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Components of engineering structures that operate at high temperatures, such 
as jet engines, pressure vessels, nuclear reactors, oil and gas plants, and 
steam and gas turbines, are subjected to significant thermal and mechanical 
loadings. As the external surfaces of structures always maintain contact with 
the environment and are exposed to weather, surface cracks may form due to 
imperfections during product fabrication. The main purpose of this study was 
to characterize and examine the relative importance of the mechanism of 
fatigue damage in tubular structures, which occur at high temperatures, and to 
develop an adaption equation of creep-fatigue life prediction based on failure 
mechanisms at high temperatures.  
 
 
In this study, a 316L stainless steel grade tubular structure was employed to 
characterize the prediction fatigue lifetime of plant industry components at 
operating temperatures in the range of 500-650°C and in creep-fatigue loading 
conditions. Fatigue tests were performed in the finite life region of a rounded 
specimen with a constant load amplitude, a constant frequency of 5 Hz and 
the stress ratio R of 0.1 at room temperature. A constant load and high 
temperature of 565°C were imposed on the specimen during the creep test. 
The nature of a hold period (tensile or compressive) affects fatigue life and 
surface crack patterns. The creep-fatigue test, which is similar to the fatigue 
test, with five hold times at maximum tensile stress, was conducted using a 
rounded specimen of “Type 316L stainless steel” at 565°C. Optical and 
scanning electron microscopy was performed to characterize the 
metallurgical damage and explain the microscopic damage mechanics.  
 
 
Fatigue tests with and without hold periods were performed to assess the 
influence of creep-fatigue interaction on fatigue life. The results of the tests 
indicated that creep and temperature significantly impact fatigue behaviour. 
In several cases, fatigue lives were significantly reduced with an applied 
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hold time at high temperatures. Hold times are most damaging at high stress 
ranges and low fatigue lives. Many parameters affect the fatigue performance 
of structural components. Fatigue life is influenced by a variety of factors, such 
as the geometries and properties of specimens, stress, temperature, surface 
finish, direction of loading, presence of oxidizing or inert chemicals. Fatigue 
with a hold time and fatigue without a hold time at the fatigue limit were 
determined to be 39.2 MPa and 87.8 MPa, respectively, in this research. 
 
 
The fatigue life of the 316L stainless steel was estimated by approaching the 
mean stress using a continuum damage mechanism (CDM). The continuum 
damage mechanism provides a reasonable prediction of fatigue response for 
high conditions. Based on the observation and characterization of fatigue life 
tubular steel pipes, the adaption equation for creep fatigue life prediction was 
proposed. Its simplicity gives it credibility and the adjustable use of alloy 
metal, which incorporates a number of cycles, applied stress and 
temperature, enables a power plant to predict the fatigue life of engineering 
components. The adaption equation can facilitate the damage tolerance 
design, which is the best design approach for reducing the cost and weight 
of heavy applications in the manufacturing process. A damage tolerant 
design philosophy for creep has been previously developed to improve the 
creep properties and elevated temperature fatigue crack growth resistance 
without sacrificing tensile strength and Low Cycle Fatigue (LCF) crack 
initiation life relative to the conventional microstructure (CM). Understanding 
the fatigue behaviour of steel pipes, which are derived from this study, are 
also useful in the design stage.  
 
 
To validate the experimental results, the fatigue life prediction using finite 
element analysis (FEA) via Abaqus was employed. The simulation was 
performed by applying different stress levels to predict the stress of operation 
to measured life at the measured operation stress. The focus of the simulation 
is the importance of characterizing the fatigue limit using a comparison with 
experimental data. The fatigue limits for the simulation and the experiment are 
150 MPa and 161 MPa, respectively, which correspond in terms of accuracy 
prediction; various aspects should be considered in the simulation. Additional 
developments in the analysis of creep-fatigue prediction test data are discussed, 
and expression for estimating fatigue life at high temperatures in stress-controlled 
tests are derived. To check the validity of adaption model proposed in this study, 
the assessment for creep fatigue interaction tests of austenitic 316L stainless 
steel under stress control at 565oC has been conducted.  The life prediction 
results are within a factor of  1.5, which indicates that the model is suitable for 
stress-controlled fatigue or creep fatigue life prediction of ductile material. The 
predicted results correspond with the experimental data. 
  

