UNIVERSITI PUTRA MALAYSIA

ANTIMICROBIAL ACTIVITY OF NUTMEG (Myristica fragrans Houtt.)
AND SENSORY ATTRIBUTE OF BEEF TREATED
WITH THE NUTMEG EXTRACT

MAYA PUTERI MALINA BT. ZAKARIA

FSTM 2015 9
ANTIMICROBIAL ACTIVITY OF NUTMEG (*Myristica fragrans* Houtt.)
AND SENSORY ATTRIBUTE OF BEEF TREATED
WITH THE NUTMEG EXTRACT

By

MAYA PUTERI MALINA BT. ZAKARIA

Thesis Submitted to the School of Graduate Studies,
Universti Putra Malaysia, in Fulfillment of the
Requirements for the Degree of Master of Science

May 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ANTIMICROBIAL ACTIVITY OF NUTMEG (*Myristica fragrans* Houtt.) AND SENSORY ATTRIBUTE OF BEEF TREATED WITH THE NUTMEG EXTRACT

By

MAYA PUTERI MALINA BT. ZAKARIA

May 2015

Chair: Assoc. Prof. Yaya Rukayadi, PhD
Faculty: Food Science and Technology

Antimicrobial and antioxidant of nutmeg were studied intensively in research and showed potential as antimicrobial and antioxidant agent apart. There were no report on antioxidant and antibacterial potential of nutmeg extract on any beef product. Beef muscles undergo several changes that can affect their safety (foodborne pathogens growth) and sensory attributes such as colour and flavor during storage. Therefore, there is a need to find an alternative method to control and maintain the safety and quality of raw beef during storage. The objective of this study is to evaluate the antimicrobial activity of nutmeg and to determine the effect of nutmeg extract towards the microorganism growth and sensory attributes of treated beef (lipid oxidation, colour, pH, texture, nutrition value). In this study, application of nutmeg (*Myristica fragrans* Houtt.) extract at different concentrations; 0.25%, 0.65%, 1.25%, 2.50% and 5.00% (g/ml) were used to treat raw beef (2.5 × 2.5 × 1.0 cm; 4 ± 0.5 g). Samples were then individually packed in overwrapped trays and stored for 3 weeks at -18 ± 2°C and 4°C ± 2°C. The treated raw beef were evaluated at 0, 1, 4, 7, 10, 14 and 21 days of storage. The results showed *Bacillus subutilis, Esherichia coli, Klebsiella pneumonia* and *Listeria monocytogene* was susceptible to nutmeg extract. The antimicrobial activities of nutmeg extract were not significantly affected by pH (3, 7, and 11) and temperatures (121°C). There were significant differences on reduced number of bacterial count of beef with the concentrations of extract. Treatment at 5.00% showed the strongest bactericidal efficacy among all concentrations on *L. monocytogenes, E. coli*, by reductions of 2.10 and 4.54 log$_{10}$ CFU/g, respectively stored at -18 ± 2°C. Treated beef starting at concentration 1.25% and above resulted significantly different (p<0.05) on inhibition of microbial growth stored at 4 ± 2°C. This results show that nutmeg extract effectively has antimicrobial effect on beef, not because of the temperature effect. Lipid oxidation analysis was identified using TBARS method. There were significant difference (p<0.05) on TBARS value of beef with the concentrations of extract. Extract at concentration of 1.25% and above inhibited TBARS value able to maintain the lipid oxidation of beef at both temperature. 1.25% of extract was also able to maintain the redness (a*) of treated beef compared to untreated beef during both temperatures. Treated beef with nutmeg extract able to maintain the pH value of normal conditions throughout the storage for both temperatures. There was a significant difference (p<0.05) on hardness with untreated and treated samples starting at 7th day of storage. There was no significant difference in term of protein
content in all treated or untreated samples. However, fat and moisture content were significantly different (p<0.05) by the concentration of nutmeg extract. Overall, 1.25% of nutmeg extract was chosen based on best combination of sensory evaluation scores together with all analysis result to maintain the safety and quality of beef as well as maintaining organoleptic properties. From this study indicated that nutmeg extract showed a potential preservation ingredient and increase shelf life of beef without changes in quality, nutritional and sensory characteristics.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi untuk Ijazah Master Sains

