MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS AND EXPRESSION OF VP2 PROTEIN FOR THE DEVELOPMENT OF DIAGNOSTIC KIT AND RECOMBINANT VACCINE

NURULFIZA BINTI MAT ISA

FPV 2008 15
MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS AND EXPRESSION OF VP2 PROTEIN FOR THE DEVELOPMENT OF DIAGNOSTIC KIT AND RECOMBINANT VACCINE

By

NURULFIZA BINTI MAT ISA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2008
DEDICATED WITH LOVE AND GRATITUDE
TO:

MY HUSBAND MOHD AZRIRUDIN MOHMAD RAZALI, MUMMY (HAZEZAH YEOP ISMAIL), UNCLE (BAHARI YEOP ISMAIL), MOTHER IN LAW (AZIZAH ABDUL AZIZ) AND SON (MUHAMMAD AQIL MUHAIMIN)
MOLECULAR CHARACTERISATION OF INFECTIOUS BURSAL DISEASE VIRUS AND EXPRESSION OF VP2 PROTEIN FOR THE DEVELOPMENT OF DIAGNOSTIC KIT AND RECOMBINANT VACCINE

By

NURULFIZA BINTI MAT ISA

September 2008

Chairman: Professor Dr. Mohd Hair Bin Bejo, Ph.D.

Faculty: Veterinary Medicine

Outbreak of infectious bursal disease (IBD) in chickens due to highly pathogenic strain of IBD virus (vvIBDV) was first reported in Europe in late 1980’s and in Malaysia in 1991. The disease caused significant economic losses, estimated more than RM72 million per year in Malaysia alone due to high mortality and immunosuppression. Treatment of IBD is of no value and the disease can only be controlled and prevented by proper vaccination programme and biosecurity. It was the objectives of the study to determine the molecular characteristic of Malaysian field isolates of IBDV and expression of the VP2 gene of the isolate for the development of diagnostic kit and recombinant vaccine. Three IBDV isolates identified as UPM04178, UPM04190 and UPM04238 were characterised. Based on their pathogenicity and sequence characteristic, the highest similarity (98%) concerning both nucleotide and amino acid sequences, the IBDV isolates were characterized as vvIBDV strains. Evolutionary relatedness of the isolates to vvIBDV strains was demonstrated by three phylogenetic methods: bootstrap values of 100%, 95%
and 90% for nucleotide sequences and those of 58%, 86% and 96% for amino acid sequences were obtained by the distance, maximum parsimony and maximum likelihood methods, respectively. Phylogenetic analysis revealed clustering of the isolates with vvIBDV strains of serotype 1, which originate from a common ancestor of IBDV strains present in Malaysia.