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Surface_finish
http://en.wikipedia.org/wiki/Surface_finish
http://en.wikipedia.org/wiki/Oxidizing
http://en.wikipedia.org/wiki/Inert
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Pengerusi   : Professor Mohd Sapuan Salit, PhD, P. Eng  
Fakulti  : Kejuruteraan 
 
Komponen struktur kejuruteraan yang beroperasi pada suhu tinggi seperti 
enjin jet, kontena/ bejana tekanan, reaktor nuklear , loji minyak dan gas, dan 
gas turbin dan wap adalah tertakluk kepada muatan haba dan bebanan 
mekanik yang tinggi. Sejak permukaan luaran struktur sentiasa bersentuhan 
dengan persekitaran dan terdedah kepada cuaca dan terkena keretakan dan 
juga kerana ketidaksempurnaan semasa pembuatan produk, retak permukaan 
mungkin wujud. Tujuan utama kajian ini adalah untuk mencirikan dan 
memeriksa kepentingan relatif mekanisme kerosakan keletihan dalam struktur 
silinder berlaku pada suhu yang tinggi dalam usaha untuk membangunkan 
satu formula adaptasi rayapan-keletihan ramalan kehidupan berdasarkan 
mekanisme kegagalan pada suhu tinggi. 
 
 
Dalam kajian ini masa ini, struktur berbentuk tiub 316L keluli tahan karat gred 
digunakan untuk mencirikan meramalkan jangka hayat kelesuan terutamanya 
bagi komponen industri loji dengan suhu operasi dalam lingkungan 500-650°C 
menjalani bebanan rayapan-kelesuan. Ujian kelesuan telah dijalankan dengan 
amplitud malar beban, kekerapan malar 5 Hz dan nisbah tekanan, R 
bersamaan dengan 0.1 pada suhu bilik untuk spesimen berbentuk tiub di 
kawasan hayat komponen. Sementara itu beban tetap dan suhu tinggi 
sebanyak 565oC akan dikenakan to spesimen untuk ujian rayapan. Sifat tahan 
lama (tegangan atau mampatan) mempengaruhi hayat kelesuan dan corak 
permukaan retak. Ujian rayapan-kelesuan adalah sama dengan ujian 
kelesuan dengan masa lima minit pada tegasan tegangan maksimum telah 
dijalankan menggunakan spesimen berbentuk tiub "Jenis 316L keluli tahan 
karat" pada suhu 565oC. Ujian optik dan imbasan mikroskop elektron akan 
dijalankan untuk mencirikan kerosakan metalurgi dalam memahami mekanik 
kerosakan mikroskopik. 
Ujian kelesuan dengan dan tanpa tempoh pegangan telah dijalankan untuk 
menilai pengaruh interaksi rayap -kelesuan pada hayat lesu. Ia telah 
mendapati bahawa rayapan dan suhu memberi kesan yang utama ke atas 
tingkah laku kelesuan. Dalam beberapa kes, hayat kelesuan menyusut 
terutamanya dengan masa tegasan pada suhu yang tinggi. Ia telah mendapati 
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bahawa masa tegasan adalah paling merosakkan pada tekanan tinggi dan 
hayat kelesuan berkurang. Banyak parameter mempengaruhi prestasi 
kelesuan komponen struktur. Hayat kelesuan dipengaruhi oleh pelbagai 
faktor, seperti geometri dan sifat-sifat spesimen, tekanan, suhu, kemasan 
permukaan, arah bebanan, kehadiran pengoksidaan atau lengai bahan kimia 
dan lain-lain. Kelesuan dengan dan tanpa masa tegasan untuk daya 
ketahanan kelesuan didapati sebanyak 39.2 MPa dan 87.8 MPa masing-
masing dalam kajian ini.  
 
