

UNIVERSITI PUTRA MALAYSIA

MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS AND EXPRESSION OF VP2 PROTEIN FOR THE DEVELOPMENT OF DIAGNOSTIC KIT AND RECOMBINANT VACCINE

NURULFIZA BINTI MAT ISA

FPV 2008 15

MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS AND EXPRESSION OF VP2 PROTEIN FOR THE DEVELOPMENT OF DIAGNOSTIC KIT AND RECOMBINANT VACCINE

 $\mathbf{B}\mathbf{y}$

NURULFIZA BINTI MAT ISA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2008

DEDICATED WITH LOVE AND GRATITUDE TO:

MY HUSBAND MOHD AZRIRUDIN MOHMAD RAZALI, MUMMY (HAZEZAH YEOP ISMAIL), UNCLE (BAHARI YEOP ISMAIL), MOTHER IN LAW (AZIZAH ABDUL AZIZ) AND SON (MUHAMMAD AQIL MUHAIMIN)

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS AND EXPRESSION OF VP2 PROTEIN FOR THE DEVELOPMENT OF DIAGNOSTIC KIT AND RECOMBINANT VACCINE

By

NURULFIZA BINTI MAT ISA

September 2008

Chairman: Professor Dr. Mohd Hair Bin Bejo, Ph.D.

Faculty: Veterinary Medicine

Outbreak of infectious bursal disease (IBD) in chickens due to highly pathogenic strain of IBD virus (vvIBDV) was first reported in Europe in late 1980's and in Malaysia in 1991. The disease caused significant economic losses, estimated more than RM72 million per year in Malaysia alone due to high mortality and immunosuppression. Treatment of IBD is of no value and the disease can only be controlled and prevented by proper vaccination programme and biosecurity. It was the objectives of the study to determine the molecular characteristic of Malaysian field isolates of IBDV and expression of the VP2 gene of the isolate for the development of diagnostic kit and recombinant vaccine. Three IBDV isolates identified as UPM04178, UPM04190 and UPM04238 were characterised. Based on their pathogenicity and sequence characteristic, the highest similarity (98%) concerning both nucleotide and amino acid sequences, the IBDV isolates were characterized as vvIBDV strains. Evolutionary relatedness of the isolates to vvIBDV strains was demonstrated by three phylogenetic methods: bootstrap values of 100%, 95%

and 90% for nucleotide sequences and those of 58%, 86% and 96% for amino acid sequences were obtained by the distance, maximum parsimony and maximum likehood methods, respectively. Phylogenetic analysis revealed clustering of the isolates with vvIBDV strains of serotype 1, which originate from a common ancestor of IBDV strains present in Malaysia.

Using informative characteristics of the isolate, both diagnostic kit and recombinant vaccine were successfully developed using a new wild-type field vvIBDV strain of UPM04190 isolate. A safe and effective recombinant IBD vaccine was developed base on the construction of recombinant VP2 gene of the isolate cloned into an Escherichia coli expression system. The VP2 gene was inserted into pRSET B vector as a fusion protein with histidine tag, which can be easily purified. The recombinant VP2 protein bands were expressed to their expected sizes of ~50 kDa from cell lysate. The pRSET vectors are pUC-derived expression vectors and expression of the gene of interest from pRSET is controlled by the strong phage T7 promoter that drives expression of gene 10 $(\Phi 10)$ which provides protein stability and help to maintain the original structure of the protein. High-level production (3 mg/ml) of soluble product of VP2 recombinant protein was achieved with modified techniques of expression conditions and approaches. Efficacy test demonstrated that the recombinant vaccine of various fractions could provide protection ranging from 75% to 100% in highly susceptible chickens (specific pathogen free chickens) when challenged with vvIBDV (B00/81) at 10^{4.25} EID₅₀/ml per chicken following vaccination. One-step-immunostrip kit which is highly specific and sensitive was developed using whole virus as capture antigen and high-affinity polyclonal