AKTIVITI ANTIMIKROB BUAH PALA (Myristica fragrans Houtt.) DAN SIFAT- SIFAT SENSORI DAGING LEMBU YANG DIRAWAT DENGAN EKSTRAK BUAH PALA

Oleh

MAYA PUTERI MALINA BT. ZAKARIA

Mei 2015

Pengerusi: Prof. Madya Yaya Rukayadi, PhD
Fakulti: Sains Makanan dan Teknologi

Antimikrobiol dan antioksidan buah pala telah dikaji secara intensif dalam penyelidikan dan menunjukkan potensi sebagai agen antimikrobiol dan antioksidan. Tiada rekod penyelidikan mengenai kesehatan penggunaan ekstrak pala di dalam makanan atau bahan mentah. Otot daging lembu adalah sensitif semasa penyimpanan (pertumbuhan mikroorganisma) dan kualiti (warna, rasa dan nutrisi). Oleh itu, cara mengawal dan mengekalkan kualiti daging lembu yang lebih efektif perlu dikaji. Objektif kajian ini adalah untuk menkaji aktiviti antimikrobial buah pala dan menkaji kesehatan penggunaan ekstrak pala terhadap pertumbuhan mikroorganisma dan ciri-ciri sensori daging lembu. Kajian ini menggunakan ekstrak pala (Myristica fragrans Houtt.) pada kepekatan yang berbeza; 0.25%, 0.65%, 1.25%, 2.50% and 5.00% (g/ml) telah digunakan untuk memerap daging lembu (2.5 x 2.5 x 1.0 cm; 4 ± 0.5 g). Sampel kemudiannya dibungkus secara individu di dalam bekas bungkus dan disimpan selama 3 minggu pada suhu -18°C ± 1 dan 4 ± 1°C. Kesimpulan menunjukkan pertumbuhan Bacillus subutilis, Esherichia coli, Klebsiella pneumonia dan Listeria monocytogene terjejas oleh ekstrak pala. Aktiviti antimikrobiol buah pala tidak terkesan oleh perubahan kondisi pH (3, 7 dan 11) dan suhu (121°C). Kesimpulan menunjukkan terdapat perbezaan kesehatan yang ketara (p<0.05) terhadap kepekatan ekstrak dalam pengurangan pertumbuhan mikroorganisma pada daging lembu. Pemerapkan pada 5.00% menunjukkan pengurangan pertumbuhan L. monocytogenes dan E. coli paling besar sebanyak 2.10 dan 4.54 log10 CFU/g. Pada suhu penyimpanan 4°C, penggunaan 1.25% dan ke atas ekstrak pala menunjukkan keberkesanan terhadap anti-mikrobial pada daging lembu. Maka, keputusan ini menyimpulkan bahawa keberkesanan pengurangan pertumbuhan mikroorganisma dalam daging adalah daripada penerapan ekstrak dan bukan disebabkan kesan suhu. Bagi ujian pengoksidaan lemak, kaedah TBARs value digunakan dalam kajian ini. Keputusan menunjukkan perbezaan yang ketara (p<0.05) terhadap kepekatan ekstrak dalam hasil TBARS value. Kepekatan pada 1.25% dan ke atas ekstrak pala juga menunjukkan pengurangan penghasilan TBARS value dan ini bermaksud bahawa ekstrak dapat mengekalkan kestabilan pengoksidaan lemak daging lembu pada kedua-dua suhu. Pada kepekatan 1.25% dan ke atas ekstrak menunjukkan dapat mengekalkan warna merah (a*) daging lembu apabila dibandingkan dengan daging perap dan tidak diperap. Nilai pH bagi sampel yang diperap dan tidak diperap memberi perbezaan yang ketara (p<0.05). Bagi
ujian tekstur daging lembu keputusan menunjukkan terdapat perbezaan yang ketara dibandingkan pada sampel yang diperap dan tidak diperap bermula pada hari ke 7 penyimpanan. Pada kepekatan 0.65% dan ke atas ekstrak dapat mengekalkan tekstur semasa penyimpanan. Bagi analisis proksimat, tiada perbezaan ketara dari segi kandungan protein dalam semua sampel. Walaubagaimanapun, kepekatan ekstrak pala mempengaruhi kandungan lemak dan kelembapan dengan menunjukkan perbezaan ketara (p<0.05). Secara keseluruhan, kepekatan 1.25% ekstrak pala dipilih sebagai kombinasi terbaik untuk diaplikasikan kepada daging lembu berdasarkan skor tertinggi ujian penilaian deria dan semua hasil analisis bagi memelihara kualiti dan keselamatan daging dan juga mengekalkan sifat organoleptik.
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

