
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 

 MULTIPLE WAVELENGTHS GENERATION UTILIZING 
NONLINEAR OPTICS OF FOUR WAVE MIXING 

 

 
 

 

 
 
 
 

 
 
 

NORAN AZIZAN BIN CHOLAN  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2014 159 



© C
OPYRIG

HT U
PM

 

 

 

 

 

 
 

 

MULTIPLE WAVELENGTHS GENERATION UTILIZING NONLINEAR 

OPTICS OF FOUR WAVE MIXING 

 

 

 

 
 

By  

 

NORAN AZIZAN BIN CHOLAN 

 

 

 

 

 

 

 

 

 

 
Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 

in Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 
November 2014 



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos, 

icons, photographs and all other artwork, is copyright material of Universiti Putra 

Malaysia unless otherwise stated. Use may be made of any material contained within 

the thesis for non-commercial purposes from the copyright holder. Commercial use 

of material may only be made with the express, prior, written permission of 

Universiti Putra Malaysia. 

 

Copyright © Universiti Putra Malaysia 

   



© C
OPYRIG

HT U
PM

 

 

 

 

 

 

 

 

 

 

 

To my beloved families and friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia 

in fulfillment of the requirement for the degree of Doctor of Philosophy 

 

 

MULTIPLE WAVELENGTHS GENERATION UTILIZING NONLINEAR 

OPTICS OF FOUR WAVE MIXING 

 

By 

 

NORAN AZIZAN BIN CHOLAN 

 

November 2014 

 

 

Chair: Mohd Adzir Mahdi, PhD 

 

Faculty: Engineering 

 

 

The response turns from linear to nonlinear when high intensity waves propagate in 

optical fibers, causing the emergence of nonlinear phenomena such as stimulated 

Brillouin scattering (SBS) and four wave mixing (FWM). While that phenomena 

cause optical communication systems to deteriorate, they are nevertheless useful for 

certain applications such as in multiple wavelengths generation. This dissertation 

presents experimental work that involves the manipulation of FWM in the 

developments of lasers and cascades. Four main research studies are successfully 

demonstrated in efforts to improve the performance of FWM-based lasers and 

cascades. The first study is related to multiwavelength BEFLs. Despite the advantage 

of wide tunability, they unfortunately suffer from the laser output flatness due to the 

nature of cascaded SBS processes. In this work, FWM in an optical fiber is applied to 

the laser lines of a multiwavelength BEFL through the incorporation of residual 

waves in order to make the output flat. Comparisons between the BEFL with and 

without the assistance of FWM suggest the effectiveness of the proposed technique. 

With the assistance of FWM, the uniformity or flatness records a 3.73 dB 

improvement as compared to the case without the assistance of FWM when the 

Brillouin pump is set to 1550 nm. The second research work is related to an 

experimental study on the residual waves of multiwavelength BEFLs. Experimental 

results suggest that the properties of residual waves are influenced by FWM. 

Multiple FWM processes in fibers are believed to cause the output power of the 

residual waves to grow gradually and the value of optical-signal-to-noise ratio to be 

lower due to the power sharing basis of FWM processes. The third research work, on 

the other hand, is aimed to improve continuous tunability of erbium-doped fiber 

lasers (EDFLs) in which the stability is obtained from multiple FWM processes in 

optical fibers. With the incorporation of tunable bandpass filters in the laser cavity, a 

proposed dual wavelength EDFL can achieve continuous wavelength spacing from 

0.52 nm to 22.78 nm, limited only by the gain bandwidth of the erbium-doped fiber 

amplifier and the linewidth of filters. In the fourth research work, FWM cascades 

without external laser sources and modulators is proposed in a bid to reduce the 

complexity of the system. The need for laser sources is catered by a dual wavelength 

