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ABSTRACT 
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in  

           fulfilment of the requirement for the degree of Doctor of Philosophy 
 

DEVELOPMENT OF GROUND DUNE SAND BLENDED CEMENT  
 

By 
 

OMER ABDALLA ALAWAD HASSAN 
 

November 2014 

 

Chairman: Professor Ir. Mohd Saleh Jaafar, PhD 
 
Faculty: Engineering 
 
 
Pozzolan materials (e.g. fly ash, slag, silica fume, rice husk ash) have been 
used successfully as a partial ordinary Portland cement (OPC) replacement 
material.  However, there are some technical and economic drawbacks 
associated with the use of the existing pozzolan materials.  Therefore, there is 
a growing interest to find an alternative material to be used as a source of 
siliceous materials for concrete production.  This research aims to determine 
the potential of using ground dune sand (GDS) as partial cement 
replacement in binary (OPC-GDS) and ternary combinations of OPC-GDS-
slag and OPC-GDS-lime.  The proposed combinations of blended cement 
system are expected to save large amounts of OPC. 
 
 
The primary objective of this study is to develop naturally available dune 
sand as an effective partial cementing material for use in the concrete 
industry.  To achieve this objective, different treatment methods, namely, 
mechanical, chemical and thermal methods (autoclave curing) have been 
applied to determine the reactivity of GDS.  For the ternary blended 
combinations, low (15%), moderate (30%) and high (45%) amounts of slag or 
lime were incorporated into a binder system containing 40% of GDS.  
Compressive strength, drying shrinkage and durability properties of the cast 
mixtures were investigated.  Moreover, microstructure analyses were carried 
out using SEM, EDX, XRD, DTA and TGA analyses to characterize the 
hydrated products.  A correlation between CaO/SiO2 and compressive 
strength was then carried out. 
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The results revealed that autoclave curing is a promising curing system to 
utilize the GDS as partial cement replacement.  The optimum level of 
replacement of OPC by GDS was found to be 30%, and up to 40% of GDS can 
be used without significant loss in the compressive strength.  The inclusion 
of slag or lime as the ternary binder element to the mixture containing 40% of 
GDS yielded a compressive strength higher or comparable to the control 
mixture.  The drying shrinkage and durability properties of blended 
autoclave cured mixes were significantly improved.  The SEM, EDX, XRD, 
DTA and TGA analyses explained how GDS contributes to the strength and 
durability of blended mixtures.  The outcome of this research will benefit the 
Middle East and other countries where supplies of natural dune sands are 
unlimited.  



© C
OPYRIG

HT U
PM

iii 
 

ABSTRAK 
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 
 

PEMBANGUNAN PASIR BUKIT TERKISAR CAMPURAN SIMEN 

 
Oleh 

 
OMER ABDALLA ALAWAD HASSAN 

 
November 2014 

 

Pengerusi: Profesor Ir. Mohd Saleh Jaafar, PhD 
 
Fakulti:  Kejuruteraan 
 
 

Bahan pozzolan (seperti abu terbang, jermang, wasap silika, abu sekam padi) 
telah digunakan dengan berkesan sebagai sebahagian bahan penggantian 
simen Portland (OPC).  Walau bagaimanapun, terdapat beberapa kekangan 
teknikal dan ekonomi berkaitan dengan penggunaan bahan pozzolan yang 
sedia ada.  Oleh itu, terdapat usaha untuk mencari pendekatan alternatif 
bahan yang akan digunakan sebagai sumber bahan bersilica dalam 
pembuatan konkrit.  Penyelidikan ini bertujuan untuk menentukan potensi 
penggunaan pasir bukit terkisar (ground dune sand GDS) sebagai sebahagian 
pengganti simen dalam penduaan (OPC-GDS) dan pentiga kombinasi OPC-
GDS- jermang dan OPC-GDS-kapur.  Kombinasi sistem adunan simen yang 
dicadangkan dijangkakan dapat menjimat penggunaan OPC yang banyak.  
 