IBD antibodies coated with gold particles. Rapid detection of IBD antibody can be achieved as fast as two minutes in a clinical or field environment. The kit is highly sensitive as it can detect as low as 250 ELISA units compared to commercial ELISA kit that only goes to 391 ELISA units for positive samples. The specificity of the kit was evaluated against antibody of other chicken viruses. No signal of reactivity or cross react exists among the antibodies tested. Thus, it was highly specific to IBDV. It was concluded that the local IBDV isolates were proven to be vvIBDV strain, the constructed recombinant vaccine provide a safe and effective protection and, the developed one-step-immunostrip kit is rapid, specific, sensitive, safe and economic in detection of IBDV infection and monitoring immune status of chicken against IBD.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN SECARA MOLEKUL BAGI VIRUS PENYAKIT BERJANGKIT BURSAL DAN PENGEKSPRESAN PROTEIN VP2 UNTUK PEMBANGUNAN KIT DIAGNOSIS DAN VAKSIN REKOMBINAN

Oleh

NURULFIZA BINTI MAT ISA

September 2008

Pengerusi: Profesor Dr. Mohd Hair Bin Bejo, Ph.D.

Fakulti: Perubatan Veterinar

Wabak penyakit bursa berjangkit (IBD) pada ayam disebabkan oleh strain virus IBD (IBDV) yang sangat patogenik buat pertama kali dilaporkan di Eropah lewat 1980-an dan di Malaysia pada 1991. Penyakit ini menyebabkan kerugian ekonomi secara signifikan, jangkaan kerugian disebabkan kematian dan depresi yang tinggi di Malaysia sahaja melebihi RM72 juta setahun. Rawatan terhadap IBD adalah sia-sia dan penyakit tersebut hanya boleh dikawal dan dicegah melalui program vaksinasi yang betul dan keselamatan secara biologi. Oleh itu, matlamat pengajian kini adalah untuk mengenalpasti ciri-ciri isolat IBDV daripada lading ayam di Malaysia dan pengekspresan protin VP2 bagi isolat tersebut untuk digunakan dalam pembangunan kit analisa dan vaksin rekombinan. Tiga isolate virus yang dikenalpasti sebagai UPM04178, UPM04190 dan UPM04238 telah dicirikan. Berdasarkan kepatogenan dan ciri-ciri jujukan, kesamaan tertinggi (98%) yang memberi tumpuan kepada kedua-dua jujukan nukleotida dan asid-asid amino adalah dicirikan sebagai strain sangat virulen IBDV (vvIBDV). Hubungan secara evolusi bagi

ketiga-tiga isolat terhadap strain vvIBDV ditunjukkan oleh tiga kaedah filogenetik iaitu nilai bootsrap 100%, 95% dan 90% bagi jujukan nukleotida dan; 58%, 86% dan 96% bagi jujukan asid amino yang didapati daripada kaedah "distance", "maximum parsimony" dan "maximum likelihood" setiap satunya. Analisis filogenetik menyimpulkan bahawa ketiga-tiga isolat adalah dikelaskan kepada strain vvIBDV serotaip 1, dimana ianya berasal daripada keturunan strain IBDV yang biasa didapati di Malaysia.

Berbekalkan ciri-ciri berguna bagi isolat tersebut, kedua-dua kit analisa dan vaksin rekombinan telah berjaya dibangunkan menggunakan strain virulen isolat UPM04190 IBDV liar. Vaksin rekombinan IBD yang selamat dan efektif telah dibangunkan berasaskan pembinaan gen VP2 rekombinan bagi isolat tersebut yang diklonkan ke dalam system pengekspresan Escherichia coli. Gen VP2 bagi isolat ini dimasukkan ke dalam vektor pRSET B sebagai protein fusion bersama-sama tag histidin, di mana ianya mudah dibersihkan. Pengekspresan jalur protein VP2 rekombinan adalah pada saiz yang dijangkakan iaitu ~50 kDa daripada lysate sel. Vektor-vektor pRSET adalah merupakan vektor pengekspresan hasilan-pUC dan pengekspresan gen yang diminati daripada vektor pRSET dikawal oleh promoter T7 faj yang kuat yang mengaturkan pengekspresan gen 10 (Φ10) dimana ianya membekalkan kestabilan protein dan membantu mengekalkan struktur asal protein. Penghasilan produk terlarut yang tinggi (3 mg/ml) bagi protein VP2 rekombinan dicapai melalui teknik-teknik pembaharuan bagi kepelbagaian keadaan pengekspresan dan juga permintaan. Ujian keberkesanan menunjukkan bahawa vaksin rekombinan daripada pelbagai pecahan mampu memberi perlindungan pada had 75% sehingga 100% pada ayam yang sangat berpotensi (ayam bebas pathogen tertentu)