EDFL which acts as an intracavity pump, while the requirement for pump 
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modulators for SBS suppression is tackled by the broad linewidth of the EDFL. In 

summary, four research studies that are related to FWM in generating multiple 

wavelengths are experimentally demonstrated in this thesis. The first two studies 

focus on improvements in BEFLs, while the third and fourth study is for 

enhancements in EDFLs and FWM cascades respectively. All the four studies are 

found to be effective in elevating the performances and understanding of FWM-

based lasers and cascades to further heights. 
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Tindak balas bertukar daripada linar kepada tidak linar apabila gelombang 

berkeamatan tinggi merambat dalam gentian optik, menyebabkan keluarnya 

fenomena tidak linar seperti penyerakan Brillouin rangsangan (SBS) dan pergaulan 

empat gelombang (FWM). Walaupun fenomena ini menyebabkan sistem komunikasi 

optik menjadi lebih merosot, ianya berguna untuk aplikasi tertentu seperti dalam 

penjanaan pelbagai gelombang. Tesis ini mempersembahkan kerja eksperimen yang 

melibatkan manipulasi FWM dalam pembangunan laser dan lata. Empat kajian 

penyelidikan utama telah berjaya ditunjukkan dalam usaha untuk memperbaiki 

pencapaian. Kajian pertama  adalah berkaitan dengan laser gentian Brillouin-erbium 

(BEFLs) panjang gelombang berbilang. Walaupun dengan kelebihan penalaan yang 

luas, ianya mengalami masalah dari segi kerataan keluaran laser berikutan keadaan 

semulajadi proses SBS berlata. Dalam kajian ini, FWM dalam gentian optik 

diaplikasikan kepada laser Brillouin-erbium (BEFLs) panjang gelombang berbilang 

melalui penggunaan gelombang baki untuk menjadikan keluaran rata. Perbandingan 

diantara BEFL dengan dan tanpa bantuan FWM mengesahkan keberkesanan teknik 

ini. Dengan bantuan FWM, kerataan merekodkan penambahbaikan 3.73 dB 

berbanding dengan kes tanpa bantuan FWM apabila pam Brillouin disetkan kepada 

1550 nm. Kajian penyelidikan kedua pula adalah berkaitan dengan sebuah kajian 

eksperimen tentang gelombang baki BEFLs panjang gelombang berbilang. 

Keputusan eksperimen mencadangkan bahawa ciri-ciri gelombang baki dipengaruhi 

oleh FWM. Proses berbilang FWM dalam gentian dipercayai menyebabkan keluaran 

kuasa gelombang baki bertumbuh secara perlahan dan nilai nisbah-isyarat optik-

kepada-hingar menjadi lebih rendah akibat daripada asas perkongsian kuasa oleh 

proses FWM. Kajian penyelidikan ketiga pula bertujuan untuk memperbaiki 

penalaan berterusan laser gentian berdopkan erbium (EDFLs) yang mana kestabilan 

diperolehi daripada pelbagai proses FWM dalam gentian optik. Dengan penggunaan 

penapis lulus jalur, EDFL panjang gelombang berdua yang dicadangkan boleh 

mencapai jarak panjang gelombang berterusan daripada 0.52 nm hingga 22.78 nm, 

hanya dihadkan oleh lebar jalur gandaan penguat gentian berdop erbium dan lebar 

jalur penapis. Dalam kajian penyelidikan keempat, lata FWM tanpa sumber laser dan 

pemodulat luar dicadangkan dalam usaha untuk mengurangkan komplikasi sistem. 
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Keperluan untuk sumber laser dipenuhi oleh EDFL panjang gelombang berdua yang 

bertindak sebagai satu pam intrarongga, manakala keperluan untuk pemodulat pam 

bagi penghapusan SBS diatasi dengan  EDFL yang berjalur lebar. Secara 

kesimpulannya, empat kajian penyelidikan yang berkaitan dengan FWM dalam 

menghasilkan  panjang gelombang berbilang ditunjuk dalam tesis ini. Dua kajian 

pertama fokus kepada penambahbaikan dalam BEFLs, manakala kajian ketiga dan 

keempat adalah penambahbaikan untuk EDFLs dan lata FWM secara urutan. Semua 

empat kajian tersebut didapati berkesan dalam meningkatkan pencapaian dan 

kefahaman ke atas laser dan lata yang berdasarkan FWM ke tahap lebih tinggi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 
 