 
Hayat Kelesuan daripada keluli tahan karat 316L dianggarkan dari 
penghampiran tekanan separa menggunakan Continuum Damage 
Mechanism (CDM). Continuum Damage Mechanism menyediakan ramalan 
yang respon munasabah kelesuan untuk keadaan yang tinggi. Berdasarkan 
pemerhatian dan pencirian hayat lesu paip keluli berbentuk tiub, formula 
adaptasi rayapan kelesuan ramalan hayat telah dicadangkan. Ia adalah 
kesederhanaan memberikan ia kredibiliti, penggunaan laras untuk logam aloi 
yang menggabungkan bilangan kitaran, tekanan di kenakan dan suhu dan 
boleh membenarkan loji kuasa untuk menerima / adaptasi  pakai dan hanya 
menggunakannya untuk meramal hayat lesu komponen kejuruteraan. Formula 
adaptasi boleh memudahkan reka bentuk toleransi kerosakan, yang mana 
merupakan pendekatan reka bentuk terbaik untuk kekal kos dan 
mengukuhkan simpanan untuk aplikasi berat dalam proses pembuatan. 
Falsafah reka bentuk toleransi kerosakan untuk rayap sebelum ini 
dibangunkan dengan tujuan untuk memperbaiki sifat-sifat rayapan dan 
rintangan kelesuan pertumbuhan retak suhu tinggi tanpa mengorbankan 
kekuatan tegangan dan LCF retak permulaan hidup berbanding dengan 
mikrostruktur konvensional (CM). Pemahaman dan pengetahuan tentang 
tingkah laku kelesuan paip keluli yang diperolehi daripada kajian ini juga 
berguna dalam peringkat reka bentuk. 
 
 
Untuk keputusan pengesahan eksperimen, ramalan hayat lesu menggunakan 
Analisis Unsur Terhingga (FEA) melalui Abaqus telah digunakan. Simulasi 
dilakukan dengan tahap tekanan yang berbeza untuk meramalkan tekanan 
operasi untuk mengukur hayat di tekanan operasi. Penekanan simulasi 
memberi tumpuan kepada kepentingan mencirikan had kelesuan berbanding 
dengan data uji kaji. Perbandingan had kelesuan antara simulasi dan 
eksperimen adalah 150 MPa dan 161 MPa, masing-masing yang akan 
menyediakan pertalian baik dari segi ketepatan ramalan walaupun pelbagai 
aspek perlu diambil kira dalam perkembangan simulasi. Pembangunan 
selanjutnya dalam analisis data ujian ramalan rayap-kelesuan dibincangkan 
dan ungkapan yang diterbitkan untuk menganggarkan hayat lesu pada suhu 
yang tinggi dalam ujian tekanan terkawal. Dalam usaha untuk memeriksa 
kesahihan model adaptasi yang dicadangkan dalam kajian ini, penilaian bagi 
ujian interaksi kelesuan rayapan 316L keluli tahan karat di bawah kawalan 
tekanan pada 565oC telah dijalankan. Hasil ramalan hayat berada dalam 
factor 5.1 dan model dapat di kaitkan untuk tekanan terkawal kelesuan 
atau kelesuan rayapan ramalan hayat bahan mulur. Keputusan meramalkan 
berada dalam pertalian yang baik dengan data uji kaji.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Scenario of Fatigue Life in Heavy Industries at High Temperatures  
 