apabila dicabar dengan 10^{4.25} EID₅₀/ml vvIBDV (B00/81) setiap ayam sejurus vaksinasi. Kit "one-step-immunostrip" yang sangat spesifik dan sensitif telah dibangunkan menggunakan keseluruhan virus sebagai antigen penangkapan dan poliklonal antibodi IBD berkeafinitian tinggi yang dilapisi dengan partikel emas. Pengenalpastian yang pantas bagi antibodi IBD boleh dicapai sepantas dua minit dalam persembahan klinikal atau ladang. Kit tersebut sangat sensitif hingga mampu mengesan serendah 250 unit ELISA berbanding kit ELISA komersial yang hanya mampu mengesan 391 unit ELISA bagi sampel positif. Ketepatan sistem jalur ujian berasas pepejal dinilai bersandarkan virus-virus ayam. Antibodi virus ayam tersebut yang duji terhadap IBDV yang terperangkap tidak menunjukkan sebarang isyarat dan tindak balas. Oleh itu, ianya sangat spesifik terhadap IBDV. Kesimpulannya, keputusan yang didapati menunjukkan isolatisolat tempatan adalah merupakan strain vvIBDV, vaksin rekombinan yang dibina adalah selamat dan berkesan dalam memberi perlindungan dan, pembangunan kit "one-stepimmunostrip" adalah pantas, spesifik, sensitif, selamat dan ekonomik dalam pengenalpastian jangkitan IBDV, dan pengawalan status imun IBD pada ayam.

ACKNOWLEDGEMENTS

All praise are for Almighty ALLAH, lord of all creations, is heavenly, luxuriates and blessing over me throughout my life and the period of this study.

This thesis is the end of my long journey in obtaining my PhD degree in molecular biology. Behind me, there are some people who made this journey easier with words of encouragement and more intellectually satisfying by offering different places to look to expand my theories and ideas.

I would like to express my heartiest gratitude and appreciation to my supervisor, Professor Dr. Mohd Hair Bejo, for providing invaluable advice, constant guidance, support, encouragement and untiring assistance that enables me to accomplish my PhD research. He challenged me to set my benchmark even higher and to look for solutions to problems rather than focus on the problem. I learned to believe in my future, my work and myself. Thank you Professor.

I would like to express my sincere thanks and appreciation to Professor Dr. Aini Ideris and Associated Professor Dr. Abdul Rahman Omar, my co-supervisors for their constructive suggestion, proper guidance and encouragement throughout my study period.

I am grateful to Dr. Goh Yong Meng for helping and guiding me in SPSS statistical analysis. Special thanks also go to Prof. Dr. Abdul Rani Bahaman, Prof. Dr. Mohd Zamri

Saad, Assoc. Prof. Dr. Siti Suri Arshad, Dr. Siti Khairani Bejo and Dr. Zunita Zakaria for allowing me to do some work in their lab.

