

UNIVERSITI PUTRA MALAYSIA

ANTI-VIRAL ACTIVITIES OF CENTELLA ASIATICA L., CURCUMA LONGA L. AND STROBILANTHES CRISPUS L. AGAINST PSEUDORABIES VIRUS IN ANIMAL CELL LINES

HANISA BINTI HOSNI

FPV 2006 6

ANTI-VIRAL ACTIVITIES OF CENTELLA ASIATICA L., CURCUMA LONGA L. AND STROBILANTHES CRISPUS L. AGAINST PSEUDORABIES VIRUS IN ANIMAL CELL LINES

By

HANISA BINTI HOSNI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

July 2006

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HANISA BINTI HOSNI

Date: 28 November 2006

To my husband, Mohd Azhar,

For encouraging and sustaining

To my children, Athirah and Azeem,

For making it all worthwhile

To my parents, Hosni and Patimah,

For making it possible

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANTI-VIRAL ACTIVITIES OF CENTELLA ASIATICA L., CURCUMA LONGA L. AND STROBILANTHES CRISPUS L. AGAINST PSEUDORABIES VIRUS IN ANIMAL CELL LINES

By

HANISA BINTI HOSNI

July 2006

Chairman : Professor Mohd Azmi Mohd Lila, PhD

Faculty : Veterinary Medicine

Herpes simplex virus (HSV) is a major opportunistic pathogen in immunosuppressed patients and a serious disease in high human immunodeficiency virus (HIV)/ acquired immunodeficiency syndrome (AIDS) prevalence areas. The existence of resistant strains to the available drug is therefore an urgent need to identify new alternative agents for HSV. The aim of this study is to investigate anti-viral activities of the plants. Assays were developed to determine the characteristics of anti-viral activities, as anti-viral attachment, anti-prophylactic and virucidal. The pseudorabies virus (PrV) has been used as representative of HSV. Three medicinal plants have been used, which is *Centella asiatica* L. (*C. asiatica*), *Strobilanthes crispus* L. (*S. crispus*) and *Curcuma longa* L. (*C. longa*). The plants are reputed in traditional medicine for many treatments of diseases. Firstly, the potential cytotoxicity was evaluated for plant methanol extracts (ME) and aqueous extracts (AE) in cell line by using MTT assay. All three plant extracts were

found significantly (P < 0.05) non cytotoxic towards African Green Monkey Kidney (Vero) cells, Baby Hamster Kidney (BHK) cells and Rabbit Kidney (RK) cells. The plant ME was generally more cytotoxic than AE, showed lower (76 μ g/ml) non-toxic limit concentration (NTLC₅₀) than plant AE (82 μ g/ml). The least cytotoxic was the extract of S. crispus followed by C. asiatica and C. longa. The resistance of three different cell lines was also compared and it showed the BHK cells were the most toughest and resistant to the plant extracts. In anti-viral analysis, it was discovered that all plant extracts showed marked prophylactic activity, considerable anti-attachment and virucidal abilities up to 75% inhibition of cytopathic effect (CPE) formation. The C. longa extract was found as a potent anti-viral agent followed by S. crispus and C. asiatica. It exerted better prophylactic activity against PrV compared to the other two plants. Whereas S. crispus was found very effective as virucidal agent while C. asiatica as anti-viral attachment agent. Based on the results, it was also found that plant ME possessed better anti-viral activity than plant AE. These results also showed each of three plants possessed different anti-viral activities. The anti-viral activities were also varies in different cell lines tested. All three plants were analysed by liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) to identify plant compounds. The analysis revealed several compounds in C. asiatica, S. crispus and C. longa ME. This study discovered the promising anti-viral activities of C. asiatica, S. crispus and C. longa but not any identified plant compound against PrV in vitro. These results suggest that all three plant extracts have potent anti-viral agents against PrV as representative of HSV that can be exploited for development of an alternative medicine to prevent HSV infections.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANTIVITI ANTI-VIRUS OLEH *CENTELLA ASIATICA* L., *CURCUMA LONGA* L. DAN *STROBILANTHES CRISPUS* L. TERHADAP VIRUS PSEUDORABIES DI DALAM BARISAN SEL