Using informative characteristics of the isolate, both diagnostic kit and recombinant vaccine were successfully developed using a new wild-type field vvIBDV strain of UPM04190 isolate. A safe and effective recombinant IBD vaccine was developed based on the construction of recombinant VP2 gene of the isolate cloned into an *Escherichia coli* expression system. The VP2 gene was inserted into pRSET B vector as a fusion protein with histidine tag, which can be easily purified. The recombinant VP2 protein bands were expressed to their expected sizes of ~50 kDa from cell lysate. The pRSET vectors are pUC-derived expression vectors and expression of the gene of interest from pRSET is controlled by the strong phage T7 promoter that drives expression of gene 10 (Φ10) which provides protein stability and help to maintain the original structure of the protein. High-level production (3 mg/ml) of soluble product of VP2 recombinant protein was achieved with modified techniques of expression conditions and approaches. Efficacy test demonstrated that the recombinant vaccine of various fractions could provide protection ranging from 75% to 100% in highly susceptible chickens (specific pathogen free chickens) when challenged with vvIBDV (B00/81) at $10^{4.25}$ EID$_{50}$/ml per chicken following vaccination. One-step-immunostrip kit which is highly specific and sensitive was developed using whole virus as capture antigen and high-affinity polyclonal
IBD antibodies coated with gold particles. Rapid detection of IBD antibody can be achieved as fast as two minutes in a clinical or field environment. The kit is highly sensitive as it can detect as low as 250 ELISA units compared to commercial ELISA kit that only goes to 391 ELISA units for positive samples. The specificity of the kit was evaluated against antibody of other chicken viruses. No signal of reactivity or cross react exists among the antibodies tested. Thus, it was highly specific to IBDV. It was concluded that the local IBDV isolates were proven to be vvIBDV strain, the constructed recombinant vaccine provide a safe and effective protection and, the developed one-step-immunostrip kit is rapid, specific, sensitive, safe and economic in detection of IBDV infection and monitoring immune status of chicken against IBD.
Wabak penyakit bursa berjangkit (IBD) pada ayam disebabkan oleh strain virus IBD (IBDV) yang sangat patogenik buat pertama kali dilaporkan di Eropah lewat 1980-an dan di Malaysia pada 1991. Penyakit ini menyebabkan kerugian ekonomi secara signifikan, jangkaan kerugian disebabkan kematian dan depresi yang tinggi di Malaysia sahaja melebihi RM72 juta setahun. Rawatan terhadap IBD adalah sia-sia dan penyakit tersebut hanya boleh dikawal dan dicegah melalui program vaksinasi yang betul dan keselamatan secara biologi. Oleh itu, matlamat pengajian kini adalah untuk mengenalpasti ciri-ciri isolat IBDV daripada lading ayam di Malaysia dan pengekspresan protin VP2 bagi isolat tersebut untuk digunakan dalam pembangunan kit analisa dan vaksin rekombinan. Tiga isolate virus yang dikenalpasti sebagai UPM04178, UPM04190 dan UPM04238 telah dicirikan. Berdasarkan kepatogenan dan ciri-ciri jujukan, kesamaan tertinggi (98%) yang memberi tumpuan kepada kedua-dua jujukan nukleotida dan asid-asid amino adalah dicirikan sebagai strain sangat virulen IBDV (vvIBDV). Hubungan secara evolusi bagi
ketiga-tiga isolat terhadap strain vvIBDV ditunjukkan oleh tiga kaedah filogenetik iaitu nilai bootsrap 100%, 95% dan 90% bagi jujukan nukleotida dan; 58%, 86% dan 96% bagi jujukan asid amino yang didapati daripada kaedah “distance”, “maximum parsimony” dan “maximum likelihood” setiap satunya. Analisis filogenetik menyimpulkan bahawa ketiga-tiga isolat adalah dikelaskan kepada strain vvIBDV serotaip 1, dimana ianya berasal daripada keturunan strain IBDV yang biasa didapati di Malaysia.

Berbekalkan ciri-ciri berguna bagi isolat tersebut, kedua-dua kit analisa dan vaksin rekombinan telah berjaya dibangunkan menggunakan strain virulen isolat UPM04190 IBDV liar. Vaksin rekombinan IBD yang selamat dan efektif telah dibangunkan berasaskan pembinaan gen VP2 rekombinan bagi isolat tersebut yang diklonkan ke dalam system pengekspresan *Escherichia coli*. Gen VP2 bagi isolat ini dimasukkan ke dalam vektor pRSET B sebagai protein fusion bersama-sama tag histidin, di mana ianya mudah dibersihkan. Pengekspresan jalur protein VP2 rekombinan adalah pada saiz yang dijangkakan iaitu ~50 kDa daripada lysate sel. Vektor-vektor pRSET adalah merupakan vektor pengekspresan hasilan-pUC dan pengekspresan gen yang diminati daripada vektor pRSET dikawal oleh promoter T7 faj yang kuat yang mengaturkan pengekspresan gen 10 (Ф10) dimana ianya membekalkan kestabilan protein dan membantu mengekalkan struktur asal protein. Penghasilan produk terlarut yang tinggi (3 mg/ml) bagi protein VP2 rekombinan dicapai melalui teknik-teknik pembaharuan bagi kepelbagaian keadaan pengekspresan dan juga permintaan. Ujian keberkesanan menunjukkan bahawa vaksin rekombinan daripada pelbagai pecahan mampu memberi perlindungan pada had 75% sehingga 100% pada ayam yang sangat berpotensi (ayam bebas pathogen tertentu)
apabila dicabar dengan $10^{4.25}$ EID$_{50}$/ml vvIBDV (B00/81) setiap ayam sejurus vaksinasi. Kit “one-step-immunostrip” yang sangat spesifik dan sensitif telah dibangunkan menggunakan keseluruhan virus sebagai antigen penangkapan dan poliklonal antibodi IBD berkeafinitian tinggi yang dilapis dengan partikel emas. Pengenalpastian yang pantas bagi antibodi IBD boleh dicapai sepantas dua minit dalam persembahan klinikal atau ladang. Kit tersebut sangat sensitif hingga mampu mengesan serendah 250 unit ELISA berbanding kit ELISA komersial yang hanya mampu mengesan 391 unit ELISA bagi sampel positif. Ketepatan sistem jalur ujian berasas pepejal dinilai bersandarkan virus-virus ayam. Antibodi virus ayam tersebut yang duji terhadap IBDV yang terperangkap tidak menunjukkan sebarang isyarat dan tindak balas. Oleh itu, ianya sangat spesifik terhadap IBDV. Kesimpulannya, keputusan yang didapati menunjukkan isolat-isolat tempatan adalah merupakan strain vvIBDV, vaksin rekombinan yang dibina adalah selamat dan berkesan dalam memberi perlindungan dan, pembangunan kit “one-step-immunostrip” adalah pantas, spesifik, sensitif, selamat dan ekonomik dalam pengenalpastian jangkitan IBDV, dan pengawalan status imun IBD pada ayam.
ACKNOWLEDGEMENTS