This work would not have been possible without the support and helping hand from the lab staffs, Siti Khadijah, En. Saipuzaman Ali, and En. Mohd Kamaruddin. I would also like to gratefully acknowledge the support of some very special individuals; Karuna Sharma, Sayed Davood Hosseini, Dr. Roosevein, Wan Keng Fei, Kenny, Khor, May Ling, Dr. Tan Do Yew, Koh Lih Ling, Tan Sheau Wei, Dr. Tan Ching Giap, Hazalina, Nurul Hidayah, Zarirah, Dzarifah, Zuraida, Zulkifli, and Maureen. They helped me immensely by giving me encouragement and friendship. They mirrored back my ideas so I heard them aloud, an important process for this writer to shape her thesis paper and future work.

I would also like to thank the Council for the award of the National Science Fellowship, which has supported me during my three years of research, and for the award of travel grant, an attachment study to University of Surrey, Guildford, UK for one month.

Lastly, and most importantly, I wish to thank my hubby, Mr. Mohd Azrirudin Mohmad Razali and my parents (mummy, uncle Bahari, Aunty Nora and my younger brother Firdaus). Not to forget, special gratitude also to my late grandfather and my family in law. They bore me, raised me, supported me, taught me, and loved me. To them I dedicate this thesis.

I certify that an Examination Committee has met on 22nd September 2008 to conduct the final examination of Nurulfiza Mat Isa on her Doctor of Philosophy thesis entitled "Molecular Characterisation of Infectious Bursal Disease Virus and the Expression of VP2 Protein for the Development of Diagnostic Kit and Recombinant Vaccine" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Saleha Abdul Aziz, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Abdul Rani Bahaman, PhD

Professor Faculty of Veterinary Medicine University Putra Malaysia (Internal Examiner/Member)

Siti Suri Arshad, PhD

Associate Professor Faculty of Veterinary Medicine University Putra Malaysia (Internal Examiner/Member)

Lisa Roberts, PhD

Senior Lecturer
School of Biomedical and Molecular Sciences
University of Surrey
United Kingdom
(External Examiner)

HASANAH MOHD. GHAZALI, Ph.D

Professor and Deputy Dean School of Graduate Studies University Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Hair Bejo, PhD

Professor Faculty of Veterinary Medicine University Putra Malaysia (Chairman)

Abdul Rahman Omar, PhD

Associated Professor Faculty of Veterinary Medicine University Putra Malaysia (Member)

Aini Ideris, PhD

Professor Faculty of Veterinary Medicine University Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies University Putra Malaysia

Date: 19 December 2008

DECLARATION

I declare that the thesis is my original work excessive been duly acknowledged. I also declare that concurrently, submitted for any other degree at Uninstitution.	it has not been previously, and is not
	NURULFIZA MAT ISA
	Date:

TABLE OF CONTENTS

			Page
DE	DICAT	ION	ii
AB	STRAC	T	iii
	STRAK		vi
		LEDGEMENTS	ix
	PROVA		Χİ
	CLARA		xiii
		ABLES	X1X
		IGURES PROPERTY FLONG	XX1
LIS	ST OF A	BBREVIATIONS	XXV
СН	APTER		
1	INTI	RODUCTION	1
2	LITI	ERATURE REVIEW	12
_	2.1	Infectious Bursal Disease	12
		2.1.1 Clinical Signs and Gross Lesions	13
		2.1.2 Histopathology	15
		2.1.3 Pathogenesis	16
		2.1.4 Immunosuppression	17
		2.1.5 Epidemiology of IBD	22
		2.1.6 Transmission	24
	2.2	Infectious Bursal Disease Virus	25
		2.2.1 IBDV Genome Organisation	26
		2.2.2 IBDV 3D Structure	27
		2.2.3 IBDV Replication Mechanism and its Efficiency	30
		2.2.4 Viral Proteins	33
		2.2.5 Antigenic and Virulence Variation	37
	2.2	2.2.6 IBDV in Medical Research	40
	2.3	Diagnosis of IBD	42
		2.3.1 Clinical and Histopathological Diagnosis	44
		2.3.2 Serological Diagnosis	45
	2.4	2.3.3 Virological Diagnosis Control and Prevention of IBD	52 56
	∠.4	2.4.1 Exclusion or Eradication	57
		2.4.1 Exclusion of Eradication 2.4.2 Vaccination	58
		2.4.2 Vaccination 2.4.3 Anti Viral Drugs and Genetic Selection for Resistance	62