Oleh

HANISA BINTI HOSNI

Julai 2006

Pengerusi : Profesor Mohd Azmi Mohd Lila, PhD

Fakulti : Perubatan Veterinar

Herpes simplex virus (HSV) adalah patogen oportunis utama kepada pesakit-pesakit yang sistem imunnya ditekan dan adalah satu penyakit serius di kawasan yang lazimnya mempunyai perebakan Virus Kurang Daya Tahan Penyakit (HIV) atau Sindrom Kurang Daya Tahan Penyakit (AIDS) yang tinggi. Kewujudan strain virus yang rintang kepada ubatan anti-virus menyebabkan keperluan mendesak untuk mencari agen alternatif bagi merawat HSV. Tujuan kajian ini adalah untuk mengkaji aktiviti anti-virus oleh tumbuhan. Kaedah-kaedah untuk menentukan sifat dan ciri aktiviti anti-virus pseudorabies (PrV) iaitu anti-perlekatan, anti-pre-rawatan dan membunuh virus telah digalankan. PrV telah digunakan sebagai mewakili HSV. Tiga tumbuhan ubatan telah digunakan iaitu *Centella asiatica* L. (*C. asiatica*), *Strobilanthes crispus* L. (*S. crispus*) dan *Curcuma longa* L. (*C. longa*). Tumbuhan-tumbuhan ini mempunyai reputasi yang baik dalam merawat pelbagai penyakit di dalam perubatan tradisional. Pertama, potensi toksik ekstrak methanol (EM) and ekstrak akuas (EA) tumbuhan telah dianalisa ke atas

barisan sel dengan menggunakan kaedah MTT. Kesemua ekstrak tumbuhan dijumpai signifikan (p < 0.05) tidak menyebabkan toksik kepada sel Buah Pinggang Monyet Hijau (Vero), sel Buah Pinggang Anak Hamster (BHK) dan sel Buah Pinggang Arnab (RK). Secara amnya, EM tumbuhan lebih toksik ke atas sel berbanding AE tumbuhan, menunjukkan kepekatan tidak toksik pada 50% yang lebih rendah (76 µg/ml) daripada AE tumbuhan (85 μ g/ml). Kerintangan ketiga-tiga barisan sel terhadap ekstrak tumbuhan juga dibandingkan dan menunjukkan sel BHK adalah paling kuat dan rintang kepada ekstrak tumbuhan. Kesemua ekstrak tumbuhan menunjukkan kebolehan yang jelas aktiviti pre-rawatan manakala anti-perlekatan dan kebolehan membunuh virus yang boleh dipertimbangkan sehingga 75% penekanan ke atas pembentukan Kesan Saitopatik (CPE). Ekstrak C. longa telah dijumpai sebagai agen anti-viral yang sangat berpotensi, diikuti ekstrak S. crispus dan C. asiatica. Ia menunjukkan aktiviti pre-rawatan yang lebih baik ke atas PrV berbanding dua tumbuhan tersebut. Manakala ekstrak S. crispus telah dijumpai menunjukkan kesan efektif sebagai agen membunuh virus dan ekstrak C. asiatica sebagai agen anti-perlekatan. Berdasarkan kepada keputusan, ia menunjukkan ME tumbuhan memberikan aktiviti anti-virus yang lebih baik berbanding AE tumbuhan. Keputusan juga menunjukkan bahawa setiap tumbuhan memberikan aktiviti anti-virus yang berbeza. Aktiviti anti-virus juga berbeza di dalam barisan sel yang berbeza. Ketiga-tiga tumbuhan telah dianalisa dengan menggunakan kromatografi cecair-ionisasi elektrospray-spektrometer jisim (LC-ESI-MS) untuk mengenalpasti bahan tumbuhan. Analisa tersebut mendedahkan bahan-bahan yang terkandung di dalam C. asiatica, S. crispus dan C. longa EM. Kajian ini menemui aktiviti anti-virus bagi C. asiatica, S. crispus dan C. longa tetapi bukan daripada mana-mana bahan tumbuhan yang

dikenalpasti terhadap PrV secara *in vitro*. Keputusan kajian juga mencadangkan bahawa ketiga-tiga tumbuhan mempunyai potensi sebagai agen anti-virus ke atas PrV sebagai mewakili HSV yang boleh dieksploitasikan bagi pembangunan ubatan alternatif bagi menghalang jangkitan HSV.