In the modern age, the high speed internet is very important to the people. It is 

nowadays not an option but a necessity for many people as they are much reliant on 

the internet to cater for their needs in life. However, the high speed internet, which 

involves the processes of downloading and uploading signals at high data rates, 

requires an enormous bandwidth for operation. With the awesome bandwidth offered 

by optical fibers, dense wavelength division multiplexing (DWDM) technology is a 

competitive candidate that is more than capable to satisfy the demand for the rapid 

and reliable transmission of voice, video and data signals. A DWDM system whose 

channel spacing is very small in a fraction of nanometer is a system where a number 

of wavelengths are combined into an optical fiber for the transmission of signals. The 

combination is possible in this case due to the capability of optical fibers to transport 

many different wavelengths concurrently without mutual interference.  

 

As illustrated in Fig. 1.1, several optical devices are integrated in order to generate, 

distribute, isolate and amplify optical power for transmission in DWDM systems. 

Several channels corresponding to different wavelengths are transmitted into the 

same optical fiber. They are multiplexed before entering the optical fiber link. Along 

the transmission link, optical fiber amplifiers in different positions keep the channels 

at certain required levels and dispersion compensators are used to nullify the impact 

of dispersion in optical fibers. In addition, there are nodes along the link where 

specific DWDM channels can be added into the optical stream or dropped from it. At 

the end of the link, the channels are demultiplexed before they reach optical receivers 

and the information carried by the DWDM channels can be recovered at the receivers. 

 

 

 
Figure 1.1: Basic DWDM system. 
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The guidelines to determine the wavelength and the wavelength spacing of DWDM 

channels are provided by ITU-T G.694.1, a recommendation issued by the 

International Telecommunication Union (ITU) [1]. The recommendation provide a 

frequency grid for DWDM applications for channel spacings of 12.5 GHz, 50 GHz, 

100 GHz and wider with a reference frequency fixed at 193.10 THz (1552.52 nm). 

Table 1.1 illustrates one example of the frequency grid. It is important to note that 

despite with enhanced transmission capacity when implementing DWDM systems, 

wavelengths or frequencies need to be stable for reliable operation due to the close 

spacing of wavelengths. Precision temperature control of laser transmitters is a 

necessity in DWDM systems to prevent the wavelengths from drifting. 

 

 

Table 1.1: Nominal central frequencies of DWDM grid 

 

Nominal central frequencies (THz) for spacings of: 
Wavelengths 

(nm) 
12.5 GHz 25 GHz 50 GHz 

100GHz and 

above 

193.1000 193.100 193.10 193.1 1552.5244 

193.0875 - - - 1552.6249 

193.0750 193.075 - - 1552.7254 

193.0625 - - - 1552.8259 

193.0500 193.050 193.05 - 1552.9265 

193.0375 - - - 1553.0270 

193.0250 193.025 - - 1553.1276 

193.0125 - - - 1553.2282 

193.0000 193.000 193.00 193.0 1553.3288 

192.9875 - - - 1553.4294 

192.9750 192.975 - - 1553.5300 

192.9625 - - - 1553.6307 

 

 

Multiple wavelengths are required for operation in DWDM systems. The technique 

normally used to provide the wavelengths is by utilizing individual semiconductor 

lasers as carriers for optical modulators. The use of semiconductor lasers however 

increases complexity and this is especially true when the number of channels is large 

as each semiconductor laser requires temperature and current controllers in their 

operation. One way to reduce the complexity is by incorporating multiwavelength 

sources to provide the multiple wavelengths as illustrated in Fig. 1.2. While the 
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multiwavelength sources still need an optical demultiplexer to separate the multiple 

wavelengths into individual wavelength, the drawback is offset by the removal of 

individual semiconductor lasers as carriers for optical modulators. This makes 

multiwavelength sources as a competent candidate to be a multiple wavelength 

provider in DWDM systems. 

 

 

 
Figure 1.2: Application of multiwavelength sources as transmitters in DWDM 

system. 