3 ISOLATION, IDENTIFICATION AND MOLECULAR CHARACTERISATION OF LOCAL INFECTIOUS BURSAL DISEAS	64 E
VIRUS ISOLATES	_
3.1 Introduction	64
3.2 Materials and Methods	67
3.2.1 IBDV Isolation	67
3.2.2 Processing of Samples	68
3.2.3 Experimental Infection in Specific Pathogen Free	69
Embryonated Chicken Eggs	
Chorioallantoic Membrane Preparation	69
IBDV Inoculation	69
3.2.4 Extraction of Viral RNA	70
3.2.5 Determination of RNA Concentration and Purity	71
3.2.6 Primer Design	71
3.2.7 cDNA Synthesis and PCR Amplification	73
3.2.8 Gel Electrophoresis and Ethidium Bromide Staining	73
3.2.9 Purification of PCR Products	74
3.2.10 Cloning of the Full-Length VP2 Genes	75
3.2.11 Plasmid Extraction and Purification	76
3.2.12 Restriction Enzyme Digestion Analysis	77
3.2.13 DNA Sequencing	77
3.2.14 Sequence Assembly and Analysis using Bioinformat Software	tics 78
3.2.15 Phylogenetic Analyses	80
3.2.16 Experimental Infection in SPF Chickens	81
3.2.17 Histopathology	81
3.2.18 IBDV Purification	82
3.3 Results	83
3.3.1 Experimental Infection in SPF Embryonated Chicken Eggs	83
3.3.2 Amplification and Cloning of IBDV VP2 Genes	83
3.3.3 Analysis of Recombinant Plasmid	84
3.3.4 Virtual Restriction Enzyme Analysis	85
3.3.5 Nucleotides and Amino Acids Sequence Analysis of the HP of VP2 Gene	VR 90
3.3.6 Phylogenetic analyses	91
3.3.7 Experimental Infection in SPF chickens	113
3.3.8 Gross and Microscopic Lesions	113
3.4 Discussion	115
3.5 Conclusion	119
4 THE EXPRESSION OF VP2 PROTEIN OF UPM04190 vvIBDV IN ESHERICHIA COLI SYSTEM	121
4.1 Introduction	121
4.2 Materials and Methods	
4 Z Waterials and Methods	123

			Ligation of VP2 Gene into pRSET B Vector	123
			Transformation of Ligation Mixture into TOP 10 E.	124
			coli Cells	104
		4.2.2	Identification and Verification of Positive Clones	124
		4.2.2	Protein Expression and Analysis	125
			Preparation of Competent BL21 Cells	125
			Transformation into BL21 (DE3) pLysS Cell	125
			Expression of VP2 Protein and Small-scale	126
			Optimization	107
			Cell Harvesting SDS-PAGE	126
				127
			Gel Preparation	127
			Sample Preparation	128 128
			Staining and Destaining Gel	128
			Western Blotting and Immuno Detection of Transferred Protein onto Nitrocellulose Membrane	120
			Solubility Analysis of the VP2 Expression Protein	129
			The Bradford Assay	130
	4.3	Results	The Diagrord Assay	131
	4.5	4.3.1	Generating VP2 Construct	131
		4.3.1	Expression and Detection of VP2 Recombinant Protein	131
		4.3.3	Solubility Analysis and Protein Quantification	132
	4.4	Discuss		138
	4.5	Conclus		141
5			CITY AND IMMUNOGENICITY OF THE VP2 NT PROTEIN IN SPECIFIC PATHOGEN FREE	142
		CKENS	IVI I KOTEM IN SI ECHTE I MITOGENT KEE	
	5.1	Introduc	etion	142
	5.2		ls and Methods	146
		5.2.1	Large-scale Production of VP2 Recombinant Protein	146
			Growing of Culture and Protein Expression	146
			Sonication	146
			Quantification of Protein	147
		5.2.2	Preparation of Challenge Virus	147
			Propagation of B0081 Challenged vvIBDV	147
			Titration of Challenged vvIBDV	148
		5.2.3	Vaccination Trial in SPF Chickens	148
			Layout of the Vaccination Trial	148
			Efficacy Test	149
			Bursa of Fabricius to Body Weight Ratio	150
			Histological Lesion Scoring	151
			Antibody Production Assay	151
			Statistical Analysis	152
	5.3	Results		152