ACKNOWLEDGEMENTS

In The Name Of Allah, The Beneficent, The Merciful

All gratifications are referred to 'Allah', the Omnipotent and Omnipresent. Without His Permission and Gifts for every strength, I just think that I could not be able to complete this thesis.

Especially supervisors, Prof. Dr. Mohd Azmi Mohd Lila, Prof. Madya Dr Mohd Nazrul Hakim bin Abdullah and Prof. Dr. Suhaila Mohamed for unrelenting guidance, and wise suggestions. My thankful also for providing me with a very fine place and satisfactory laboratory facilities. Not to forget to Prof Madya Dr Saidi Abdul Moin for his supervision for the statistical analysis.

I would also like to express my unforgettable appreciation to Mr. Kamarudin Awang Isa, all staffs of Bacteriology Laboratory, my friends, Suria, Radhiah, Mat Lip and Kak Sam, who have truly made this thesis possible.

Last but not least, the foremost, profound and heart-felt gratitude is to my extraordinary husband, Mr. Mohd Azhar Abdul Rahman for his unremitting love and constantly supports which motivated me to accomplish this worthwhile thesis. I express my sincere to my beloved parents, Hj Hosni Jalaludin and Hajjah Patimah Baharudin for their everlasting support and encouragement.

I certify that an Examination Committee has met on 6th July 2006 to conduct the final examination of Hanisa Binti Hosni on her Master of Science thesis entitled Anti-viral Activities of *Centella Asiatica* L., *Strobilanthes Crispus* L. And *Curcuma Longa* L. Against Pseudorabies Virus in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Dato' Sheikh Omar Abdul Rahman, PhD

Professor, Department of Veterinary Pathology and Microbiology Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Noordin Mohamed Mustapha, PhD

Associate Professor, Head, Department of Veterinary Pathology and Microbiology Faculty of Veterinary Medicine Universiti Putra Malaysia (Internal Examiner)

Zamberi bin Sekawi, MPath

Head, Department of Medical Microbiology and Parasitology Faculty of Medicine and Science Health Universiti Putra Malaysia (Internal Examiner)

Mustafa Ali Mohd, PhD

Deputy Dean, Infrastructure and Development, Faculty of Medicine Universiti of Malaya (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd Azmi Mohd Lila, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Suhaila Mohamed, PhD

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Mohd Nazrul Hakim Abdullah, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia.

Date: 16 January 2007

TABLE OF CONTENTS

2
3
5
8
9
11
15
18
20

CHAPTER

Ι

INTRODUCTION	24
Viral Infections	24
Herpes Virus Infection	25
Anti-Viral Drugs	26
The Effects of Antiviral on Viruses	26

II LITERATURE REVIEW

The Virus	30
Herpes Virus	30
Viral Pathogenesis	32
Molecular Consideration of Anti-herpes Drugs	33
Medicinal Plants	38
Traditional Medicine	39
C. asiatica	
Plant Description	42
Active Constituents	44
Traditional Medicine	46
Modern Medicine	48
S. crispus	
Plant Description	50
Active Constituents	52
Traditional Medicine	52
Modern Medicine	53
C. longa. syn: C. domestica	
Plant Description	54
Active Constituents	57
Traditional Medicine	57
Modern Medicine	59

