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Abstract of thesis presented to the Senate of University Putra Malaysia in Fulfillment of 

the requirement for the Degree of Doctor of Philosophy 

 

 

MODELING REGIONAL PEAK LOAD FOREASTING USING DYNAMIC 

NARX NEURAL NETWORK WITH TEMPERATURE 

 

By 

 

FARIDAH BINTI BASARUDDIN 

 

August 2014 

 

 

Chairman: Rosnah Mohd Yusuff, PhD 

Faculty: Engineering 

 

Temperature is one of the most significant weather parameters affecting load 

consumption. Temperature varies according to demographic region and could not be 

incorporated  in the Malaysia load forecasting as the latter emphasized a general style of 

aggregate forecasting that predicts the load consumption for the whole of the country. 

Such load forecasting results would not be able to identify where the power load takes 

place and also is not helpful for power facilities construction location planning. Therefore 

the models are inadequate to predict the control of load in critical situations such as during 

drought or monsoon seasons that occur at certain time of the year or occasionally when 

weather is unpredicted. Hence it is of interest to implement a model that serves the above 

purposes as well as to improve on the supply of load. 

 

A regional peak hourly load forecasting at selected  meteorological stations in Malaysia 

using Dynamic Narx Neural Network Model is implemented. The advanced dynamic Narx 

neural network model (NARXNET) without and with temperature is applied to peak 

hourly load forecasts at selected meteorological stations in Malaysia. The performances 

of both models are compared with time series, Auto Regressive Integrated Moving 

Average (ARIMA), ARIMA transfer function with temperature  model and another neural 

network, Focused Time Delay (FTDNN) model in terms of parameters investigations and 

models’ performances. NARXNET  forecasts for the week ahead peak hourly load 

achieved  Mean Absolute Percentage Error (MAPE) ranging from 0.3422 to 0.9066 while 

the five hundreds -hours ahead peak hourly load at the stations with MAPE  0.0109 to 

0.1733. NARXNET with temperature model forecasts for the week ahead peak hourly 

load   produced MAPE ranging from 0.2773 to 0.6533 and the five hundreds -hours ahead 

peak hourly load forecasts gave MAPE ranging from 0.0248  to 0.1391. NARXNET with 

temperature model is able to capture the effect of temperature on the peak hourly load 

system at three out of five stations. 

 

ARIMA and ARIMA transfer function with temperature, for the five hundreds - hours 

ahead peak hourly load forecasts , however gave MAPE that ranged from 2.700 to 5.390 

and 2.702 to 5.393 respectively. The effect of temperature using ARIMA transfer function 
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is captured only at two out of five stations and the improvement in the forecast is very 

small. 

 

The experimental results have shown that NARXNET with temperature model due to the 

existence of feedback connection where the outputs are regressed to the network is capable 

of improving the forecasting performance through the effect of temperature. Being part of 

neural network, NARXNET  is seen as a promising black box model in identifying a 

nonlinear system without/with prior knowledge. Thus Narxnet can be used for real time 

simulations. The simulation results proved that NARXNET, having the ability dealing 

with nonlinear data outperformed ARIMA and ARIMA Transfer function models. The 

excellence performance of NARXNET in dynamical modeling  was supported by studies 

conducted by Lin et al.(1997), Luo and Puthusserypady (2006), Nordin (2009) and others. 

 

As both historical temperature and load data were applied to the NARXNET model, this 

research also considered some aspect of regression analysis involving load and weather 

parameters with more emphasis on temperature–load relationship. The historical peak 

hourly load and temperature data for a period of one year were applied to both models, 

NARXNET  and regression. The trend of the peak hourly load consumption for a selected 

week and load profile on a selected day within the study period were analyzed. The 

analysis provides better understanding on the characteristics of Malaysian power load 

system.  

 

The implementation of the  model was validated by comparing with other existing works. 