Alhamdulillah. Thanks to Allah SWT, who with His willing giving me the opportunity and strength to complete this research project entitled Antimicrobial activity of Nutmeg (Myristica fragrans Houtt.) and sensory attribute of beef treated with the nutmeg extract.

I would like to express my heartiest gratitude and appreciation to my supervisor, Associate Prof. Dr. Yaya Rukayadi, for his supervision, helpful, advises, suggestions and effective comments throughout this research. Appreciation also is extended to my co-supervisor, Associate Prof. Dr. Faridah Abas towards the success in completing this study.

Sincere thanks to my laboratory mates, Nurul Syazwani, Lau Kah Yan, Ying Ling Nurul Husna, Sylvester, Aimi Syazana and Alyani for their generous help. Thank you to all laboratory assistants and staff from Biochemistry, Microbiology, Food Engineering and Processing lab, En. Zulkefli, Cik Asikin, Cik Fateahah, En. Azman, Pn. Hafizah, Pn. Rosmawati, Pn, Asmawati, En. Amran and Pn Jamilah for their outstanding technical help.

My heartfelt and special gratitude to my parents, Prof. Dr. Zakaria bin Mohd Amin and Puan Marianna Istiati, family members and friends for their love, care, and understanding. Last but not least, I would like to thank my husband, Wan Muhammad Iqra’, who offered me tremendous support, encouragement throughout my years in UPM.
I certify that a Thesis Examination Committee has met on 22 May 2015 to conduct the final examination of Maya Puteri Malina bt. Zakaria on her master thesis entitled Antimicrobial activity of Nutmeg (Myristica fragrans Houtt.) and sensory attribute of beef treated with the nutmeg extract in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. Committee recommends that the student be awarded the Master of Science (Food Science).

Members of the Examination Committee were as follows:

Nor Ainy binti Mahyudin, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Anis Shobirin binti Meor Hussin, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Zaiton Hassan, PhD
Associate Professor
Universiti Sains Islam Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the Master of Science. The members of the Supervisory Committee were as follows:

Yaya Rukayadi, PhD
Assocciate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Faridah Abas, PhD
Assocciate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duty referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions.
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (research) Rules 2012;
- there is no plagiarism, or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. This thesis has undergone plagiarism detection software.

Signature: ___________________ Date: ____________________

Name and Matric No: Maya Puteri Malina bt. Zakaria (GS 34692)
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervisions responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _____________________
Name of Chairman of Supervisory Committee: Assoc. Prof. Dr. Yaya Rukayadi

