

UNIVERSITI PUTRA MALAYSIA

PECTIN CHARACTERIZATION AND FACTORS AFFECTING PECTIN EXTRACTION FROM Citrus grandis L. OSBECK (PUMMELO) PEELS

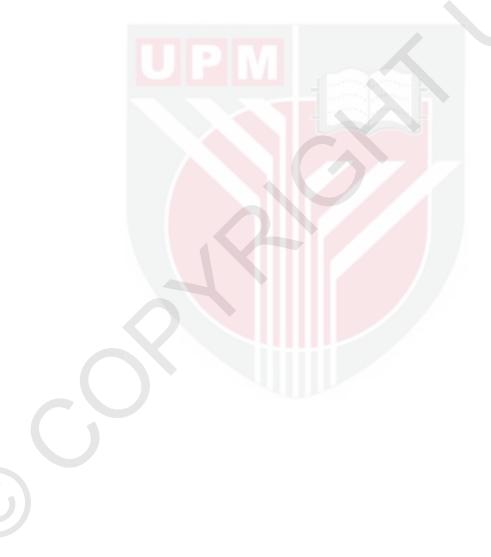
NOOR JANNAH FIRDOUSE BINTI ISMAIL @ KHORI

FSTM 2015 14

PECTIN CHARACTERIZATION AND FACTORS AFFECTING PECTIN EXTRACTION FROM *Citrus grandis* L. OSBECK (PUMMELO) PEELS

By

NOOR JANNAH FIRDOUSE BINTI ISMAIL @ KHORI


Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

April 2015

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

This is a gift...

DEDICATED TO...

Me; for being persistent and for not giving up

Mohd. Syahril Baharuddin, dear husband for being there as my pillar

> Mom and Dad; My sis; My bro; your love and trust strengthen me to the end of this chapter

> > My son; a bless a happiness.

6

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PECTIN CHARACTERIZATION AND FACTORS AFFECTING PECTIN EXTRACTION FROM Citrus grandis L. OSBECK (PUMMELO) PEELS

By

NOOR JANNAH FIRDOUSE BINTI ISMAIL

April 2015

Chairman: Associate Professor Badlishah Sham bin BaharinFaculty: Food Science and Technology

Microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) have been developed to increase the yield and quality of various plantbased constituents with shorter time of extraction. This research aimed to study the effect of four (4) factors towards the quantity and quality of pectin extracted from pummelo peels, using two (2) level factorial designs, utilizing UAE, MAE and water bath extraction (WBE) methods. Factors manipulated were time, pH, sample-to-solvent ratio and temperature. MAE, UAE and conventional methods were able to extract pectin up to 78.98 % in a minute, 38.7% in 10 minutes and 68.26% in 30 minutes, respectively. Pectin from MAE method significantly has the highest DE (60.41 ± 0.37) followed by WBE method (55.99 \pm 1.22) and UAE method (54.64 \pm 0.503). The galacturonic acid (GalA) content of pectin extracted using MAE was significantly the highest (82.71% ± 1.77) compared to UAE and WBE methods (67.37 ± 1.88 and 55.99 ± 1.22 respectively). This study showed that pummelo peels of Ledang variety contained high methoxyl pectin (DE > 50%) with GalA content of more than 65%. MAE was the most efficient method to produce high methoxyl pectin with high content of GalA.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENCIRIAN PEKTIN DAN FAKTOR-FAKTOR YANG MEMPENGARUHI PENGEKSTRAKAN PEKTIN DARIPADA KULIT *Citrus grandis* L. OSBECK (LIMAU BALI).

Oleh

NOOR JANNAH FIRDOUSE BINTI ISMAIL

April 2015

Pengerusi: Profesor Madya Badlishah Sham bin BaharinFakulti: Sains dan Teknologi Makanan