 

 

Multiwavelength sources can be realized using many methods. One of the methods is 

by utilizing nonlinearities in optical fibers. The nonlinear optics are actually 

originated from the behavior of optical fibers that turns from linear to nonlinear when 

the intensity of input light is relatively high. While the nonlinear optics are harmful 

to optical communication systems, they bring benefits to the generation of multiple 

wavelengths. Nonlinear optics such as such as four wave mixing (FWM), stimulated 

Brillouin scattering (SBS) and stimulated Raman scattering (SRS) can be 

manipulated to be a source of multiple wavelength generation. For example, despite 

the requirement for high pump power, cascaded FWM can be used to generate 

spectral lines covering over a wide band provided that the phase matching is 

preserved during the propagation. Besides being multiwavelength sources, nonlinear 

optics can also help improve the performance of multiple wavelength generators. For 

example, FWM can be manipulated to improve the flatness of multiwavelength fiber 

lasers.  

 

 

1.2 Problem Statement 

 

In view of improving the performances of multiwavelength sources, four main 

problems are identified in this research work. Out of four, two problems are related 

to multiwavelength Brillouin erbium fiber lasers (BEFLs) and one problem each for 

erbium-doped fiber lasers (EDFLs) and four wave mixing cascades (FWMC) 

respectively. The problems stated here are obtained from the literature review that is 

carried out during the study and they provide a basis for the objectives of this thesis. 
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The first problem on BEFLs is related to the flatness of multiwavelength laser output. 

While the multiwavelength BEFLs have wide tunability as a result of the suppression 

of self-lasing cavity modes, it suffers from the laser output uniformity. In a proposed 

BEFL in [2], the tunability obtained spans over the entire C-band but the peak power 

difference between the first and the last channel is 7.68 dB. The same is also true for 

another configuration proposed in [3]. The first and the last channel recorded peak 

powers of 8.19 and -8.3 dBm respectively, bringing the peak power difference to 

16.49 dB. The significant discrepancy in power for the multiwavelength output can 

bring harm especially to a long haul optical communication system where a number 

of amplifiers are necessary to overcome losses during the transmission. After going 

through the amplifiers, the power discrepancy can possibly become larger that it can 

cause a channel to be lost during the transmission due to the gain mode competition 

in the amplifiers. Therefore, a flat multiwavelength output is vital for a reliable and 

robust long haul optical communication system. 

 

The second problem on BEFLs is associated with a lack of explanation on the cause 

behind the generation of Stokes and anti-Stokes lines in BEFLs. In [2]-[6], FWM in 

optical fibers is exploited in increasing the number of Stokes and anti-Stokes lines. 

However, the formation and roles of residual waves that become seeds for the 

generation of laser lines in BEFLs are not clearly explained and clarified in that 

research work. Moreover, the properties of residual waves (forward transmitted) such 

as the output power and optical-signal-to-noise-ratio (OSNR) characteristics in 

comparison to the waves of BEFL (backward reflected) have not been 

experimentally explored. The knowledge in such properties and roles of residual 

waves can help researchers to get a better insight on the impact of FWM and residual 

waves on the performance of BEFLs. 

 

The third problem is related to the wavelength spacing tunability of EDFLs. In 

efforts to stabilize EDFLs against the gain mode competition, a self-stability 

mechanism of FWM is proven to be a successful way in diminishing the fierce 

competition for erbium gain in erbium-doped fibers (EDFs) [7]. Despite the 

achievement, the wavelength spacing is fixed due to the use of fiber Bragg gratings 

(FBGs) in the operation. A scheme is then proposed in order to achieve the tunability 

[8]. While the wavelength spacing is tunable in the scheme, the tunability is not 

continuous but discrete. For the FWM-based EDFL to achieve continuous tunability, 

a scheme is then recommended where a special mechanical apparatus is utilized to 

modify a chirp ratio of an FBG so that it can ultimately tune the wavelength spacing 

of the EDFL continuously [9]. However, the tunability is limited from 0.32 to 0.81 

nm and the use of mechanical apparatus for operation makes the system more 

complex. Therefore, a scheme with wide and continuous wavelength spacing 

tunability, operated in a simple way, is necessary to further improve the 

performances of FWM-based EDFLs.  