 
Objektif utama dalam penyelidikan ini adalah untuk membangunkan  pasir 
bukit sedia ada sebagai bahan gantian simen yang efektif untuk digunakan 
dalam industri konkrit.  Untuk mencapai objektif ini, pelbagai kaedah 
rawatan antaranya; kaedah mekanikal, kimia dan terma (pengawetan  
autoklaf) digunapakai untuk menentukan kereaktifan GDS.  Untuk 
kombinasi pentiga campuran, kuantiti rendah (15%), sederhana (30%) dan 
tinggi (45%) jermang atau kapur telah digabungkan dalam sistem pengikat 
yang mengandungi 40% GDS.  Kekuatan mampatan, ciri pengecutan 
keringan,  dan ciri ketahanlasakan campuran telah dikaji.  Tambahan lagi, 
analisis mikrostruktur telah dijalankan menggunakan analisis SEM, EDX, 
XRD, DTA and TGA untuk mencirikan produk terhidrat.  Korelasi antara 
CaO/SiO2 dan kekuatan mampatan telah dijalankan.  
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Keputusan menunjukkan bahawa pengawetan autoklaf adalah sistem 
pengawetan yang menjanjikan penggunaan GDS sebagai bahan pengganti 
simen separa.  Tahap optimum penggantian OPC oleh GDS  adalah 30%, di 
mana, sehingga 40% GDS boleh digunakan tanpa kehilangan yang signifikan 
pada kekuatan mampatan.   
 
 
Memasukan jermang atau kapur sebagai elemen pengikat ketiga dalam 
campuran mengandungi 40% GDS menghasilkan kekuatan mampatan lebih 
tinggi atau setanding dengan campuran kawalan.  Pengecutan keringan dan 
ciri ketahanan adunan campuran terawet secara autoklaf telah meningkat 
dengan signifikan.  Analisis SEM, EDX, XRD, DTA and TGA menerangkan 
bagaimana GDS menyumbang pada kekuatan dan ketahanan campuran.  
Hasil daripada penyelidikan ini akan menguntungkan Negara Timur Tengah 
dan negara lain di mana bekalan pasir bukit adalah hampir tidak terhad. 
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CHAPTER 1  
 

INTRODUCTION 
 
 

1.1 General 
 
Concrete is the most extensively used construction material in the world [1].  
The consumption rate of concrete is estimated to be one ton for every living 
human being [2].  Perhaps, the worldwide consumption of concrete is only 
second to that of water.  This could be due to the low cost per cubic meter, 
availability of raw materials, ease of casting, excellent resistance to water, 
and ability to be formed in various shapes and sizes [3].  The main 
ingredients of concrete are ordinary Portland cement (OPC or PC), water and 
fine and coarse aggregates.  OPC is the most important ingredient because it 
reacts with water to make glue, which bonds the coarse and fine aggregates 
together.   
 
 
OPC comprises four main components, which are tri-calcium silicate (C3S), 
di-calcium silicate (C2S), tri-calcium aluminate (C3A) and tetra-calcium 
aluminoferrite (C4FA).  When OPC comes into contact with water, several 
chemical reactions (hydration) occur, resulting in different hydrated 
products.  The hydration of C3S and C2S, which is considered to be about 
75% of the total weight of OPC, produces calcium silicate hydrate, also 
known as CSH gel and calcium hydroxide (Ca(OH)2 or CH).  Where, the 
hydration of C3A and C4FA forms ettringite (AFt) and monsolfmonate (AFm) 
phases [4, 5]. 
 