All praise are for Almighty ALLAH, lord of all creations, is heavenly, luxuriates and blessing over me throughout my life and the period of this study.

This thesis is the end of my long journey in obtaining my PhD degree in molecular biology. Behind me, there are some people who made this journey easier with words of encouragement and more intellectually satisfying by offering different places to look to expand my theories and ideas.

I would like to express my heartiest gratitude and appreciation to my supervisor, Professor Dr. Mohd Hair Bejo, for providing invaluable advice, constant guidance, support, encouragement and untiring assistance that enables me to accomplish my PhD research. He challenged me to set my benchmark even higher and to look for solutions to problems rather than focus on the problem. I learned to believe in my future, my work and myself. Thank you Professor.

I would like to express my sincere thanks and appreciation to Professor Dr. Aini Ideris and Associated Professor Dr. Abdul Rahman Omar, my co-supervisors for their constructive suggestion, proper guidance and encouragement throughout my study period.

I am grateful to Dr. Goh Yong Meng for helping and guiding me in SPSS statistical analysis. Special thanks also go to Prof. Dr. Abdul Rani Bahaman, Prof. Dr. Mohd Zamri
Saad, Assoc. Prof. Dr. Siti Suri Arshad, Dr. Siti Khairani Bejo and Dr. Zunita Zakaria for allowing me to do some work in their lab.

This work would not have been possible without the support and helping hand from the lab staffs, Siti Khadijah, En. Saipuzaman Ali, and En. Mohd Kamaruddin. I would also like to gratefully acknowledge the support of some very special individuals; Karuna Sharma, Sayed Davood Hosseini, Dr. Roosevein, Wan Keng Fei, Kenny, Khor, May Ling, Dr. Tan Do Yew, Koh Lih Ling, Tan Sheau Wei, Dr. Tan Ching Giap, Hazalina, Nurul Hidayah, Zarirah, Dzarifah, Zuraida, Zulkifli, and Maureen. They helped me immensely by giving me encouragement and friendship. They mirrored back my ideas so I heard them aloud, an important process for this writer to shape her thesis paper and future work.

I would also like to thank the Council for the award of the National Science Fellowship, which has supported me during my three years of research, and for the award of travel grant, an attachment study to University of Surrey, Guildford, UK for one month.