Both the validation and simulation results were similar. It can be concluded that 

NARXNET with temperature model performed better than other models that use 

temperature and thus by applying NARXNET model to predict the electricity 

consumption at locations that are affected by extreme changes in temperature, the problem 

of over production or under production of electricity that in turn influence the sustainable 

development of the economy could be overcome. 
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PEMODELAN RAMALAN BEBAN PUNCAK MENGIKUT RANTAU 

MENGGUNAKAN RANGKAIAN NEURAL DINAMIK NARX DENGAN SUHU 

 

 

Oleh 

 

FARIDAH BINTI BASARUDDIN 

 

Ogos  2014 

 

 

Pengerusi: Rosnah Mohd Yusuff, PhD 

Fakulti: Kejuruteraan 

 

Suhu merupakan salah satu parameter cuaca yang ketara mempengaruhi penggunaan 

elektrik. Suhu berbeza mengikut kedudukan atau rantau dan tidak dapat di aplikasi di 

dalam membuat ramalan kadar penggunaan elektrik di Malaysia yang secara umum  

menekankan ramalan beban elektrik agregat di mana ramalan penggunaan beban elektik 

di buat untuk seluruh negara. Oleh itu ramalan kadar penggunaan elektrik yang dihasilkan 

bukan saja tidak dapat mengenal pasti jumlah penggunaan elektik di kawasan-kawasan 

tertentu malahan tidak dapat membantu di dalam merancang pembinaan kemudahan dan 

infrastruktur penjanaan elektrik mengikut keperluan kawasan-kawasan tersebut. Oleh itu 

model-model yang yang sedia ada tidak sesuai dan tidak tepat dalam membuat ramalan 

penggunaaan elektrik terutamanya di saat genting apabila terdapat musim panas  atau 

musim tengkujuh yang berpanjangan dan keadaan cuaca yang tidak menentu dan sukar di 

ramal. Sehubungan itu adalah menjadi satu keutamaan atau kepentingan bagi penyelidek 

dalam bidang ramalan penggunaan elektrik untuk mengaplikasi satu model yang bukan 

saja dapat mengatasi masalah yang tertera di atas, malahan dapat meningkat dan 

memperbaiki sistem pembekalan elektrik secara keseluruhan. 

 

Satu pendekatan  dalam membuat ramalan berhubung kadar penggunaan electrik maksima 

bagi sesebuah kawasan (rantau) di beberapa stesen kaji cuaca di Malaysia mengguna 

model dinamik NARXNET telah dicadang. Model dinamik lanjutan NARXNET yang 

dicadangkan  samada dengan gabungan suhu atau tidak telah diaplikasikan dalam 

membuat ramalan penggunaan maksima beban elektrik mengikut jam di stesen-stensen 

kajicuaca yang dipilih. Prestasi model NARXNET samada dengan gabungan suhu atau 

tidak dalam membuat ramalan penggunaan maksima beban elektrik mengikut jam telah 

dibanding dengan  model ‘time series’ , ‘Auto Regressive Integrated Moving Average’ 

(ARIMA), ‘ARIMA transfer’ dengan gabungan suhu dan satu lagi rangkaian model 

neural, ‘Focused Time Delay’ (FTDNN)  dari segi ketepatan dalam penggunaan parameter 

beban elektrik dan suhu serta pengesahan prestasi dan kelebihan model NARXNET 

tersebut. Model NARXNET tanpa gabungan suhu memberi ramalan penggunaan beban 

maksima elektrik mengikut jam bagi satu minggu ke hadapan di stesen-stesen kajian 
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dengan nilai ralat ‘MAPE’ di antara 0.3422 hingga 0.9066 manakala bagi ramalan 500 

jam ke hadapan dengan nilai ‘MAPE’ di antara 0.0109 hingga 0.1733. Model NARXNET 

dengan gabungan suhu pula bagi ramalan mengikut jam untuk satu minggu ke hadapan 

menghasilkan  nilai ralat ‘MAPE’ di antara 0.2773 hingga 0.6533 dan ramalan bagi 500 

jam ke hadapan  menghasilkan nilai  ralat ‘MAPE’ di antara 0.0248 hingga 0.1391  

 