Pengekstrakan berbantu gelombang mikro (MAE) dan berbantu ultra-bunyi (UAE) telah dibangunkan untuk meningkatkan kuantiti dan kualiti pelbagai bahan berasaskan tumbuh-tumbuhan melalui pengekstrakan yang lebih pantas. Kajian ini mengkaji kesan empat (4) faktor terhadap kuantiti dan kualiti pektin yang diekstrak daripada kulit limau bali, menggunakan reka bentuk faktorial 2 aras menggunakan kaedah pengekstrakan UAE, MAE dan rendaman air (WBE). Faktor-faktor yang dikaji adalah masa, pH, nisbah sampel terhadap pelarut serta suhu. MAE, UAE dan WBE masing-masing telah berjaya mengekstrak sehingga 78.98% pektin dalam satu (1) minit, 38.7% dalam 10 minit dan 68.26% dalam 30 minit. Secara signifikannya, pektin yang diekstrak melalui kaedah MAE mempunyai DE yang paling tinggi (60.41 ± 0.37), diikuti dengan WBE (55.99 ± 1.22) dan kaedah UAE (54.64 ± 0.503). Kandungan asid galakturonik (GalA) bagi pektin yang diekstrak menggunakan kaedah MAE adalah yang paling tinggi (82.72% ± 1.77) secara signifikan berbanding kaedah UAE dan WBE (67.37 ± 1.88, 55.99 ± 1.22). Kajian ini telah membuktikan bahawa kulit limau bali variasi Ledang mengandungi pektin tinggi kandungan metoksil (DE > 50 %), dengan kandungan asid galakturonik (GalA) melebihi 65 %. MAE terbukti sebagai kaedah yang paling efisien untuk menghasilkan pektin tinggi metoksil dengan kandungan GalA yang tinggi.

ACKNOWLEDGEMENTS

My sincere gratitude to the chairman of the supervisory committee, Assoc. Prof. Badlishah Sham bin Baharin, for his guidance, kindness and understanding that have helped me through this research. I also wish to thank the members of the supervisory committee, Prof. Dr. Russly bin Abd. Rahman and Dr. Norhayati binti Husain for their advices and supervisions.

Special thanks to my dear friends Siti Suhara binti Ramli and Nor Nadiah binti Abdul Karim Shah, who have been of much help and encouragements throughout my time of completing this study.

I certify that a Thesis Examination Committee has met on April 2015 to conduct the final examination of Noor Jannah Firdouse binti Ismail on her thesis entitled "Pectin characterization and factors affecting pectin extraction from *citrus grandis* L. Osbeck (pummelo) peels" in accordance with the Universities and University Colleges Act 1971 and the constitution of the Universiti Pertanian Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Food Technology.

Members of the Examination Committee are as follows:

Dr. Chong Gun Hean, PhD

Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Dr. Abdul Azis bin Ariffin, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Dr. Mohamed Ismail Abdul Karim,PhD

Professor Department of Biotechnology Engineering Faculty of Engineering International Islamic University Malaysia (External Examiner)

ZULKARNAIN ZAINAL, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 June 2015

This thesis was submitted to the Senate of Universiti Malaysia and has been accepted as fulfillment of the requirement for the degree of Master in Science. The members of the Supervisory Committee were as follows:

Badlishah Sham bin Baharin

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Russly bin Abd. Rahman, PhD Professor Halal Institute of Malaysia Universiti Putra Malaysia (Member)

Norhayati binti Husain, PhD Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly acknowledged;
- ownership of intellectual property from the thesis is as stipulated in the Memorandum of Agreement (MoA), or as according to the Universiti Putra Malaysia (Research) Rules 2012, in the event where the MoA is absent;
- permission from supervisor and the office if Deputy Vice-Chancellor (Research and Innovation) are required prior to publishing it (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification / fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	Date:
Name and Matric No:	Noor Jannah Firdouse binti Ismail (GS30724)

Declaration by Members of Supervisory Committee

This is to confirm that

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory Committee: <u>Badlishah Sham bin Baharin</u>

Signature: Name of Member of Supervisory Committee:

Russly bin Abd. Rahman, PhD

Signature: Name of Member of Supervisory Committee:

Norhayati binti Husain, PhD

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
APPROVAL	iv
DECLARATION	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF FORMULAS	xiii
LIST OF APPENDICES	xiv
LIST OF ABBREVIATIONS	xv
CHAPTER	