Lastly, and most importantly, I wish to thank my hubby, Mr. Mohd Azrirudin Mohmad Razali and my parents (mummy, uncle Bahari, Aunty Nora and my younger brother Firdaus). Not to forget, special gratitude also to my late grandfather and my family in law. They bore me, raised me, supported me, taught me, and loved me. To them I dedicate this thesis.
I certify that an Examination Committee has met on 22nd September 2008 to conduct the final examination of Nurulfiza Mat Isa on her Doctor of Philosophy thesis entitled “Molecular Characterisation of Infectious Bursal Disease Virus and the Expression of VP2 Protein for the Development of Diagnostic Kit and Recombinant Vaccine” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Saleha Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Abdul Rani Bahaman, PhD
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Internal Examiner/Member)

Siti Suri Arshad, PhD
Associate Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Internal Examiner/Member)

Lisa Roberts, PhD
Senior Lecturer
School of Biomedical and Molecular Sciences
University of Surrey
United Kingdom
(External Examiner)

HASANAH MOHD. GHAZALI, Ph.D
Professor and Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as
fulfilment of the requirements for the degree Doctor of Philosophy. The members of the
Supervisory Committee were as follows:

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Chairman)

Abdul Rahman Omar, PhD
Associated Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
University Putra Malaysia

Date: 19 December 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NURULFIZA MAT ISA

Date:
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xix
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS xxv

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 12
 2.1 Infectious Bursal Disease 12
 2.1.1 Clinical Signs and Gross Lesions 13
 2.1.2 Histopathology 15
 2.1.3 Pathogenesis 16
 2.1.4 Immunosuppression 17
 2.1.5 Epidemiology of IBD 22
 2.1.6 Transmission 24
 2.2 Infectious Bursal Disease Virus 25
 2.2.1 IBDV Genome Organisation 26
 2.2.2 IBDV 3D Structure 27
 2.2.3 IBDV Replication Mechanism and its Efficiency 30
 2.2.4 Viral Proteins 33
 2.2.5 Antigenic and Virulence Variation 37
 2.2.6 IBDV in Medical Research 40
 2.3 Diagnosis of IBD 42
 2.3.1 Clinical and Histopathological Diagnosis 44
 2.3.2 Serological Diagnosis 45
 2.3.3 Virological Diagnosis 52
 2.4 Control and Prevention of IBD 56
 2.4.1 Exclusion or Eradication 57
 2.4.2 Vaccination 58
 2.4.3 Anti Viral Drugs and Genetic Selection for Resistance 62
3 ISOLATION, IDENTIFICATION AND MOLECULAR CHARACTERISATION OF LOCAL INFECTIOUS BURSAL DISEASE VIRUS ISOLATES

3.1 Introduction

3.2 Materials and Methods
 3.2.1 IBDV Isolation
 3.2.2 Processing of Samples
 3.2.3 Experimental Infection in Specific Pathogen Free Embryonated Chicken Eggs
 Chorioallantoic Membrane Preparation
 IBDV Inoculation
 3.2.4 Extraction of Viral RNA
 3.2.5 Determination of RNA Concentration and Purity
 3.2.6 Primer Design
 3.2.7 cDNA Synthesis and PCR Amplification
 3.2.8 Gel Electrophoresis and Ethidium Bromide Staining
 3.2.9 Purification of PCR Products
 3.2.10 Cloning of the Full-Length VP2 Genes
 3.2.11 Plasmid Extraction and Purification
 3.2.12 Restriction Enzyme Digestion Analysis
 3.2.13 DNA Sequencing
 3.2.14 Sequence Assembly and Analysis using Bioinformatics Software
 3.2.15 Phylogenetic Analyses
 3.2.16 Experimental Infection in SPF Chickens
 3.2.17 Histopathology
 3.2.18 IBDV Purification

3.3 Results
 3.3.1 Experimental Infection in SPF Embryonated Chicken Eggs
 3.3.2 Amplification and Cloning of IBDV VP2 Genes
 3.3.3 Analysis of Recombinant Plasmid
 3.3.4 Virtual Restriction Enzyme Analysis
 3.3.5 Nucleotides and Amino Acids Sequence Analysis of the HPVR of VP2 Gene
 3.3.6 Phylogenetic analyses
 3.3.7 Experimental Infection in SPF chickens
 3.3.8 Gross and Microscopic Lesions

3.4 Discussion

3.5 Conclusion

4 THE EXPRESSION OF VP2 PROTEIN OF UPM04190 vvIBDV IN ESHERICHIA COLI SYSTEM

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Generating VP2 Construct
Ligation of VP2 Gene into pRSET B Vector 123
Transformation of Ligation Mixture into TOP 10 *E. coli* Cells 124
Identification and Verification of Positive Clones 124