	Liquid Chromatography-Electrospray Ionisation	
	-Mass Spectrometry	60
III	POTENTIAL CYTOTOXICITY OF PLANT EXTRACTS	
	Introduction	62
	Materials and Methods	64
	Preparation of Plant Extracts	64
	Plant Extractions	
	Aqueous Extract	65
	Methanol Extract	65
	Cell Lines Preparation	66
	Cell Lines Media Preparation	66
	Haemocytometer Cell Counting	70
	Plating Out Cells	71
	Plant Extract Addition	71
	MTT Solution Preparation	74
	Estimation of Cell Viability	74
	Statistical Analysis	75
	Results	
	General	76
	Plant Extracts in BHK cells	78
	Plant Extracts in Vero cells	83
	Plant Extracts in RK cells	88
	Discussion and Conclusion	92
IV	ANTI-HERPES ACTIVITY OF PLANT EXTRACTS	
	Introduction	97
	Material and Methods	99
	Preparation of Plant Extracts	99
	Plant Extractions	
	Aqueous Extract	100
	Methanol Extract	100
	Cell Lines Preparation	101
	Cell Lines Media Preparation	101
	Virus	103
	Cell Culture Inoculation	103
	Harvesting of Virus	104
	Virus Titration by TCID ₅₀	104
	Antigen Detection-Immunoperoxidase	105
	Anti-viral Assays	107
	Prophylaxis Study	107
	Attachment Assay	108
	Virucidal Assay	108
	Estimation of Cell Viability	109
	Statistical Analysis	109

	Results	110
	Antigen Detection-Immunoperoxidase	110
	Anti-viral Activity of C. asiatica in BHK, Vero	
	and RK Cells	112
	Anti-viral Activity of S. crispus in BHK, Vero	
	and RK Cells	119
	Anti-viral Activity of C. longa in BHK, Vero	
	and RK Cells	127
	Discussion and Conclusion	133
V	LC-ESI-MS ANALYSIS OF PLANT EXTRACTS	
	Introduction	140
	Material and Methods	141
	Preparation of Methanol Plant Extracts	141
	Solvents and Chemicals	142
	LC-MS Instrumentation	142
	LC Conditions	142
	Results	144
	C. asiatica Leaf Extracts	144
	S. crispus Leaf Extracts	148
	C. longa Rhizome Extracts	150
	Discussion and Conclusion	154
VI	GENERAL DISCUSSION AND CONCLUSION	165
BIBLIOGRAPHY		171
APPEN	DICES	187
BIODATA OF THE AUTHOR		191

LIST OF ABBREVIATIONS

ACV	Acyclovir
ADV	Adenovirus
ADV-3	Adenovirus type 3
AE	Aqueous Extract
AIDS	Acquired Immunodeficiency Syndrome
ATCC	American Type Cell Culture
ATV	Antibiotic Trypsin-Versine
BDMC	Bisdemethoxycurcumin
ВНК	Baby Hamster Kidney cells
BSA	Bovine Serum Albumin
BVdU	E-5-(2-bromovinyl)-2'-deoxyuridine+
BVdU-TP	Brivudin-5'-triphosphate
CMV	Cytomegalovirus
CPE	Cytopathic effect
ddI	Dideoxyinosine
DAB	3,3'-diaminobenzidine
DLA	Dalton's Lymphoma Ascites
DMC	Demethoxycurcumin
DMSO	Dimethylsulphoxide
DNA	Deoxyribonucleic Acid
EAC	Ehrlich Ascites Cells

EBV	Epstein Barr Virus
EMEM	Eagle's Minimal Essential Medium
ESI	Electrospray Ionisation
FCS	Fetal Calf Serum
GCV	Ganciclovir
GLM	General Linear Model
HBB	2-(hydroxybenzyl)-benzimidazole
HeLa	Human Epithelioid Cervical Carcinoma
HHV	Human Herpes Virus
HHV-1	Human Herpes Virus Type 1
HIV	Human Immunodeficiency Virus
HIV-1	Human Immunodeficiency Virus Type-1
HPLC	High Performance Liquid Chromatography
HSV	Herpes Simplex Virus
HSV-1	Herpes Simplex Virus Type 1
HSV-2	Herpes Simplex Virus Type 2
HZV	Herpes Zoster Virus
IUdR	Iododeoxyuridine
LC-MS	Liquid Chromatography-Mass Spectrometry
LTR	Long Terminal Repeat
ME	Methanol Extract
MG	Maximum Growth; Cell treated with media only