Signature: _____________________
Name of Member of Supervisory Committee: Assoc. Prof. Dr. Faridah Abas
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives</td>
<td>2</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Beef</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Nutrition value of beef</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Biochemistry of beef</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Physical properties of beef</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Microbial Growth of Beef during Storage</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Factors influence growth of bacteria</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Escherichia coli</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3 Listeria monocytogenes</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Lipid Oxidation</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Mechanism of lipid oxidation</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 Factors affect lipid oxidation</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Herbs and Spices</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1 Extraction of herb and spices</td>
<td>12</td>
</tr>
<tr>
<td>2.4.2 Use of herb and spices on antimicrobial activity</td>
<td>12</td>
</tr>
<tr>
<td>2.4.3 Uses of herb and spices on lipid oxidation</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Nutmeg</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1 Morphological description</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2 Active compound in nutmeg</td>
<td>21</td>
</tr>
<tr>
<td>2.5.3 Nutmeg as medicinal treatment</td>
<td>21</td>
</tr>
<tr>
<td>2.5.4 Nutmeg as antibacterial and antioxidant agent</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Mechanism antibacterial activity action</td>
<td>23</td>
</tr>
<tr>
<td>3 MATERIALS AND METHODOLOGY</td>
<td>24</td>
</tr>
<tr>
<td>3.1 Sample and Chemical</td>
<td>24</td>
</tr>
<tr>
<td>3.1.1 Dried nutmeg</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2 Beef</td>
<td>24</td>
</tr>
<tr>
<td>3.1.3 Chemicals</td>
<td>24</td>
</tr>
<tr>
<td>3.1.4 Preparation of nutmeg extract</td>
<td>25</td>
</tr>
<tr>
<td>3.1.5 Beef sample preparation</td>
<td>26</td>
</tr>
</tbody>
</table>
3.2 Effect of Nutmeg (*Myristica fragrans* Houtt.) Extract on Eight Species Foodborne Pathogens and Microbial Growth of Beef at Different Concentration and Storage (OBJECTIVE ONE)

3.2.1 Tested microorganism and inoculum preparation 26
3.2.2 Disc diffusion test using nutmeg extract against food pathogens 26
3.2.3 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determination 27
3.2.4 Heat and pH stability test of nutmeg extract 27
3.2.5 Enumeration of microorganism existing on beef 27

3.3 The Effect of Nutmeg Extract on Sensory Attributes of Beef at Different Concentration and Storage (OBJECTIVE TWO)

3.3.1 Analysis of Thiobarbituric Acid Reactive Substance (Lipid Oxidation) 28
3.3.2 Colour analysis 28
3.3.3 Measurement the pH 28
3.3.4 Texture analysis 28
3.3.5 Moisture analysis 29
3.3.6 Fat content analysis 29
3.3.7 Protein content analysis 29

3.4 Examine The Acceptance of Consumer towards Nutmeg Extract Applied on Treated Beef at Different Concentration (OBJECTIVE THREE)

3.4.1 Sensory evaluation of treated beef 30

3.5 Data analysis 30

4 RESULTS AND DISCUSSION

4.1 Extraction of Nutmeg (*Myristica fragrans* Houtt.) 31
4.2 Antibacterial activity of Nutmeg Extract against Foodborne Pathogens 32
4.3 Effect of Different Concentration of Nutmeg Extract on Total Plate Count, Coliform, *Escherichia coli* and *Listeria monocytogenes* of Beef at Different Storage 35
4.4 Effects of Control (Untreated), Deionized Water and Different Concentration of Nutmeg Extract on the Lipid Oxidation (TBARS) of Beef during Storage at -18°C and 4°C 43
4.5 Effects of Control (Untreated), Deionized Water and Different Concentration of Nutmeg Extract on the Colour of Beef during Storage at -18°C and 4°C 45
4.6 Effects of Control (Untreated), Deionized Water and Different Concentration of Nutmeg Extract on the pH value of Beef During Storage at -18°C and 4°C 52
4.7 Effects of Control (Untreated), Deionized Water and Different Concentration of Nutmeg Extract on the Promixate Analysis of Beef during Storage at -18°C and 4°C 55
4.8 Effects of Control (Untreated), Deionized Water and Different Concentration of Nutmeg Extract on the Hardness of Beef during Storage at -18°C and 4°C