4.2.2 Protein Expression and Analysis 125
Preparation of Competent BL21 Cells 125
Transformation into BL21 (DE3) pLysS Cell 125
Expression of VP2 Protein and Small-scale Optimization 126
Cell Harvesting 126
SDS-PAGE 127
Gel Preparation 127
Sample Preparation 128
Staining and Destaining Gel 128
Western Blotting and Immuno Detection of Transferred Protein onto Nitrocellulose Membrane 128
Solubility Analysis of the VP2 Expression Protein 129
The Bradford Assay 130

4.3 Results 131
4.3.1 Generating VP2 Construct 131
4.3.2 Expression and Detection of VP2 Recombinant Protein 131
4.3.3 Solubility Analysis and Protein Quantification 132

4.4 Discussion 138
4.5 Conclusion 141

5 PATHOGENICITY AND IMMUNOGENICITY OF THE VP2 RECOMBINANT PROTEIN IN SPECIFIC PATHOGEN FREE CHICKENS 142
5.1 Introduction 142
5.2 Materials and Methods 146
5.2.1 Large-scale Production of VP2 Recombinant Protein 146
Growing of Culture and Protein Expression 146
Sonication 146
Quantification of Protein 147
5.2.2 Preparation of Challenge Virus 147
Propagation of B0081 Challenged vvIBDV 147
Titration of Challenged vvIBDV 148
5.2.3 Vaccination Trial in SPF Chickens 148
Layout of the Vaccination Trial 148
Efficacy Test 149
Bursa of Fabricius to Body Weight Ratio 150
Histological Lesion Scoring 151
Antibody Production Assay 151
Statistical Analysis 152

5.3 Results 152
5.3.1 Clinical Signs
 Vaccination Trial 152
 Efficacy Test 152
5.3.2 Body Weight
 Vaccination Trial 157
 Efficacy Test 157
5.3.3 Bursa Weight
 Vaccination Trial 157
 Efficacy Test 157
5.3.4 Bursa of Fabricius to Body Weight Ratio
 Vaccination Trial 158
 Efficacy Test 158
5.3.5 Gross Lesions
 Vaccination Trial 159
 Efficacy Test 159
5.3.6 Histological Lesions and Scoring
 Vaccination Trial 164
 Efficacy Test 164
5.3.7 Antibody Titers (ELISA)
 Vaccination Trial 168
 Efficacy Test 168
5.4 Discussion 172
5.5 Conclusion 179