INTRODUCTION	1
LITERATURE REVIEW	2
2.1.Citrus	2
	3
2.2.1. Pummelo varieties	3
	3
	3
	4
	5
	5
	6
	6
	7
	8
	8
	8
	9
	9
	9
	9
	10
2.3.8. Experimental Design	11
METHODOLOGY	12
3.1. Materials and methods	12
3.2. Pummelo peels separation	12
3.3. Experimental design	12
3.4. Extraction procedure	15
3.4.1. Pectin extraction	15
3.4.1.1. Ultrasound-assisted extraction (UAE)	15
	 LITERATURE REVIEW 2.1. Citrus 2.2.Pummelo 2.2.1. Pummelo varieties 2.2.2. Pummelo characteristics 2.2.3. Pummelo nutritional content 2.2.4. Pummelo fruit peel wastage 2.3.Pectin 2.3.1. Physicochemistry of pectins 2.3.2. Pectin sources 2.3.3. Pectin properties 2.3.4. Degree of esterification 2.3.4.1. Low methoxyl pectin 2.3.5. Application of pectin 2.3.6. Health benefits of pectin 2.3.7.1. Conventional extraction 2.3.7.2. Ultrasound-assisted extraction 2.3.7.3. Microwave-assisted extraction 2.3.8. Experimental Design METHODOLOGY 3.1. Materials and methods 3.2.Pummelo peels separation 3.3.Experimental design 3.4.Extraction procedure 3.4.1. Pectin extraction

3.4.1.2. Microwave-assisted extraction (MAE)	16
3.4.1.3. Water bath extraction (WBE)	16
3.4.2. Pectin yield	16
3.5. Pectin characterization	16
3.5.1. Determination of degree of esterification (DE)	16
3.5.2. Determination of galacturonic acid (GalA)	17
content	
4 RESULTS AND DISCUSSION	20
4.1. Pectin extraction	20
4.1.1. Ultrasound-assisted extraction (UAE)	20
4.1.1.1. Pectin yield (%)	20
4.1.1.2. The effect of Sample-to-solvent ratios (SR)	21
on pectin yield	
4.1.1.3. The effect of time on pectin yield	24
4.1.1.4. The effect of temperature on pectin yield	25
4.1.1.5. The effect of pH on pectin yield	25
4.1.2. Microwave-assisted extraction (MAE)	25
4.1.2.1. Pectin yield (%)	25
4.1.2.2. The effect of pH on pectin yield	28
4.1.2.3. The effect of microwave power on pectin yield	29
4.1.2.4. The effect of sample-to-solvent ratios on pectin yield	30
4.1.2.5. The effect of time of extraction on pectin yield	30
4.1.3. Water bath extraction (WBE) method	31
4.1.3.1. Pectin yield (%)	31
4.1.3.2. The effect of pH on pectin yield	34
4.1.3.3. The effect of time on pectin yield	34
4.1.3.4. The effect of temperature on pectin yield	35
4.1.3.5. The effect of sample-to-solvent ratios on	36
pectin yield	00
4.1.4. Comparison of pectin yield based on the extraction method	36
4.2. Pectin characterization	37
4.2.1. Degree of esterification	37 38
4.2.2. Galacturonic acid content (GalA)	30
5 CONCLUSION AND FUTURE RECOMMENDATION	39
REFERENCES	40
APPENDICES	44
BIODATA OF STUDENT	49

LIST OF TABLES

Table		Page
1	The nutritional content of albedo, flavedo and pulp of pummelo from Ledang variety	4
2	Nutritional value of common pummelo	4
3	The 2-level factorial design for UAE method	13
4	The 2-level factorial design for MAE method	14
5	The 2-level factorial design for WBE method	15
6	The results of 2-level factorial design of UAE method	21
7	Estimated effects and coefficients of factors using UAE method for fitted model	22
8	The results of 18-runs factorial design of MAE method	26
9	Estimated effects and coefficients of yield using MAE method for fitted model	27
10	The results of pectin extraction using WBE method	32
11	Estimated effects and coefficients of fitted model using WBE method	33
12	The effect and values of factors that produced maximum yield	36
13	Degree of Esterification of pectins extracted using UAE, MAE and WBE method	37
14	GalA content of pectin extracted using UAE, MAE and water bath method	38

 \bigcirc

x

LIST OF FIGURES

Figure		Page
1	Longitudinal diagram of a citrus fruits	2
2	Subunit of a-D-galacturonic acid	5
3	Linear chain of galacturonan	5
4	Esterification of galacturonic acid	7
5	Determination of degree of esterification (DE)	18
6	Determination of galacturonic acid content based on Carbazole-Calorimetric method	-19
7	Main effect plots of factors affecting yield of pectin for UAE method	23
8	Effect of sample-to-solvent ratio on pectin yield using UAE method	23
9	The mean yield of pectin produced by different time using UAE method	24
10	Effect of temperature on pectin yield using UAE method	25
11	Main effect plots of factors affecting yield of pectin for MAE method	28
12	The effect of pH on pectin yield in MAE method	29
13	The effect of microwave power on pectin yield in MAE method	29
14	The effect of sample-to-solvent ratios on pectin yield in MAE method	30
15	The effect of time on pectin yield in MAE method	31
16	Main effect plots of factors affecting yield of pectin for WBE (conventional) method	33