MTT	3-(4, 5-dimethylthiazol-2-yl)-2, 5
	diphenyltetrazolium bromide
MW	Molecular weight
NMR	Nuclear Magnetic Resonance
NTLC	Non-Toxic Limit Concentration
NTLC ₅₀	Non-Toxic Limit Concentration at 50 percent
PAA	Polyacrylic acid
PBS	Phosphate Buffer Saline
PI	Post Infection
PrV	Pseudorabies Virus
PVAS	Polyvinylalcohol sulphate
PVS	Polyvinyl sulphonate
RK	Rabbit Kidney cells
RNA	Ribonucleic Acid
RRV	Ross River Virus
RSV	Respiratory Syncytial Virus
SAH	S- adenosylhomocysteine
SI	Selective Index
TE	Tris-EDTA
TECA	Titrated extract of C. asiatica
TCID ₅₀	Tissue Culture Infective Dose at 50
ТК	Thymidine kinase
TLC	Thin Layer Chromatography

TNF	Tumor Necrosis Factor
TSP	Thermospray
USA	United States of America
UV	Ultraviolet
VCV	Vanciclovir
VERO	African Green Monkey Kidney cells
VSV	Vesicular Stomatitis Virus
WHO	World Health Organization

LIST OF FIGURES

]	Figure		Page
	2.1	Herpes virus replication cycle.	33
	2.2	Medicinal plant used in this study, C. asiatica leaves.	43
	2.3	Medicinal plant used in this study, S. crispus leaves.	51
	2.4	C. longa leaves.	55
	2.5	Medicinal plant used in this study, C. longa rhizome	56
	3.1	Cell culture used in this study, Vero cells.	67
	3.2	Cell culture used in this study, BHK cells.	68
	3.3	Cell culture used in this study, RK cells	68
	3.4	The 96-well plate for cytotoxicity assay	73
	4.1	Infected vero cells with PrV	110
	4.2	Infected vero cells with PrV treated with immunoperoxidase stain	111
	5.1 a)	Chemical structures of asiatic acid.	145
	5.1 b)	Chemical structures of asiaticoside.	145
	5.1 c)	Chemical structures of madecassic acid.	146
	5.1 d)	Chemical structures of madecassoside.	146
	5.2	LC-ESI-MS chromatogram of C. asiatica ME	147
	5.3	Chromatographic peak of compound 1	147
	5.4	Chemical structure of verbascoside	148
	5.5	LC-ESI-MS chromatogram of S. crispus ME	149
	5.6	Chromatographic peak of compound 2	149

5.7 a)	Chemical structures of curcumin.	151
5.7 b)	Chemical structures of demethoxycurcumin	151
5.7 c)	Chemical structures of bisdemethoxycurcumin.	151
5.7 d)	Chemical structures of dihydrocurcumin	151
5.8	LC-ESI-MS chromatogram of C. longa ME	152
5.9	Chromatographic peak of compound 3, 4 and 5.	153
5.10	Positive-ion ESI-MS of compound 1	155
5.11	Proposed positive-ion ESI dissociation of compound 1	157
5.12	Positive-ion ESI-MS of compound 2	159
5.13	Proposed positive-ion ESI dissociation of compound 2	160
5.14	Proposed positive-ion ESI dissociation of compound 3, 4 and 5	162

LIST OF TABLES

Table		Page
2.1	Folk uses of <i>C. asiatica</i> around the world.	47
2.2	Folk uses of <i>C. longa</i> around the world.	58
3.1	Means \pm SD of cell viability of BHK cells treated with plant ME.	78
3.2	The $NTLC_{50}$ of plant ME and controls in BHK cells.	79
3.3	Means \pm SD of cell viability of BHK cells treated with plant AE.	80
3.4	The $NTLC_{50}$ of plant AE and controls in BHK cells.	81
3.5	Means \pm SD of cell viability of Vero cells treated with plant ME.	83
3.6	The $NTLC_{50}$ of plant ME and controls in Vero cells.	84
3.7	Means \pm SD of cell viability of Vero cells treated with plant AE.	85
3.8	The $NTLC_{50}$ of plant AE and controls in Vero cells.	86
3.9	Means \pm SD of cell viability of RK cells treated with plant ME.	88
3.10	The $NTLC_{50}$ of plant ME and controls in RK cells.	89
3.11	Means \pm SD of cell viability of RK cells treated with plant AE.	90
3.12	The $NTLC_{50}$ of plant AE and controls in RK cells.	91
4.1	Percent inhibition of virus-induced CPE in BHK cells treated with <i>C. asiatica</i> in different anti-viral assays.	112
4.2	The assessment of anti-viral activity of ME and AE of <i>C. asiatica</i> in BHK cells.	113