		5.3.1	Clinical Signs	152
			Vaccination Trial	152
			Efficacy Test	152
		5.3.2	Body Weight	157
			Vaccination Trial	157
			Efficacy Test	157
		5.3.3	Bursa Weight	157
			Vaccination Trial	157
			Efficacy Test	158
		5.3.4	Bursa of Fabricius to Body Weight Ratio	158
			Vaccination Trial	158
			Efficacy Test	159
		5.3.5	Gross Lesions	159
			Vaccination Trial	159
			Efficacy Test	159
		5.3.6	Histological Lesions and Scoring	164
			Vaccination Trial	164
			Efficacy Test	166
		5.3.7	Antibody Titers (ELISA)	168
			Vaccination Trial	168
	5.4	ъ.	Efficacy Test	168
	5.4 5.5	Discuss Conclu		172 179
6	DEV	TI ODMI	ENT OF ONE STED IMMUNOSTDID TEST FOD DADID	180
0			ENT OF ONE-STEP-IMMUNOSTRIP TEST FOR RAPID OF IBDV INFECTION	180
	6.1	Introdu		180
	6.2		als and Methods	182
	·	6.2.1	Virus Propagation	182
		6.2.2	Virus Harvesting and Purification	182
		6.2.3	Production of Chicken Hyperimmune Serum	183
		6.2.4	ELISA Determination of Chicken HIS	184
		6.2.5	Immunogold Conjugate	184
		6.2.6	Immobilisation	184
		6.2.7	Construction of Analytical System	185
		6.2.8	Analytical Procedure	186
		6.2.9	Detection and Quantitation	186
		6.2.10	Antigen Concentration in the Immunoassay	188
		6.2.11	Effects of Antigen Purity in Immunoassay	188
		6.2.12	Determination of Optimal Concentration of Conjugate	189
		6.2.13	Sample Amount Determination in the Immunoassay	189
		6.2.14	Reading Time Evaluation	189
		6.2.15	Sensitivity	190
		6.2.16	Specificity	191
		6.2.17	Analyte Standard Dilution	191

	6.3	Results		192
		6.3.1	HIS Titration Determination by ELISA	192
		6.3.2	Effects of Drying Time of Treated Pads of Blocked	194
			Membranes on Recovery of Gold Conjugates	
		6.3.3	Effects of Antigen Concentration as Capture Reagent	194
		6.3.4	Effects of Antigen Purity as Capture Reagent	198
		6.3.5	Determination of Optimal Concentration of Conjugate	198
		6.3.6	Analyte Amount Determination	199
		6.3.7	Reading Time Evaluation	199
		6.3.8	Sensitivity of Solid Based Test Strip for the Detection of IBDV Antibody	202
		6.3.9	Specificity Determination	203
		6.3.10	Analyte Standard Dilution	207
	6.4	Discuss	· · · · · · · · · · · · · · · · · · ·	207
	6.5	Conclus		217
7			ISCUSSION, CONCLUSION AND RECOMMENDATIONS E RESEARCH	219
	7.1		1 Discussion	219
	7.2			225
	7.3	Recomi	mendations for Future Research	226
	RIRI	LIOGRAI	PHY	229
		ENDICE		261
			F STUDENT	281
	_	_	BLICATIONS	282
	_			