 \mathbf{G}

17	The effect of pH on pectin yield in WBE method	34
18	The effect of time on pectin yield in WBE method	35
19	The effect of temperature on pectin yield in WBE method	35

 \bigcirc

LIST OF FORMULAS

Formula		Page	
1	Equation to calculate the yield of pectin	16	
2	Formula to determine degree of esterification (DE) based on titration method	17	

 \bigcirc

LIST OF APPENDICES

Appendix		Page
А	Statistical analysis if degreeof esterification for UAE, MAE and WBE methods	44
В	Statistical analysis of GalA content for UAE, MAE & WBE	46
C	Citrus grandis L. Osbeck, Malaysian Pummelo, Ledang variety	48

6

LIST OF ABBREVIATIONS

GalA	Galacturonic acid
MAE	Microwave Assisted Extraction
UAE	Ultrasound Assisted Extraction
WBE	Water Bath Extraction
FAO	Food and Agriculture Organisation
EU	Europe United
DE	Degree of Esterification
HMP	High Methoxyl Pectin
LMP	Low Methoxyl Pectin
MHz	Mega Hertz
GHz	Giga Hertz
°C	Degree Celcius
EtOH	Ethanol / Ethyl Alcohol
HC1	Hidrochloric acid
%	Percentage
WBE	Water Bath Extraction
t	Time
Т	Temperature
SR	Sample-to-solvent Ratio
Р	Microwave Power
w/v	Weight per volume
Y	Yield of pectin
ml	Millimeter
kHz	KiloHertz
rpm	Revolution per minutes
FCC	Food Chemical Codex
NaOH	Sodium Hydroxide
М	Molarity
min	Minute (s)
μl	Microlitre
nm	Nanometer
H_2SO_4	Sulphuric Acid

C

CHAPTER I

INTRODUCTION

Pectin is a complex polysaccharide found numerously in plants such as apple pomace and citrus fruits (Bemiller, 1986; Fishman, Chau, Hoagland, & Ayyad, 2000; Kulkarni & Vijayanand, 2010). Pectin is considered as a nutritionally rich diet (Voragen, 1995;Yamada, 1996), and used as a thickener, texturizer, emulsifier and stabilizer (Liu, Shi, & Langrish, 2006).

Citrus grandis or *Citrus maxima* belongs to citrus family and its local name is pomelo or pummelo which is native to Southeast Asia, mainly in Indonesia, and Thailand and also in China (Orwa et al., 2009). In Malaysia, pummelo is known as 'Limau Bali' (Balinese Lemon). Pummelo in Malaysia is cultivated to fulfill the demand during festive seasons. Its potential has not been harnessed to its maximum. As the largest citrus fruit, pummelo contributes large amount of by-products in the form of peels and pulp. The juicy pulp is either eaten raw or pressed to extract its juice, while the peel is a potential resource of pectin to be used in numerous industries such as food and beverages, cosmetics and pharmaceutical (Emaga et al., 2008; Liu et al., 2006; Pagan, Ibarz & Llorca, 2001)

Pectin production commonly involved hydrolyzing the organic material using mineral acid along with high temperature, separation of pectin from slurry and pectin purification or precipitation (Migliori et al., 2011). Industrial pectin extraction usually utilizes high temperature (60-100°C) in acidified water, and took long hours to complete (Sharma et al., 2006). This research aimed to reduce the extraction time and to overcome the labour cost during pectin extraction. Since pummelo is locally cultivated and also included as one of an important cultivar in Malaysia, extracting pectin from pummelo peels will help to maximize the usage of its waste.

While study of pectin extraction was not new to the food industry, but the study of pectin extraction from pummelo of Malaysian varieties were still limited. Therefore, the objectives of this study were:

- i. To determine factors that affect pectin extraction using ultrasound, microwave and water bath extraction methods.
- ii. To characterize pectin extracted from pummelo peel using the ultrasound-assisted, microwave-assisted and water bath extraction methods.