 
The contributions of CSH gel, CH, AFt, and AFm to concrete properties vary.  
For instance, the AFt and CSH gel are responsible for initial setting and early 
strength development, respectively.  These phases are mainly formed due to 
the hydration of C3A and C3S, hence their hydration starts after several 
minutes (i.e. 15 minutes) of mixing.  The hydration of C2S starts after several 
days of mixing and continues up to hundreds of days.  Therefore, C2S is 
responsible for the late strength development.  On the other hand, CH 
generated from the hydration of C3S and C2S does not induce strengthening 
properties.  CH may weaken the transition zone between the cement paste 
and aggregate and become a source of concrete deterioration (i.e. carbonation 
and expansive gypsum formation) [3].  The AFm phase is usually generated 
from AFt when the amount of C3A is more than the supplied sulfate ions, or 
as in the case of elevated curing temperature.  AFm has a minor contribution 
to strength, but could be converted to AFt causing harmful expansion of the 
hardened concrete properties [6, 7]. 
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The manufacturing of OPC consumes a considerable amount of energy and 
resources [8].  The production of one ton of OPC requires about four GJ of 
energy and about two tons of raw materials (limestone, shale, etc.).  In 
addition, the manufacturing of one ton of OPC emits approximately one ton 
of carbon dioxide (CO2) into the atmosphere.  From the projection made by 
the cement companies, the consumption rate of cement has risen from two 
million tons per year in 1880 to about two billion tons in 2006 [9].  Moreover, 
this proportion is expected to remain steady in the next decade.  In 
particular, the manufacturing of OPC accounts for about seven per cent of 
the total world CO2 emissions [10].  However, environmental concern has 
placed considerable pressure on cement plants to reduce the CO2 emissions 
and use alternative eco- friendly materials with lower environmental impact.  
In fact, the Rio de Junior (1992), Kyoto (1997) and Copenhagen (2009) 
protocols were essentially established to reduce the total greenhouse gas 
emissions [11, 12]. 
 
 
1.2 Use of Supplementary Cementitious Materials in Concrete 
 
One option to reduce the CO2 emissions is to replace large amounts of OPC 
with supplementary cementitious materials (SCMs) - natural, industrial by 
product, or agricultural waste materials - which have been used successfully 
as partial cement replacement materials in concrete production [13-17].  
Natural pozzolan materials, such as volcanic tuff, diatomaceous earth and 
volcanic glass have been used since the days of the ancient Romans.  
Whereas, the industrial by-product and agricultural waste materials, 
including ground granulated blast furnace slag (slag or GGBS), fly ash (FA), 
silica fume (SF), metakaolin (MK), rice husk ash (RHA), and sugar cane, were 
only introduced to the concrete industry during the last two centuries.   
 
 
The incorporation of SCMs in concrete production provides technical, 
economic and ecological benefits [18].  Introducing SCMs in fine form 
enhances the concrete density due to the filling effect of pores between 
cement particles and provides a physicochemical effect (nucleating effect), 
which promotes the hydration of OPC [19].  Most SCMs contain a high 
amount of siliceous or siliceous and aluminous materials in a non-crystalline 
(i.e. amorphous or glassy) state.  These materials are favoured components in 
concrete production because they have the ability to react with CH in the 
presence of moisture to form additional CSH phases [20].  Converting CH to 
CSH through pozzolanic reaction not only improves the strength but also 
enhances the physical and durability properties of concrete mixtures.  The 
benefits of using SCMs include: improved workability, increased ultimate 
strength, low heat of hydration, reduced permeability, and enhanced 
resistance to chemical attack [16, 21].   
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1.3 Problem Statement  
 
The incorporation of SCMs as cement replacement material can provide 
numerous benefits to the concrete industry.  In addition, by enhancing the 
engineering properties of concrete, a significant reduction in the total 
consumption of OPC can be achieved.  This reduction will have a significant 
positive impact on the environment by way of the reduced total CO2 
emissions.  However, there are some technical and economic barriers 
associated with the use of the existing SCMs.  The technical shortfalls include 
slow rate of strength development; prolonged period of curing; increased 
water demand; increased chemical admixture dosage; and difficulties in the 
placing of concrete [22, 23].   

 
 

Moreover, some SCMs may need a further treatment process, such as 
grinding and calcined under controlled conditions before being used in 
concrete production [14, 24].  Furthermore, due to market demand and 
transportation costs, SCMs can end up being more expensive than the OPC 
itself when they are imported from other countries [25, 26].  Therefore, there 
is an urgent need to find alternative materials as good sources for siliceous 
materials to be used as partial cement replacement material. 
  
 
In many parts of the world, there is an abundance of natural dune sand.  The 
particle size distribution of dune sand has shown that it does not meet the 
standard limit of fine aggregate gradations of either BS 882 and ASTM C 33 
[27].  This is because the maximum size of the dune sand grains is less than 
900 μm.  Therefore, the applications of dune sand have been limited to 
partial fine aggregate replacement, road construction, backfilling material, 
and sand concrete [27-30].   
 