6 DEVELOPMENT OF ONE-STEP-IMMUNOSTRIP TEST FOR RAPID DETECTION OF IBDV INFECTION 180
6.1 Introduction 180
6.2 Materials and Methods 182
 6.2.1 Virus Propagation 182
 6.2.2 Virus Harvesting and Purification 182
 6.2.3 Production of Chicken Hyperimmune Serum 183
 6.2.4 ELISA Determination of Chicken HIS 184
 6.2.5 Immunogold Conjugate 184
 6.2.6 Immobilisation 184
 6.2.7 Construction of Analytical System 185
 6.2.8 Analytical Procedure 186
 6.2.9 Detection and Quantitation 186
 6.2.10 Antigen Concentration in the Immunoassay 188
 6.2.11 Effects of Antigen Purity in Immunoassay 188
 6.2.12 Determination of Optimal Concentration of Conjugate 189
 6.2.13 Sample Amount Determination in the Immunoassay 189
 6.2.14 Reading Time Evaluation 189
 6.2.15 Sensitivity 190
 6.2.16 Specificity 191
 6.2.17 Analyte Standard Dilution 191
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Brief histories of the three IBDV isolates</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Primers used to amplify the HPVR and full-length of VP2 gene (1.35kb)</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Primers used to sequence the VP2 gene of IBDV isolates</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>IBDV isolates used in the sequence and phylogenetic analyses</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary of the proposed molecular markers (amino acid residues) of UPM04178, UPM04190, and UPM04238 IBDV isolates with other published IBDV Strains</td>
<td>106</td>
</tr>
<tr>
<td>3.6</td>
<td>Number of nucleotide differences in HPVR of VP2 gene between IBDV isolates</td>
<td>108</td>
</tr>
<tr>
<td>3.7</td>
<td>Types of mutation of HPVR of VP2 gene</td>
<td>109</td>
</tr>
<tr>
<td>5.1</td>
<td>Groups of vaccination and efficacy trial definition</td>
<td>150</td>
</tr>
<tr>
<td>5.2</td>
<td>Rate of mortality at 10 days post-challenged and the percentage of protection based on the number of chickens that survived</td>
<td>155</td>
</tr>
<tr>
<td>5.3</td>
<td>Body weight of chickens in the vaccinated groups before and after IBDV challenged throughout the trial</td>
<td>160</td>
</tr>
<tr>
<td>5.4</td>
<td>Bursa weight of chickens in the vaccinated groups before and after IBDV challenged throughout the trial</td>
<td>161</td>
</tr>
<tr>
<td>5.5</td>
<td>Bursa to body weight ratio (1x10(^{-3})) of chickens in the vaccinated groups before and after IBDV challenged throughout the trial</td>
<td>162</td>
</tr>
<tr>
<td>5.6</td>
<td>Lesions scoring of chickens bursal in the vaccinated groups before and after IBDV challenged throughout the trial</td>
<td>171</td>
</tr>
<tr>
<td>5.7</td>
<td>Antibody titers (mean titer ± standard deviation) to IBDV determined by ELISA in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial</td>
<td>172</td>
</tr>
<tr>
<td>6.1</td>
<td>Samples used in sensitivity test of the immunoassay paper strip</td>
<td>190</td>
</tr>
</tbody>
</table>
6.2 Samples for a standard dilution of the immunoassay paper strip performance
6.3 Effect on test strips performance using different purity of virus antigen as capture reagent
6.4 Sensitivity performance of solid based test strip method based on ELISA titer obtained
6.5 Analyte standard dilution determination
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representation of the genomic organization of IBDV</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Three-dimensional map of IBDV</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic representation of a possible IBDV replication mechanism</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Gross lesions of the control and IBDV infected (UPM04190) SPF chicken embryos</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>Hypervariable region (643 bp) amplification of IBDV VP2 genes</td>
<td>86</td>
</tr>
<tr>
<td>3.3</td>
<td>Amplified full-length 1.35 kb IBDV VP2 genes</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>PCR screening on ten white colonies of UPM04190 IBDV isolate</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Purified plasmids digested with EcoR1 enzyme (MBI Fermentas, Lithuania)</td>
<td>87</td>
</tr>
<tr>
<td>3.6</td>
<td>PCR screening on ten white colonies of UPM04178 and UPM04238 IBDV isolates</td>
<td>88</td>
</tr>
<tr>
<td>3.7</td>
<td>Virtual restriction enzyme analysis of the HPVR of VP2 gene</td>
<td>89</td>
</tr>
<tr>
<td>3.8</td>
<td>Nucleotide sequences and translation of amino acid of UPM04190 IBDV isolate</td>
<td>92</td>
</tr>
<tr>
<td>3.9</td>
<td>Nucleotide sequences and translation of amino acid of UPM04178 IBDV isolate</td>
<td>93</td>
</tr>
<tr>
<td>3.10</td>
<td>Nucleotide sequences and translation of amino acid of UPM04238 IBDV isolate</td>
<td>94</td>
</tr>
<tr>
<td>3.11</td>
<td>Nucleotide sequence alignment of UPM04190, UPM04178 and UPM04238 IBDV isolates</td>
<td>95 – 102</td>
</tr>
<tr>
<td>3.12</td>
<td>Amino acid sequence alignment of UPM04190, UPM04178 and UPM04238 IBDV isolates</td>
<td>103 – 105</td>
</tr>
<tr>
<td>3.13</td>
<td>Sequence identity matrix of VP2 genes of IBDV isolates</td>
<td>107</td>
</tr>
</tbody>
</table>
3.14 Amino acid substitutions of VP2 gene

3.15 Phylogenetic analysis of nucleotide sequences (A, B and C) of 25 IBDV

3.16 Phylogenetic analysis of amino acid sequences (D, E and F) of 25 IBDV

3.17 Gross lesions of the normal and IBDV (UPM04190) infected SPF chickens

3.18 Histological lesions of the normal and IBDV (UPM04190) infected bursa of Fabricius

4.1 Agarose gel electrophoresis of pRSET B expression vector and recombinant plasmid before (TOPO TA vector + VP2 insert) and after restriction enzyme (RE) digestion (double digested with Bgl11 and EcoR1 (MBI Fermentas, Lithuania) enzyme)