REFERENCES

- Albrigo, L. ., & Carter, R. . (1977). Structure of citrus fruits in relation to processing. In S. Nagy, P. . Shaw, & M. . Veldhuis (Eds.), *Citrus Science* and Technology (pp. 33–73). Connecticut: The AVI Publishing Company.
- Alupului, A., Calinescu, I., & Lavric, V. (2006). Ultrasonic vs . Microwave Extraction Intensification of Active Principles from Medicinal Plants.
- Bagherian, H., Zokaee Ashtiani, F., Fouladitajar, A., & Mohtashamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. *Chemical Engineering and Processing: Process Intensification, 50*(11-12), 1237–1243. doi:10.1016/j.cep.2011.08.002

Bemiller, J. N. (1986). An Introduction to Pectins: Structure and Properties.

- Bower, K. M. (1992). Analysis of Variance (ANOVA) Using Minitab, (2), 0-5.
- Cheong, M. W., Liu, S. Q., Zhou, W., Curran, P., & Yu, B. (2012). Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. *Food Chemistry*, 135(4), 2505–13. doi:10.1016/j.foodchem.2012.07.012
- Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. *Ultrasonics Sonochemistry*, 15(5), 898–902. doi:10.1016/j.ultsonch.2007.10.009
- Dongowski, G., & Anger, H. (1996). Metabolism of pectin in the gastrointestinal tract, 659–666.
- El-Nawawi, S. a., & Shehata, F. R. (1987). Extraction of pectin from Egyptian orange peel. Factors affecting the extraction. *Biological Wastes*, 20(4), 281– 290. doi:10.1016/0269-7483(87)90005-X
- Emaga, T. H., Ronkart, S. N., Robert, C., Wathelet, B., & Paquot, M. (2008). Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. *Food Chemistry*, 108(2), 463–471. doi:10.1016/j.foodchem.2007.10.078
- Fishman, M. L., Chau, H. K., Hoagland, P., & Ayyad, K. (2000). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. *Carbohydrate Research*, 323(1-4), 126– 38. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10782294

- Henk, A. ., & Alphons, G. J. . (2002). The chemical structure of pectins. In S. Graham, B & J. . Knox (Eds.), *Pectins and Their Manipulation* (pp. 1–29). United Kingdom: Blackwell Publishing & CRC Press.
- Jambrak, A. R. (2013). Application of High Power Ultrasound and Microwave in Food Processing: Extraction. *Journal of Food Processing & Technology*, 04(01), 1–2. doi:10.4172/2157-7110.1000e113
- Kar, F., & Arslan, N. (1999). Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity-molecular weight relationship. *Carbohydrate Polymers*, 40(4), 277–284. doi:10.1016/S0144-8617(99)00062-4
- Koubala, B. B., Kansci, G., Mbome, L. I., Crépeau, M.-J., Thibault, J.-F., & Ralet, M.-C. (2008). Effect of extraction conditions on some physicochemical characteristics of pectins from "Améliorée" and "Mango" mango peels. *Food Hydrocolloids*, 22(7), 1345–1351. doi:10.1016/j.foodhyd.2007.07.005
- Kulkarni, S. G., & Vijayanand, P. (2010). Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). *LWT Food Science and Technology*, 43(7), 1026–1031. doi:10.1016/j.lwt.2009.11.006
- Letellier, M., & Budzinski, H. (1999). Original articles Microwave assisted extraction of organic compounds. *Analusis*, (27), 259–271.
- Liu, L., Cao, J., Huang, J., Cai, Y., & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. *Bioresource Technology*, 101(9), 3268–73. doi:10.1016/j.biortech.2009.12.062
- Liu, Y., Shi, J., & Langrish, T. (2006). Water-based extraction of pectin from flavedo and albedo of orange peels. *Chemical Engineering Journal*, 120(3), 203–209. doi:10.1016/j.cej.2006.02.015
- Lv, C., Wang, Y., Wang, L., Li, D., & Adhikari, B. (2013). Optimization of production yield and functional properties of pectin extracted from sugar beet pulp. *Carbohydrate Polymers*, 95(1), 233–40. doi:10.1016/j.carbpol.2013.02.062
- Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave Assisted Extraction – An Innovative and Promising Extraction Tool for Medicinal Plant Research. *Pharmacognosy Reviews*, 1(1).
- Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. *Ultrasonics Sonochemistry*, *3*, 253–260.