Model NARXNET dengan gabungan suhu berupaya mengesan pengaruh suhu terhadap 

ramalan penggunaan suhu maksima mengikut jam di tiga daripada lima stesen. Model 

ARIMA and ARIMA ‘transfer function’, menghasilkan nilai ‘ MAPE’ diantara  2.700 

sehingga 5.390 dan 2.702 sehingga 5.393. Pengaruh suhu hanya dikesan di dua dari lima 

buah stesen dan peningkatan di dalam ramalan penggunaan maksima beban elektrik 

mengikut jam sangat kecil. 

 

Keputusan dari ujikaji atau percubaan yang dilakukan sepanjang penyelidekan ini telah 

membuktikan bahawa model NARXNET dengan gabungan suhu yang mempunyai  

saluran yang menghubungkan semula ‘output’ dan ‘input’ di mana ‘output’ dimasukkan 

semula ke dalam ‘network’ dapat mempertingkatkan prestasi ramalan yang dihasilkan dari 

kesan pengaruh suhu. Model NARXNET yang merupakan sebahagian dari rangkaian 

neural dianggap sebagai sebuah model kotak hitam yang semakin menonjol 

penggunaannya dalam mengenal pasti sistem yang bukan linear berdasarkan  pengetahuan 

sedia ada atau tiada , disamping dapat di aplikasi untuk tujuan simulasi yang nyata. 

Prestasi dan keupayaan model NARXNET dalam mengendali data yang tidak linear 

adalah lebih baik dari model ARIMA dan  ‘ARIMA transfer function’ . Pencapaian 

cemerlang yang ditunjukkan oleh model NARXNET dalam Permodelan dinamik 

disokong oleh kajian-kajian yang telah dijalankan oleh Lin dan rakan-rakan (1997), Luo 

dan Puthusserypady (2006),  Nordin (2009) dan lain-lain. 

 

Kedua-dua data terdahulu bagi suhu dan beban elektrik yang digunapakai bagi 

mengaplikasikan model NARXNET juga di guna dalam analisis regresi yang melibatkan 

beban elektrik dan unsur-unsur cuaca terutamanya suhu. Data setiap jam penggunaan 

beban elektrik dan data suhu mengikut jam diguna dalam model NARXNET gabungan 

suhu dan regresi. Aliran penggunaan mingguan beban elektrik maksima dan profil beban 

elektrik untuk hari tertentu dalam jangka masa  dimana  penyelidikan dijalankan telah 

dianalisa. Hasil dari analisis yang dibuat memberi gambaran yang lebih jelas bagi kita 

memahami ciri-ciri sistem kuasa eletrik di Malaysia. 

 

Bagi mengenal pasti kesahihan model yang telah diaplikasi, penyelidikan ini telah 

membandingkannya dengan model-model yang sedia ada. Keputusan perbandingan dan 

simulasi adalah serupa. Oleh itu bolehlah disimpulkan bahawa model NARXNET dengan 

gabungan suhu merupakan satu model yang lebih baik dari model-model gabungan suhu 

bandingan dan harapan kami model ini dapat diaplikasikan dalam membuat ramalan 

penggunaan maksima beban elektrik di kawasan di mana pengaruh suhu amat ketara agar 

masalah penjanaan kuasa elektrik yang kurang atau berlebihan dapat diatasi dan 

seterusnya dapat membantu dan mengekal pembangunan ekonomi negara. 
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CHAPTER ONE 

 

 

INTRODUCTION 

 

1.1 Research Background  

 

The  power industry in Malaysia had undergone a tremendous development during the 

last few decades. The growing demands by the consumers and stakeholders for a 

reliable supply of electricity at a reasonable cost and for an efficient planning, operation 

and dispatch of the power system respectively have increased the necessity of having a 

robust and accurate load forecasting. The largest power utility company whose core 

activities are in generation, transmission and distribution of electricity serves an 

estimated 8.3 million customers in Peninsular Malaysia, Sabah and Labuan (Tenaga 

Nasional Berhad, 2013). Six thermal stations and three major hydroelectric schemes 

generate and supply electricity to households and industries in Peninsular Malaysia 

(Tenaga Nasional Berhad, 2013).  