4.2 Agarose gel electrophoresis of PCR colony screening of ligation transformation onto TOP 10 E. coli cells

4.3 Agarose gel electrophoresis of PCR colony screening of recombinant plasmid transformation onto BL21 (DE3) pLysS E. coli cells

4.4A Expression of full length VP2 protein in pRSET B plasmid onto BL21 (DE3) pLysS E. coli cells

4.4B Expression of full length VP2 protein in pRSET B plasmid onto BL21 (DE3) pLysS E. coli cells

4.5 Solubility test of full length VP2 protein in pRSET B plasmid onto BL21 (DE3) pLysS E. coli cells

5.1A Healthy chickens in Group 1: positive control group of the unvaccinated unchallenged chickens at day 2 of the vaccination trial

5.1B Dead chicken in Group 6: E. coli VP2 recombinant protein group (E. coli VP2+adj) at day 3 post vv IBDV challenged

5.2 Severe depression, drowsiness, ruffled feathers and whitish diarrhea of SPF chickens in Group 1: positive control group of the unvaccinated challenged chickens at day 2 post vv IBDV challenged
5.3 Body weight (g) of chickens in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial 274

5.4 Bursa weight of chickens (g) in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial 274

5.5 Bursa to body weight ratio (1×10⁻³) of chickens in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial 275

5.6 Bursa of Fabricius with severe haemorrhagie and oedematous of SPF chickens in the Group 1: positive control at day 3 post-challenged 165

5.7 Moderate muscle haemorrhages (arrow) of SPF chickens in the Group 7: *E. coli* VP2 oral challenged with vvIBDV at day 3 post-challenged 165

5.8A Bursa of Fabricius of SPF chickens in the control group. Day 0 of vaccination trial (lesion scoring of 0). (HE, 40X). 169

5.8B Bursa of Fabricius of SPF chickens in the control group. Day 20 of vaccination trial (lesion scoring of 1). (HE, 100X). 169

5.9A Bursa of Fabricius of SPF chickens in the vaccinated groups at day 20 of vaccination trial. Group 5 (insoluble) at lesion scoring of 1. (HE, 100X). 169

5.9B Bursa of Fabricius of SPF chickens in the vaccinated groups at day 20 of vaccination trial. Group 2 (*E. coli* control) at lesion scoring of 0 – 1. (HE, 100X). 169

5.10A Bursa of Fabricius of SPF chickens in the Group 1b (control unvaccinated challenged). Day 0 of pre-challenged (lesion scoring of 1). (HE, 100X). 170

5.10B Bursa of Fabricius of SPF chickens in the Group 1b (control unvaccinated challenged). Day 3 post IBDV challenged (lesion scoring of 5) with severe acute necrotizing bursitis in the dead chicken. (HE, 40X). 170

5.11A Bursa of Fabricius of SPF chickens in the vaccinated challenged groups at day 10 post IBDV challenged. Group 5 (insoluble) at lesion scoring of 5. (HE, 100X). Severe chronic bursitis. 170

5.11B Bursa of Fabricius of SPF chickens in the vaccinated challenged xxiii
groups at day 10 post IBDV challenged. Group 2 (E. coli control) at lesion scoring of 5. (HE, 100X). Severe chronic bursitis.

5.12 Bursa lesions scoring of chickens in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial

5.13 ELISA antibody titers against IBDV in the unvaccinated and vaccinated groups before and after IBDV challenged throughout the trial

6.1 Membrane strip assay based on immunochromatography and the concept of detection

6.2 Hyperimmune serum production in SPF chickens

6.3 Migration of carrier solution by capillary action

6.4 Optimisation of IBDV antigen

6.5 Optimisation of gold conjugate

6.6 Sample amount determination

6.7 Test strip sensitivity performance

6.8 Examples of positive (A) and negative tests (B) for antibody against IBD virus detection using solid based test strip

6.9 Cross reactivity test performance with various antibodies