 

The fourth problem is associated with the complexity of FWMC. It is known that for 

an FWMC to operate, it requires tunable laser sources to be the seeds and 

phase/intensity modulators to get the linewidth of laser sources to be wide enough for 

SBS suppression [10]-[13]. The requirements though would increase the complexity. 

For example, the modulators need to be driven with a certain combination of few 

periodic radio frequencies or pseudorandom bit sequence for SBS suppression and 

this could make the design more complicated. In addition, the utilization of 
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phase/intensity modulators could affect the performance of the system. It is 

theoretically and experimentally reported that the phase modulation could cause the 

signal and idler powers to fluctuate more and this could lead to the degradation of 

optical communication systems [14]-[15].  Hence, a scheme needs to be designed in 

such a way that it is free from external laser sources and phase/intensity modulators 

so that the complexity to design an FWMC can be reduced. 

 

 

1.3 Research Objectives 

 

The main objective of this research is to improve the performances of multiple 

wavelengths generation that utilizes nonlinear optics of FWM in the operation. 

Specific objectives are as follow: 

i. To design and develop a flat multiwavelength BEFL in which a mechanism 

of FWM is manipulated in flattening the output. 

ii. To investigate the formation, properties and role of residual waves in 

generating Stokes and anti-Stokes lines in multiwavelength BEFLs. 

iii. To enhance the wavelength spacing tunability of a dual wavelength EDFL in 

which the stability of lasers is obtained from a self-stability mechanism of 

FWM in an optical fiber. 

iv. To design and develop an FWMC that is free from any external tunable laser 

sources and phase modulators in an effort to reduce the complexity of the 

design. 

 

 

1.4 Thesis Outline 

 

This thesis consists of eight chapters. The first chapter (Chapter 1) is devoted to the 

introduction of thesis. In this chapter, the application of multiwavelength sources to 

DWDM systems, problems and objectives of the research work are presented. The 

literature review is then elaborated in Chapter 2. The phenomena of nonlinear optics 

such as self-phase modulation (SPM), cross-phase modulation (XPM), FWM, SBS 

and SRS are discussed here, as well as the explanations of mechanisms and progress 

of BEFLs, EDFLs and FWMC. Chapter 3 afterwards presents the research 

methodology. In the beginning, the research design that illustrates links between the 

four studies conducted is clarified. This is then followed by the clarifications on the 

experimental procedures as well as the input and output parameters utilized in the 

experiments. 

 

As this is a publication-based thesis, chapter 4 to 8 comprise of journal papers which 

are published over the period of this study. Chapter 4 is an article published in 

Applied Physics B, ISSN 1432-0649 (Appl. Phys. B, Vol. 112, No. 2, pp. 215-221, 

2013). This article is related to a study on multiwavelength BEFLs which is aimed to 

flattening the laser output via FWM. Chapter 5 meanwhile presents the second article 

that is published in Optics Communications, ISSN 0030-4018 (Opt. Commun., Vol. 

329, pp. 163-167, 2014). The article is about an investigation on the formation, 

properties and role of residual waves in multiwavelength BEFLs. In chapter 6, the 

third article which is published in Applied Physics B, ISSN 1432-0649 (Appl. Phys. 

B, Vol. 115, No. 2, pp. 251-256, 2014) is presented. This article is related to a single 

and dual-wavelength EDFL which has wide wavelength-spacing tunability due to the 
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incorporation of tunable filters. Chapter 7 meanwhile is formed by the fourth article 

that is published in Optics Express, ISSN 1094-4087 (Opt. Express, Vol. 21, No. 5, 

pp. 6131-6138, 2013). An FWMC scheme which can operate without external laser 

sources and modulators is reported here.  

 

In the last chapter (Chapter 8), we take readers to conclusions that are drawn based 

on the main experimental results discussed in the previous chapters. This is then 

followed by the discussions on the achievements and problems faced by the proposed 

schemes as well as the recommendations for improvement that can be practically 

implemented in the future work. 
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