- McCready, R. ., & Owens, H. S. (1954). P e c t i n A Product of Citrus Waste. *Economic Botany*, 8(1), 29–47. Retrieved from http://www/jstor.org/stable/4287795
- Mesbahi, G., Jamalian, J., & Farahnaky, a. (2005). A comparative study on functional properties of beet and citrus pectins in food systems. *Food Hydrocolloids*, 19(4), 731–738. doi:10.1016/j.foodhyd.2004.08.002
- Methacanon, P., Krongsin, J., & Gamonpilas, C. (2013). Pomelo (Citrus maxima) pectin : Effects of extraction parameters and its properties. *Food Hydrocolloids*. doi:10.1016/j.foodhyd.2013.06.018
- Migliori, M., Gabriele, D., Checchetti, A., Facciolo, D., & Battipede, B. (2011). Effect of water addition on pectin recovery from solution in centrifugal separation process. *International Journal of Food Science & Technology*, 46(1), 116–121. doi:10.1111/j.1365-2621.2010.02458.x
- Minitab Inc. (n.d.). Design of Experiments. doi:10.1007/SpringerReference_302656
- Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). Citrus Maxima. *Agroforestry Database: a tree reference and selection guide version 4.0.* Retrieved January 20, 2012, from http://www.worldagroforestry.org/af/treedb
- Pagan, J., Ibarz, A., Llorca, M., Pagan, A., & Barbosa-Canovas, G. . (2001). Extraction and characterization of pectin from stored peach pomace. *Food Research International*, 34, 605–612.
- Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Optimization of microwave assisted extraction of pectin from orange peel. *Carbohydrate Polymers*, 97(2), 703–709. doi:10.1016/j.carbpol.2013.05.052
- Ralet, M.-C., & Thibault, J.-F. (2002). Interchain heterogeneity of enzymatically deesterified lime pectins. *Biomacromolecules*, 5(3), 917–925.
- Ridley, B. ., O'Neill, M. ., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. *Phytochemistry*, 57(6), 929–967.
- Seshadri, R., Weiss, J., Hulbert, G. J., & Mount, J. (2003). Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. *Food Hydrocolloids*, 17(2), 191–197. doi:10.1016/S0268-005X(02)00051-6

- Sharma, B. R., Naresh, L., Dhuldhoya, N. C., Merchant, S. U., & Merchant, U. C. (2006). An Overview on Pectins, *51*(44).
- Sotanaphun, U., Chaidedgumjorn, A., Kitcharoen, N., & Satiraphan, M. (2012). Preparation of Pectin from Fruit Peel of Citrus maxima, *6*(1), 42–48.
- Sriamornsak, P. (2003). Chemistry of Pectin and Its Pharmaceutical Uses : A Review. *Silpakorn University International Journal*, (1), 206–228.
- Tatke, P., & Jaiswal, Y. (2011). An overview of microwave assisted extraction and its applications in herbal drug research. *Research Journal of Medicinal Plant*, 5, 21–31. doi:10.3923/rjmp.2011.21.31
- Thakur, B. R., Singh, R. K., Handa, A. K., & Rao, M. A. (1997). Chemistry and uses of pectin A review. *Critical Reviews in Food Science and Nutrition*, 1(37), 37–41. doi:10408399709527767
- Vaughn, N., Polnaszek, C., Smith, B., & Helseth, T. (2000). *Design-Expert 6 user's guide* (pp. 1–30). Stat-Ease Inc.
- Voragen, A. (1995). Pectin. In *Food Polysaccharides and Their Applications* (pp. 287–340). Marcel Dekker Inc.
- Wai, W. W., Alkarkhi, A. F. M., & Easa, A. M. (2010). Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design. *Food and Bioproducts Processing*, 88(2-3), 209–214. doi:10.1016/j.fbp.2010.01.010
- Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. *Trends in Food Science & Technology*, 17(6), 300–312. doi:10.1016/j.tifs.2005.12.004
- Yamada, H. (1996). Contribution of pectin on health care. In *Pectins and Pectinases* (pp. 173–190). Elsevier Science B.V.
- Yapo, B. M. (2011). On the Colorimetric-Sulfuric Acid Analysis of Uronic Acids in Food Materials: Potential Sources of Discrepancies in Data and How to Circumvent Them. *Food Analytical Methods*, 5(2), 195–215. doi:10.1007/s12161-011-9235-z
- Yeoh, S., Shi, J., & Langrish, T. a. G. (2008). Comparisons between different techniques for water-based extraction of pectin from orange peels. *Desalination*, 218(1-3), 229–237. doi:10.1016/j.desal.2007.02.018