LIST OF TABLES

Table		Page
3.1	Brief histories of the three IBDV isolates	68
3.2	Primers used to amplify the HPVR and full-length of VP2 gene (1.35kb)	72
3.3	Primers used to sequence the VP2 gene of IBDV isolates	72
3.4	IBDV isolates used in the sequence and phylogenetic analyses	79
3.5	Summary of the proposed molecular markers (amino acid residues) of UPM04178, UPM04190, and UPM04238 IBDV isolates with other published IBDV Strains	106
3.6	Number of nucleotide differences in HPVR of VP2 gene between IBDV isolates	108
3.7	Types of mutation of HPVR of VP2 gene	109
5.1	Groups of vaccination and efficacy trial definition	150
5.2	Rate of mortality at 10 days post-challenged and the percentage of protection based on the number of chickens that survived	155
5.3	Body weight of chickens in the vaccinated groups before and after IBDV challenged throughout the trial	160
5.4	Bursa weight of chickens in the vaccinated groups before and after IBDV challenged throughout the trial	161
5.5	Bursa to body weight ratio $(1x10^{-3})$ of chickens in the vaccinated groups before and after IBDV challenged throughout the trial	162
5.6	Lesions scoring of chickens bursal in the vaccinated groups before and after IBDV challenged throughout the trial	171
5.7	Antibody titers (mean titer <u>+</u> standard deviation) to IBDV determined by ELISA in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial	172
6.1	Samples used in sensitivity test of the immunoassay paper strip	190

6.2	Samples for a standard dilution of the immunoassay paper strip performance	192
6.3	Effect on test strips performance using different purity of virus antigen as capture reagent	198
6.4	Sensitivity performance of solid based test strip method based on ELISA titer obtained	204
6.5	Analyte standard dilution determination	208

LIST OF FIGURES

Figure		Page
2.1	Schematic representation of the genomic organization of IBDV	27
2.2	Three-dimensional map of IBDV	29
2.3	Schematic representation of a possible IBDV replication mechanism	32
3.1	Gross lesions of the control and IBDV infected (UPM04190) SPF chicken embryos	84
3.2	Hypervariable region (643 bp) amplification of IBDV VP2 genes	86
3.3	Amplified full-length 1.35 kb IBDV VP2 genes	86
3.4	PCR screening on ten white colonies of UPM04190 IBDV isolate	87
3.5	Purified plasmids digested with <i>Eco</i> R1 enzyme (MBI Fermentas, Lithuania)	87
3.6	PCR screening on ten white colonies of UPM04178 and UPM04238 IBDV isolates	88
3.7	Virtual restriction enzyme analysis of the HPVR of VP2 gene	89
3.8	Nucleotide sequences and translation of amino acid of UPM04190 IBDV isolate	92
3.9	Nucleotide sequences and translation of amino acid of UPM04178 IBDV isolate	93
3.10	Nucleotide sequences and translation of amino acid of UPM04238 IBDV isolate	94
3.11	Nucleotide sequence alignment of UPM04190, UPM04178 and UPM04238 IBDV isolates	95 – 102
3.12	Amino acid sequence alignment of UPM04190, UPM04178 and UPM04238 IBDV isolates	103 – 105
3.13	Sequence identity matrix of VP2 genes of IBDV isolates	107