4.3	Percent inhibition of virus-induced CPE in Vero cells treated with <i>C. asiatica</i> in different anti-viral assays.	114
4.4	The assessment of anti-viral activity of ME and AE of <i>C. asiatica</i> in Vero cells.	115
4.5	Percent inhibition of virus-induced CPE in RK cells treated with <i>C. asiatica</i> in different anti-viral assays.	116
4.6	The assessment of anti-viral activity of ME and AE of <i>C. asiatica</i> in RK cells.	117
4.7	Percent inhibition of virus-induced CPE in BHK cells treated with <i>S. crispus</i> in different anti-viral assays.	119
4.8	The assessment of anti-viral activity of ME and AE of <i>S. crispus</i> in BHK cells.	120
4.9	Percent inhibition of virus-induced CPE in Vero cells treated with <i>S. crispus</i> in different anti-viral assays.	121
4.10	The assessment of anti-viral activity of ME and AE of <i>S. crispus</i> in Vero cells.	123
4.11	Percent inhibition of virus-induced CPE in RK cells treated with <i>S. crispus</i> in different anti-viral assays.	124
4.12	The assessment of anti-viral activity of ME and AE of <i>S. crispus</i> in RK cells.	125
4.13	Percent inhibition of virus-induced CPE in BHK cells treated with <i>C. longa</i> in different anti-viral assays.	127
4.14	The assessment of anti-viral activity of ME and AE of <i>C. longa</i> in BHK cells.	128
4.15	Percent inhibition of virus-induced CPE in Vero cells treated with <i>C. longa</i> in different anti-viral assays.	129
4.16	The assessment of anti-viral activity of ME and AE of <i>C. longa</i> in Vero cells.	130
4.17	Percent inhibition of virus-induced CPE in RK cells treated with <i>C. longa</i> in different anti-viral assays.	131

4.18	The assessment of anti-viral activity of ME and AE of <i>S. crispus</i> in RK cells.	132
5.1	LC-MS gradient program for <i>C. asiatica</i> , S. <i>crispus</i> and <i>C. longa</i> analysis.	143
5.2	Relative abundance of compound 1 and fragment ions	158
5.3	Relative abundance of compound 2 and fragment ions	161
5.4	t_R , MS data and peak assignments for the analysis of <i>C</i> . <i>longa</i> ME.	163
5.5	Relative abundance of compound 3, 4 and 5 and fragment ions	163

CHAPTER I

INTRODUCTION

Viral Infections

Viral infections are major health problem all over the world due to their morbidity and mortality. There are many types of transmissions of viral infections in man. They are respiratory or salivary spread, which is not readily controllable; faecal-oral spread that is controllable by public health measures and venereal spread, which is socially difficult to control. An example is HSV (Dawn and Robert, 1997).

The immune system appears as the controlling factor within the host that maintains beneficial microbes at harmless levels and prevents infections by dangerous agents. It is able to combat a variety of infections from birth on. Evolutionary pressure has forced most viruses to develop many strategies to subvert the immune system. Some of them are production of antigenic variants; adopted by influenza virus and HIV, avoiding recognition by lymphocytes; for example adenovirus, manipulate cytokine pathways to avoid destruction by the host immune response, the production of materials that interfere with the production of pro-inflammatory cytokines; for example vaccinia and cowpox viruses, and interfering with the alternate pathways of complement activation; for example HSV (Hans *et al.*, 2000; Bruce, 2002).