4.9 The Sensory Evaluation of Treated Beef With Nutmeg Extract

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SUMMARY, CONCLUSION AND RECOMMENDATIONS</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>SUMMARY</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CONCLUSIONS</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>RECOMMENDATIONS</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>BIODATA OF STUDENT</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>116</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nutritional compositions (per 100 g) of beef</td>
</tr>
<tr>
<td>2</td>
<td>Infection by microorganism on beef or beef product</td>
</tr>
<tr>
<td>3</td>
<td>Applications of herb and spices on beef or beef product</td>
</tr>
<tr>
<td>4</td>
<td>Effect of herb and spice extract in beef or beef product on formation of thiobarbituric acid reactive substance (TBARS)</td>
</tr>
<tr>
<td>5</td>
<td>Active compounds in different parts of nutmeg</td>
</tr>
<tr>
<td>6</td>
<td>Composition of essential oil and its relative percentages</td>
</tr>
<tr>
<td>7</td>
<td>Preparation of media for microorganism and its antimicrobial activity</td>
</tr>
<tr>
<td>8</td>
<td>Percentage of yield for dried nutmeg powder extraction</td>
</tr>
<tr>
<td>9</td>
<td>Antibacterial activity and stability of 1% of nutmeg extract</td>
</tr>
<tr>
<td>10</td>
<td>Representative the colour analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef during storage at temperature - 18 ± 2°C (a) and 4 ± 2°C (b).</td>
</tr>
<tr>
<td>11</td>
<td>Representative the pH analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef during storage at temperature - 18 ± 2°C (a) and 4 ± 2°C (b).</td>
</tr>
<tr>
<td>12</td>
<td>Comparison mean sensory scores between the treatment effects at 0.00%, 0.25%, 0.65%, 1.25%, 2.50% and 5.00% concentration with non-treated of nutmeg extract on beef</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A cross section of muscle</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Formation of cross bridge between the head of myosin and the actin</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Aromatic rings capable donating the H● to the free radical</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Parts of nutmeg</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Structure of major components in nutmeg</td>
<td>19</td>
</tr>
<tr>
<td>6(a)</td>
<td>Representative the Total Bacterial Count on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature (-18 \pm 2^\circ\text{C}) for 21 days</td>
<td>35</td>
</tr>
<tr>
<td>6(b)</td>
<td>Representative the Total Bacterial Count on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature (4 \pm 2^\circ\text{C}) for 14 days</td>
<td>36</td>
</tr>
<tr>
<td>7(a)</td>
<td>Representative the coliform count on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature (-18 \pm 2^\circ\text{C}) for 21 days</td>
<td>37</td>
</tr>
<tr>
<td>7(b)</td>
<td>Representative the coliform count on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature (4 \pm 2^\circ\text{C}) for 14 days</td>
<td>38</td>
</tr>
<tr>
<td>8(a)</td>
<td>Representative the Escherichia coli on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature (-18 \pm 2^\circ\text{C}) for 21 days</td>
<td>39</td>
</tr>
<tr>
<td>8(b)</td>
<td>Representative the Escherichia coli on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature (4 \pm 2^\circ\text{C}) for 14 days</td>
<td>39</td>
</tr>
</tbody>
</table>
9(a) Representative the *Listeria monocytogenes* on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature -18 ± 2°C for 21 days.

9(b) Representative the *Listeria monocytogenes* on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature 4 ± 2°C for 14 days.

10(a) Representative the TBARs value analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature -18 ± 2°C for 21 days.

10(b) Representative the TBARs value analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature 4 ± 2°C for 14 days.

11(a) Representative the moisture content analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature -18 ± 2°C for 21 days.

11(b) Representative the moisture content analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature 4 ± 2°C for 14 days.

12(a) Representative the protein content analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature -18 ± 2°C for 21 days.

12(b) Representative the protein content analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature 4 ± 2°C for 14 days.

13(a) Representative the fat content analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature -18 ± 2°C for 21 days.

13(b) Representative the fat content analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature 4 ± 2°C for 14 days.
14(a) Representative the texture analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature -18 ± 2°C for 21 days.

14(b) Representative the texture analysis on effects of different concentration of nutmeg extract with non-treated (control) and 0.00% (DIW) on the raw beef after storage at temperature 4 ± 2°C for 14 days.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ADP</td>
<td>Diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Triphosphate</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally Recognized Safe</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>M. fragrans</td>
<td>Myristica Fragrans</td>
</tr>
<tr>
<td>Mb</td>
<td>Deoxymyoglobin</td>
</tr>
<tr>
<td>Mbo</td>
<td>Oxymyoglobin</td>
</tr>
<tr>
<td>MetMb</td>
<td>Metmyoglobin</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibition Concentration</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MDA</td>
<td>Malonaldehyde</td>
</tr>
<tr>
<td>MHA</td>
<td>Mueller Hinton Broth</td>
</tr>
<tr>
<td>MHB</td>
<td>Mueller Hinton Agar</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Analysis</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric Acid Reactive Substances</td>
</tr>
<tr>
<td>TFC</td>
<td>Total Flavonoid Content</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Plate Count</td>
</tr>
<tr>
<td>DIW</td>
<td>Deionized water</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