Creep-fatigue life prediction is a complex and essential criterion in the design of 
components that operate at high temperatures and are subjected to alternate 
loadings. The mechanical properties of most materials are dependent on the 
temperature. The ultimate tensile strength, yield strength and modulus of 
elasticity usually decrease with increasing temperature. The effect of high 
temperature on mechanical properties is associated with transformations of the 
material structure due to diffusion processes, ageing, dislocation restructuring 
(softening), and recrystallization. These processes imply that plastic deformation 
can easily occur at an elevated temperature. For high temperature applications 
in the melting point temperature range of 1400-1500°C, with the introduction of 
hold time, creep deformation can occur if favourable stress and temperature 
combinations are maintained. At elevated temperatures that span one-third to 
two-thirds of the melting point and at low-imposed stresses, the majority of 
metals, alloys and ceramics exhibit creep deformation grain boundary 
cavitations. In many engineering alloys, creep cavities nucleate below the 
nominal stress level of 100 MPa. Creep deformation with the introduction of hold 
time can occur if favourable stress and temperature combinations are 
maintained for high-temperature applications in the melting point temperature 
range of 1400-1500°C. 
 
 
At high temperatures, the majority of metals show damage in the form of grain 
boundary voids and wedge cracks. A grain boundary cavity may nucleate as a 
result of either sliding or slip impingement and is sustained by either a stress-
assisted diffusion, additional grain boundary sliding or a combination of these 
factors (Sandhya et al., 2005). Creep damage, which is a time-dependent 
process, is primarily dependent on the history of the stress and temperature that 
was applied to the component, whereas fatigue damage is generated by the 
cyclic stress and is primarily dependent on time-independent plastic strain (Gaoa 
et al., 2005). 
 
 
A few decades ago, the prevailing viewpoint was that brittle material did not 
undergo fatigue (as brittle materials have limited dislocation motion); however, 
brittle materials do exhibit both mechanical fatigue and thermal fatigue under 
repetitive loading (Bhowmik et al. 2007; Wachyman et al. 2009). 
Engineering components that are employed in oil, gas, aviation and nuclear 
industries usually involve high-temperature environments; in these conditions. 
As creep-fatigue is a significant failure mechanism, the life of these components 
should be adequately predicted before they are fabricated and implemented. 
Therefore, existing damage tolerant life prediction methods need to incorporate 
the creep phenomenon in high-temperature applications. 
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1.2  Issues Concerning of High-Steel Industries  
 
 
Many researchers have performed studies on the type of steel that is applied for 
the global transmission of oil and gas. Defects that occur over the lifetime of a 
pipeline are problematic to engineers, researchers and manufacturers. Similar 
to any engineering structure, pipelines occasionally fail. In numerous cases, the 
only significant load in a pipeline’s breakdown is the internal pressure (Cosham 
and Hopkins, 2004). Circumstances in which additional loads are possible 
include high temperature high pressure (HTHP), environmental damage 
(corrosion fatigue), elevated temperatures (creep fatigue) or sliding/physical 
contact (fretting and rolling contact fatigue) (Ritchie, 1999). 
 
 
Different types of failure scenarios may occur on a pipeline, in which the failure 
of fittings (flanges and valves) are not considered.  
 

i. failure of a defect-free pipe,  
 

ii. failure of a pipe, which consists of a ‘workmanship’ imperfection 
(i.e., an imperfection in the pipe body or the possibility of a 
careless weld that is satisfactory to the relevant specifications 
or standards), and 

 
iii. failure of a pipe, which consists of a defect/flaw that is not 

tolerable at the workman-ship level (such as a crack or a dent 
on a weld) (Cosham et al., 2008). 

 
 
In addition, the damage/blow of steel is also categorized by the interaction 
between a defect (which causes a reduction in the burst strength) and a defect 
in the pipe fitting (pipework, fitting, and elbows). Thus, a study of Type 316L 
stainless steel is conducted to identify the mechanism that is susceptible to 
failure under temperature and variable stress. Continuous research and 
development are required to understand the causes and cures of cracking in 
steel.  
 