 
The characterization of the dune sand shows that it contains a high amount 
of SiO2 (91%) in crystalline form.  Unlike amorphous silica, crystalline silica 
does not react or hardly reacts with CH under normal conditions.  However, 
the reactivity of this silica could be improved by a further grinding process 
or by thermal treatment under special conditions [5, 7, 31]  To the best 
knowledge of the researcher, the potential for using ground dune sand (GDS) 
as a partial cement replacement material in binary and ternary combinations 
with slag and hydrated lime has not yet  been investigated.  
 
 
1.4 Objectives of the Study 
 
The main objective of this study is to examine the potential of using GDS as 
partial cement replacement in binary and ternary blended system of OPC- 
GDS- slag and OPC-GDS- lime.  The ultimate goal of this study is to establish 
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broad scientific knowledge and the engineering behaviour of concrete 
containing GDS in binary and ternary combinations of blended cement.  The 
general objectives of this study are shown below: 
 

1. To identify an effective method that is suitable to activate the GDS to 
form a latent reaction in cement-blended mixtures. 

2. To determine the optimum level of GDS in developing blended 
cement mixtures and the optimum combinations for the ternary 
blended system. 

3. To examine the effectiveness of developing blended cement mixtures 
on the physical and durability properties. 

4. To ascertain the microstructural features and underlying mechanism 
of hydration of mixtures containing GDS blended cement system.  
 
 

1.5 Scope of the Study 
 
In this study, the examination is limited to the development of blended 
cement mixtures incorporating GDS, slag and lime in binary and ternary 
blended mixtures.  The scope of this study is designed as follows: 
 

1. To examine the reactivity of GDS, a control and blended mixture 
containing 30% GDS as cement replacement material were fabricated.   

2. To examine the suitable treatment methods (mechanical, chemical and 
thermal methods), six different mixtures incorporating treated GDS 
were cast. 

3. To examine the optimum replacement level of GDS in binary blended 
cement, five mixtures with different replacement levels (0%, 10%, 20%, 
30% and 40%) were fabricated.   

4. To examine the suitable combination of slag or lime with blended 
system containing OPC and GDS as base cementing materials, 12 
preliminary mixtures were cast.  Then, eight ternary blended cement 
mixtures containing low (15%), moderate (30%) and high (45%) 
amounts of slag or lime were introduced into the blended system 
containing 40% GDS and different amounts of OPC as base cementing 
materials.   

5. To examine the fresh properties, compressive strength and physical 
and durability properties of binary and ternary blended mixtures the 
normal consistency, setting time, workability, compressive strength, 
chloride ions permeability, drying shrinkage and resistance to sulfate 
attack tests were conducted.  

6. To study the microstructure of control and blended cement mixtures, 
SEM, EDX, XRD, DTA and TGA analyses were conducted to ascertain 
and understand the underlying mechanisms of the micro-scale 
changes that occur in the hydrated blended cement pastes.   
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1.6 Significance of the Study  
 
The successful use of GDS to reduce OPC consumption has a potential 
impact on the sustainability and economy of concrete production in the 
Middle East and other countries, where resources of natural dune sands are 
unlimited.  Moreover, the use of GDS and the proposed combinations of 
blended cement mixtures would contribute to saving a large amount of OPC 
and reduce the negative environmental effects of OPC manufacturing.   
 
 
1.7 Overview of the Thesis 
 
The thesis consists of five chapters.  Chapter 1 presents the introduction to 
the thesis in terms of general background, objectives of the study and the 
scope of the study.  Chapter 2 provides a literature review related to OPC, 
SCMs, activation methods, and microstructure study on the hydrated 
cementing mixtures.  A critical discussion focusing on the research objectives 
is presented at the end of this chapter.  Chapter 3 discusses the material 
properties and experimental programme used to carry out this study.  
Chapter 4 presents the results and discussion of the data obtained from the 
developed experimental programme.  Chapter 5 concludes the problems 
discussed throughout this thesis and highlights the contributions of this 
research and recommendations for future studies. 
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