3.14	Amino acid substitutions of VP2 gene	110
3.15	Phylogenetic analysis of nucleotide sequences (A, B and C) of 25 IBDV	111
3.16	Phylogenetic analysis of amino acid sequences (D, E and F) of 25 IBDV	112
3.17	Gross lesions of the normal and IBDV (UPM04190) infected SPF chickens	114
3.18	Histological lesions of the normal and IBDV (UPM04190) infected bursa of Fabricius	114
4.1	Agarose gel electrophoresis of pRSET B expression vector and recombinant plasmid before (TOPO TA vector + VP2 insert) and after restriction enzyme (RE) digestion (double digested with <i>Bgl</i> 11 and <i>EcoR</i> 1 (MBI Fermentas, Lithuania) enzyme)	133
4.2	Agarose gel electrophoresis of PCR colony screening of ligation transformation onto TOP 10 <i>E. coli</i> cells	134
4.3	Agarose gel electrophoresis of PCR colony screening of recombinant plasmid transformation onto BL21 (DE3) pLysS <i>E. coli</i> cells	134
4.4A	Expression of full length VP2 protein in pRSET B plasmid onto BL21 (DE3) pLysS <i>E. coli</i> cells	135
4.4B	Expression of full length VP2 protein in pRSET B plasmid onto BL21 (DE3) pLysS <i>E. coli</i> cells	136
4.5	Solubility test of full length VP2 protein in pRSET B plasmid onto BL21 (DE3) pLysS <i>E. coli</i> cells	137
5.1A	Healthy chickens in Group 1: positive control group of the unvaccinated unchallenged chickens at day 2 of the vaccination trial	156
5.1B	Dead chicken in Group 6: <i>E. coli</i> VP2 recombinant protein group (<i>E. coli</i> VP2+adj) at day 3 post vv IBDV challenged	156
5.2	Severe depression, drowsiness, ruffled feathers and whitish diarrhea of SPF chickens in Group 1: positive control group of the unvaccinated challenged chickens at day 2 post vv IBDV challenged	156

5.3	Body weight (g) of chickens in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial	274
5.4	Bursa weight of chickens (g) in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial	274
5.5	Bursa to body weight ratio (1x10 ⁻³) of chickens in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial	275
5.6	Bursa of Fabricius with severe haemorrhagie and oedematous of SPF chickens in the Group 1: positive control at day 3 post-challenged	165
5.7	Moderate muscle haemorrhages (arrow) of SPF chickens in the Group 7: <i>E. coli</i> VP2 oral challenged with vvIBDV at day 3 post-challenged	165
5.8A	Bursa of Fabricius of SPF chickens in the control group. Day 0 of vaccination trial (lesion scoring of 0). (HE, 40X).	169
5.8B	Bursa of Fabricius of SPF chickens in the control group. Day 20 of vaccination trial (lesion scoring of 1). (HE, 100X).	169
5.9A	Bursa of Fabricius of SPF chickens in the vaccinated groups at day 20 of vaccination trial. Group 5 (insoluble) at lesion scoring of 1. (HE, 100X).	169
5.9B	Bursa of Fabricius of SPF chickens in the vaccinated groups at day 20 of vaccination trial. Group 2 ($E.\ coli$ control) at lesion scoring of $0-1$. (HE, $100X$).	169
5.10A	Bursa of Fabricius of SPF chickens in the Group 1b (control unvaccinated challenged). Day 0 of pre-challenged (lesion scoring of 1). (HE, 100X).	170
5.10B	Bursa of Fabricius of SPF chickens in the Group 1b (control unvaccinated challenged). Day 3 post IBDV challenged (lesion scoring of 5) with severe acute necrotizing bursitis in the dead chicken. (HE, 40X).	170
5.11A	Bursa of Fabricius of SPF chickens in the vaccinated challenged groups at day 10 post IBDV challenged. Group 5 (insoluble) at lesion scoring of 5. (HE, 100X). Severe chronic bursitis.	170
5.11B	Bursa of Fabricius of SPF chickens in the vaccinated challenged	170

	groups at day 10 post IBDV challenged. Group 2 (<i>E. coli</i> control) at lesion scoring of 5. (HE, 100X). Severe chronic bursitis.	
5.12	Bursa lesions scoring of chickens in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial	275
5.13	ELISA antibody titers against IBDV in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial	276
6.1	Membrane strip assay based on immunochromatography and the concept of detection	187
6.2	Hyperimmune serum production in SPF chickens	193
6.3	Migration of carrier solution by capillary action	196
6.4	Optimisation of IBDV antigen	197
6.5	Optimisation of gold conjugate	200
6.6	Sample amount determination	201
6.7	Test strip sensitivity performance	205
6.8	Examples of positive (A) and negative tests (B) for antibody against IBD virus detection using solid based test strip	206
6.9	Cross reactivity test performance with various antibodies	206

