are receiving growing interest within intrusion 

detection societies as they have proficiency for reducing false positives. The common 

challenge associated with classification methods is the performance of these detection 

systems in terms of detection rates, accuracy, and false alarm. However, the specific 

problem that causes this is a failure to differentiate the packets behaviour that 

resembles a similar behaviour more precisely. For example, an anomalous behaviour 

contains similar normal behaviours as the real normal packets and normal packet 

behaviours have similar anomalous content behaviours. This is the reason why the 

existing classification methods are less efficient in classifying attack and normal packet 

that contributes to false detections (false negatives and false positives) as well as fewer 

correct detections (true negatives and true positives). Thus, these inaccurate outcomes 

compromise the reliability of IDSs and cause them to overlook the attacks. Apart from 

detection capabilities, the detection time involved in using ADS methods are time 

consuming, resulting in delays in detecting whether a packet pattern is an attack or 

normal. For example, using these detection method procedures, each involved process 

need to be re-computed for each piece of packet despite the attack behaviour having 

been examined. In addition, time consuming issues can become worse if the packets 

relatively high.  
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Specifically, this thesis addresses the following issues: 

 

1. A number of efforts offer statistical-based anomaly detections using packet 

header to identify abnormal behaviour such as Chen et al. (2010), Lee et al. 

(2008), Mahoney (2003), Mahoney and Chan (2001, 2002), Shamsuddin and 

Woodward, (2008), and Xiong et al. (2013). The major drawback of those 

detection methods is defining the threshold measurement in identifying the 

attack packets which is affected from outlier data points without performing 

any further analysis on the observed packets. Consequently, this statistical-

based anomaly detection method is inadequate for identifying an attack packet 

more accurately and results in low attack detection rates (true positives).   

 

2. Classification methods have been introduced and widely employed by various 

researchers in the field of ADS with the aim to reduce false detection rates as 

well as increase correct detection rates. Unfortunately, existing classification 

methods are less efficient in classifying an attack and normal packet and 

contribute to increases in false negatives and false positives with lower rates 

of true negatives and true positives. The major reason causes those limitations 

have been a failure to differentiate the packets behaviour that resembles a 

similar behaviour more precisely. There have been a number of earlier 

researches performing intrusion detection using the classification approach 

and these had more than 1% false positive or false alarm rates. These include 

Decision Tree (Kosamkar et al., 2014), Support Vector Machine (Kosamkar et 

al., 2014), and Naive Bayes (Sagale et al., 2014) with 9.79%, 4.94%, and 

1.48% as false positive rates, respectively. 

 

3. In most regular practices the ADS method only focuses on improving the 

detection performance by overlooking its capability in terms of detection time. 

Thus, the detection time for an intrusion detection process using ADS method 

is time consuming. An example of previous work are Tribak et al., (2012). 

 

 

1.4  Research Questions 

 

 

This thesis proposes an Integrated Anomaly Detection Scheme (IADS) based on a 

number of integrated methods, namely, statistical-based packet header anomaly 

detection (SPHAD), hybridized classifiers (NB+RF), and signature-based packet 

header intrusion detection (SPHID) that use attack signatures in examining packet 

header behaviours to address the following questions: 

 

 

1. Do the statistical analyses applied to different measurements express the 

dissimilar and similar behaviours of the packet headers? 

 

2. Does the usage of a threshold mechanism increase actual attack detections by 

overcoming the suspected outlier data points drawbacks? 

 

3. Do the features derived from the statistical approach provide a clear picture on 

the data and assist the integrated classifiers to minimize false positives and 
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false negatives and to maximize true positives and true negatives? 

 

4. Does the transformation of unique attack behaviour into a signature structure 

minimize the detection time in ADS as well as increase the number of packets 

processed in a second?  

 

1.5 Objectives of Research  

 

The main objective of this research is to propose an Integrated Anomaly Detection 

Scheme (IADS) which integrates anomaly-based detection system (ADS) and 

signature-based detection system (SDS) approach for better and more rapid intrusion 

detection. As such, three different kinds of detection methods have been proposed in 

this thesis.  

 

 

The specific objectives are to: 

 

1. Propose a normal scoring approach, linear regression analysis and Cohen's-d 

measurement to identify the outlier data points which able to differentiate 

attack behaviours more precisely as statistical-based anomaly detection. 

 

2. Propose a hybridized Naive Bayes and Random Forest classifier to 

differentiate and identify a similar behaviour of an attack and normal more 

accurately. 