 
A general tendency towards severe operating conditions is observed, i.e., higher 
mechanical loadings and temperatures to increase the efficiency of gas and steam 
turbines, internal combustion engines, heat exchangers, conventional and nuclear 
electric power generation equipment and other engineering components and 
devices. This trend has caused the initiation, growth and interaction of complex 
damaging processes within the materials of these components. They can cause 
the failure of a component and an entire structure, which limits their lifetime. 
Therefore, the safe assessment of the lifetime of a component is important for the 
prevention of failures, which may have disastrous consequences. Conservative 
predictions, however, may unnecessarily increase the cost of production and 
maintenance of systems. 
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1.3 Significance of Service Lifespan Prediction 
 
 
Service lifespan prediction techniques are important in any industry that involves 
the daily use of metal components to assess its service damage, which is caused 
by high pressure and elevated temperature creep. A precise life prediction 
methodology that focuses on metal life is essential to ensure that the hot section 
component can be rejuvenated and to minimize irreparable damage and 
replacement costs associated with steel components.  
 
 
The main failure mode for tubular steel is known as high temperatures at 
low cycle fatigue as their utilization has experienced high global demand. 
Many researchers have focused on the service life prediction and extension 
of tubular steel, which is challenging due to the geometric shapes of 
specimens and the complexity of the phenomena. To determine and 
characterize the accuracy of a life prediction, both the upper bound and the 
lower bound are main aspects of engineering components at elevated 
temperatures. A material will be more unsafe and dangerous when it is 
overpredicted, whereas m will affect the inherent risk of damaged 
components or offset the economic benefits (Bernstein, 1982). No specific 
life prediction model has gained global acceptance among the majority of 
plant industries. Each industry performs a separate life prediction according 
to the situation and application. The foremost difficulty in the prediction on 
any material is accounting for the contributions by creep and/or 
environmental attack of the fatigue process.  
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1.4 Problem Statement 
 
 
Life prediction is a complex and essential aspect of designing a component that 
is subject to high temperatures and alternative loading.  Many researchers have 
focused on tolerate design to determine the life of a heavy-duty pipe that 
operates at high mechanical pressures and temperatures due to the repeated 
usage of cylindrical components and the extensive usage of this type of 
geometry. A main feature for industry is the provision of a high-strength material, 
which is challenging due to unknown compositions of industrial materials and the 
inevitable presence of defects in their substructures, such as holes, cavities and 
cracks. As a result, the consideration of fracture mechanics in the design of 
metallic structures is crucial. Both fatigue and creep can cause a structure to fail. 
Numerous efforts to understand why and how materials fail have been achieved.   
An increased demand for stainless steel products can be attributed to the 
increased use of stainless steel in the automotive industry (which uses stainless 
steel liners for auto exhaust systems), the maintenance an upgrading of oil 
refining and chemical plants, and the extensive use of stainless steel equipment 
in the pulp and paper industry and fast food service industry. The consumption 
of stainless steel that is used to fabricate kitchen utensils and appliances and 
the decorative use of coloured stainless steel on building facades by the 
construction industry has also increased. 
 
 
The designer/analyst requires information about the stress concentration factor 
that is created by axial wall misalignment of adjacent tubular sections. This 
misalignment is usually caused by a change in wall thickness, oversized cross-
sections and/or imprecise fabrication controls (Connelly and Nettlemoyer, 1993) 
Tubular components such as pressure vessels, pipes, borers, and driving shafts 
are common and useful parts of engineering structures. Due to an extensive 
range of usage for this type of structure, such as the transmission or storage of 
fluid produced in pipes and high-pressure vessels, these structures should be 
assessed under different conditions, such as various material, temperature and 
loading conditions. These conditions are conducive to combination creep-
fatigue, which is a major mechanism for these components (Becker et al., 1986). 
 