Beef is a highly perishable food and need special protection to extend its shelf life. Microbial growth is a major concern for consumer and food producer because microorganisms are potentially can cause foodborne illness. Foodborne pathogens can grow in food due to its sufficient nutrients that can support many types of microorganism. These microorganisms can contribute undesirable reactions changes such as in odour, flavor, colour and textural properties (Ferguson et al., 2001). Storage condition such as temperature, water content and absence or presence of oxygen can be factors affecting the growth of microorganism in foods (Malikarjunan and Mittal, 1996).

Rancidity and deterioration of colour are the most common problems during storage (Delaquis et al., 1999; Tan and Chen, 2005). Rancidity is lipid oxidation reaction that occurs when the meat is stored at extended time in the presence of oxygen. During distribution and display, beef meat is exposed to the oxidation; oxymyoglobin to metmyoglobin which leads to the discoloration of beef meat (Mancini and Hunt, 2005). Beef colour influences consumer preferences of purchasing beef product where bright red looking fresh beef is indicator of wholesomeness.

Several preservations techniques have been used to improve the beef freshness including heat treatment, salting, and acidification (Davidson and Taylor, 2007). However, these techniques can cause deterioration of nutrient value and safety of the food (Annalisa et al., 2012). Nitrate is one of the common additives in beef meat to provide some benefits such as reducing microbial growth and enhance the red color of the meat. Regardless of benefits, nitrate can react with amines under circumstances of low pH and high temperature, which then form carcinogenic compound, nitrosamines (Bingham et al., 2002). In recent years, demands of minimal processing and free-synthetic preservatives are increasing because of growing concern among consumers regarding the safety issues of additives in food industry. Thus, food treated with natural preservatives has turn to very popular to inhibit microorganism. There are several ways of use of natural additives, can be directly added in product formulation such as coating, spraying or dipping on its surface of the food (Valeria and Pamela, 2011).

Natural active compound are mainly derived from plants such as bay leaves, lemongrass, clove and basil, and also from animals sources. Plant essential oil has gained high interest in food industry for their potential antimicrobial agent as they are highly accessible, generally safe and free from chemicals (Burt, 2004; De Oliveira et al., 2011). The active compounds in plants essential oil had already been established and frequently studied from time to time due to broad scope of antimicrobial which against foodborne pathogens and spoilage bacteria.
Nutmeg (*Myristica fragrans* Houtt.) is a dried seed kernel, commonly used as spices in cooking for flavoring and aroma. Traditionally, nutmeg has been used as traditional remedy herbs for kidney stones, muscle pain and dental carries (Ashish et al., 2013). Antimicrobial and antioxidant properties were studied as reported nutmeg contain macelignan, myristicin, eugenol, α-pinene, β-pinene (Dorman et al., 2000; Rukayadi et al., 2008a). The main reason to choose nutmeg for this study is that, in spite of its cooking use as well as its antimicrobial and antioxidant properties that were evaluated, there are no analysis on antioxidant and antibacterial potential of nutmeg extract on raw beef or any beef product. Therefore, the aim of this study is to evaluate the effect of nutmeg extract on safety and quality of beef during storage at -18°C and 4°C.

1.2 Objectives

1. To determine the susceptibility of nutmeg (*Myristica fragrans* Houtt.) extract on eight species foodborne pathogens and microbial growth of beef at different concentration and storage.

2. To determine the effect of nutmeg (*Myristica fragrans* Houtt.) extract on sensory attributes of beef meat at different concentration and storage.

3. To examine the acceptance of consumer towards nutmeg (*Myristica fragrans* Houtt.) applied on treated beef meat at different concentration via sensory evaluation test.
REFERENCES