 

3. Propose a signature-based packet header intrusion detection method to reduce 

detection times in the ADS method. 

 

1.6 Scope of Research  

 

 

This research focuses on the ADS method which utilizes statistical analysis and 

hybridized classifiers between Naive Bayes and Random Forest to accurately identify 

intrusive and non-intrusive packet header behaviour with minimum false positives and 

false negatives as well as maximum true positives and true negatives. In addition, the 

detection method is designed such that it could operate accurately in identifying 

intrusion packet behaviours on various machines (multiple host network-based 

intrusion detection system, NIDS) and on a single machine (host-based intrusion 

detection system, HIDS). The scope is also on reducing detection time in the ADS 

method by creating known attack signature behaviours. The DARPA 1999 and ISCX 

2012 intrusion detection benchmark dataset as well as Live-Data are used to assess the 

proposed, individual, and existing detection methods.    
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1.7 Research Contributions 

 

 

The major contribution of this research is the creation of an Integrated Anomaly 

Detection Scheme (IADS) that could identify a number of intrusive and non-intrusive 

behaviours (false positive, false negative, true positive and true negative) more 

accurately and to minimize detection times via a signature-based packet header 

intrusion detection method by producing attack signatures for observable behaviour in 

contrast to ADS methods (without employing signatures). 

 

 

The following are the contributions of this research: 

 

1. Formulating a statistical method that could score packets, appraise the degree 

of the observed packet relationship through linear regression analysis, and 

Cohen’s-d as a threshold measurement to improve the detection rate of 

intrusion or attack by overcoming the outliers limitations. Experiments show 

that the proposed model is capable of maximizing actual attack-detectable data 

(true positives) more accurately compared to previous work.  

 

2. Creating a hybridized classifier of Naive Bayes and Random Forest to 

differentiate and identify the similar actual behaviours of an attack and normal  

more accurately, particularly which able to decrease false negatives and false 

positives, and increase true negatives and true positives. These methods have 

shown remarkable outcomes and improvements for all aforesaid factors which 

directly improved the accuracy, detection, and false alarm rates as compared 

to the individual and existing methods.   

 

3. Developing a Signature-based Packet Header Intrusion Detection method 

where signatures are created based on distinct attack behaviours after being 

classified by hybridized classifiers from the detection file for future detection 

and to decrease the detection time. Thus, the detection time is reduced upon 

utilizing signatures for detection purpose as compared to the Anomaly 

Detection Scheme (ADS) which performs intrusion detections without 

employing signatures. 

 

1.8 Organization of Thesis  

 

 

This section presents an outline of the entire thesis which is organized as follows: 

 

 

Chapter 1 presents the introduction and includes among others the background, 

problem statement, research objectives and questions and contributions of the 

thesis. 

 

Chapter 2 reviews related studies of the subject matter which includes intrusion 

detection systems (IDSs), statistical-based anomaly detection (SAD), and data 

mining-based anomaly detection (DMAD). The end of the chapter discusses the 
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related work within this field which employs statistical analysis and hybridized 

classifiers.  

 

Chapter 3 provides a brief explanation of the research methodologies adopted in this 

research. The requirement analysis involved in the process of identification and 

investigation of the research requirement is detailed out. This chapter also 

describes how the proposed IADS is designed and implemented. In addition, the 

experimental design and experimental setup involving the amount of data applied 

and selection of specific applications to perform the research and evaluation 

criteria used to evaluate the performance is also highlighted. 

 

Chapter 4 describes the proposed Integrated Anomaly Detection Scheme (IADS). A 

comprehensive discussion is provided on the components of IADS which is 

designed based on the Statistical-based Packet Header Anomaly Detection 

(SPHAD), Hybridized Naive Bayes and Random Forest Classifiers (NB+RF) and 

Signature-based Packet Header Intrusion Detection Method (SPHID). Each 

analysis involved in SPHAD and the NB+RF as well as the SPHID for formation 

of attack behaviour signatures is briefly explained in this chapter.  

 

Chapter 5 presents the implementation of different detection methods in the proposed 

detection scheme using a MySql database, Matlab programming, and SQL script. 

The procedure for implementation is clearly explained by giving examples for 

each step which needs to be performed in this detection scheme.     

 

Chapter 6 presents a performance evaluation of the IADS. The effectiveness of the 

proposed SPHAD, NB+RF and SPHID are assessed using a number of datasets 

and the detection results based on different criteria are illustrated and discussed.  

 

Chapter 7 summarizes the entire thesis and recommendations on possible extensions 

of this research as future work. 
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