 
In the safety consideration of the mode of failure of pressure vessels and pipes, 
crack initiation, crack propagation and fracture, as well as fatigue failure, should 
be considered. Pipes that are subjected to high temperatures will have a shorter 
life than those with creep damage and fatigue damage that are separately 
incurred. In a safety assessment of pressure vessels and pipes, fatigue crack 
propagation and fracture should be considered among the possible modes of 
failure. The geometry of the component and the load conditions are the two most 
important parameters that affect the mechanisms of failure and crack 
propagation. The combination of temperature and loading fatigue causes more 
damage and life reduction in engineering components. Many researchers have 
noted that the application of fatigue and creep at high temperatures in the 
estimation of life and safety in a component is an essential part of design and 
application in heavy industries. The mechanism of the parameter in life prediction 
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for a tubular structure under different conditions, such as creep, fatigue or creep-
fatigue, is not well understood. 
 
 
Therefore, this study investigated the fatigue life due to creep-fatigue and the 
estimation of life and verifies effective parameters and factors for tubular 
structures regarding certain parameters that can be published to improve the 
development of this modern arena. 
 
 
1.5 Research Objectives 
 
 
The objectives of this research are as follows: 
 

 To characterize the fatigue life and endurance limit of tubular steel 316L 
stainless steel at high temperatures. 
 

 To determine the mechanism of fracture, which is associated with creep-
fatigue that is induced by temperature and hold time. 

 
 To investigate the metallographic microstructural characterization of the 

metal in terms of the microstructure’s fractured surface based on the 
results of fatigue and creep fatigue tests. 

 
 To suggest the simple constitutive models of creep-fatigue interaction, 

which can be used to predict the lifetime for complicated situations of 
creep-fatigue, using simple creep and fatigue test data. 

  

1.6 Thesis Layout 

 
This thesis is divided into five chapters. Following this introductory chapter, which 
consists of the background of the research, chapter two provides a critical review 
of relevant literature based on an overview of fatigue, creep, fracture mechanics 
and creep-fatigue. A review of fatigue studies that have explored topics such as 
the historical background and creep fatigue life prediction models, is also 
presented in chapter two. Chapter three outlines the underlying theory and the 
experimental techniques that are employed in this study. Chapter 3 describes 
the experimental work, including the utilized materials, the testing techniques 
and the equipment. Chapter four is a placeholder to present the results of the 
current study and discuss the correlation between the obtained results and the 
existing theory. Observations of crack initiation sites and details of the transition 
from Stage I to Stage II and the transition from Stage II to Stage III using 
scanning electron microscopy are provided. The microstructural and chemical 
composition study that employs SEM are discussed. The test results are 
analysed in Chapter 5, which also presents the conclusion and 
recommendations for future studies. 
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1.7 Scope of Study 
 
 
The scope of this study focuses on  stainless steel grade 316L, which is 
extensively used in the petrochemical and construction industries and for power 
generation in pressure vessels, boilers, and steam turbines; its application in the 
oil and gas industries, such as pipe lines for carrying natural gas and sour gas, 
was not addressed in this study. The specimen preparation and fatigue tests 
were conducted in accordance to ASTM E606-92 and ASTM E466-96, 
respectively. The fatigue tests were performed under constant amplitude cyclic 
stress fluctuation loadings. A push-pull fatigue test was conducted to develop a 
stress-life curve for the hourglass of stainless steel specimens. In the creep test, 
which was conducted in accordance with ASTM E-139, specimens were 
subjected to high-temperature conditions and constant stress. The environment 
design was created to mimic the real scenario of actual piping in plant industries; 
thus, a combination of fatigue and creep tests have been performed to examine 
the mechanism of creep fatigue interaction on steel subjected to stress and 
elevated temperature. A simulation using Abaqus was performed to compare 
and validate the experimental data. In this study, a new contribution has been 
achieved by discovering the adaption of the equation from the continuum 
damage mechanism (CDM), which can be employed to predict the fatigue life of 
the engineering components of 316L stainless steel at high temperatures. 
Scanning electron microscopy (SEM) was employed to analyse the variations in 
the microstructure pattern and the fracture surface of the steel fatigue specimen 
and a macrostructure analysis was employed to identify the basic stages crack 
development using optical microscopy. The composition elements of the 
specimen fatigue of the structure were analysed by energy dispersive X-ray 
(EDX) analysis. 
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