 

The electricity consumption in Malaysia has been steadily increased in the past decade 

and is expected to increase by 3.1% from 2012  until 2020 due to strong demands from 

the industrial and residential sectors (Kui, 2012).  

 

Electricity next to water and food is one of the most crucial needs to human beings. It 

is considered as a sustainable resource that simplifies our lives. Unlike physical goods 

or other energy sources, electricity cannot be stored, it responses to demand and requires 

some lead time. It is produced at the time of use and does not lend itself easily to storage. 

Thus the matching of supply to demand is of utmost important to maintain the level of 

reliable supply that is expected in today’s society. Due to this reason, the forecasting of 

electricity demand has become one of the major research fields in engineering and 

applied sciences and has received much attention over the last ten years. There is an 

increasing number of articles pertaining to load forecasts that have been published in 

scientific journals each year and they draw the attention of the researchers in this area 

to apply, improve and come out with models that suit their specific forecasting needs.  

 

Different forecasters and researchers have attempted various load forecasting models to 

predict the short term maximum load consumption of Malaysia. These include the 

studies conducted by Othman et al. (2009), Harun et al. (2009), Ismail et al. (2008),  

Ismail and Jamaluddin (2007), Rahman (2005), Razak et al. (2008) and (2010), Nagi et 

al. (2007) and  Kamel and Baharudin (2007). Their contributions enabled us to 

understand the load forecasting scenario in Malaysia and further enhanced the interest 

in this area. 

 

1.1.1   Problem Statement  

 

There is no regional peak load forecasting currently in Malaysia using Narx neural 

network with temperature. All the forecasting models that were established predict the 

load, either average or peak load for the whole of Malaysia with few that focused on 

specific regions.  In this doctoral research a regional load forecasting models at selected 

meteorological stations were constructed using several models and comparison of all 

models were made in order to come out with the best model for the above purpose. It is 

http://scialert.net/asci/author.php?author=Z.&last=Ismail
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very important to have a regional load forecasting as the weather parameters vary 

according to demographic locations. Even though several of weather parameters do not 

seemed to have  significant contribution towards the load forecasting but temperature 

has been shown to have major effects on load consumption at most places on the world. 

Temperature has been proven by the earlier studies to have great impact on load 

consumption.  

 

A simulation of a 2°F increase in temperature for July and August 2000 resulted in a 

4.6% increase in electricity demand for the Pennsylvania-New Jersey-Maryland  (PJM) 

region as a whole. These being the peak cooling demand months where the average 

increase over the year would likely be somewhat lower. Results that are similar in 

magnitude were reported for a simulation of electricity demand in California by Baxter 

and Calandri (1992), who found that there was a 3.8% increase over the year for a 

similar warming scenario (Crowley and Joutz, 2005). 

 

The influence of temperature and its accumulation for load works when the temperature 

is high. How high could the load be? Research shows that the relationship of 

temperature and load is positive correlation when the average temperature is higher than 

20oC (Genyong and Jingtian, 2009). 

 

The national power utility company in Malaysia has applied three common methods of 

load forecast, the standard multiple linear regression, moving average and exponential 

smoothing  for daily and half hourly load. These techniques, however have limitations 

to predict load succesfully when dealing with real time weather inputs from the 

meteorological department (Yang,  2006).  

 

Thus, having regional load forecast model with temperature will enable the smooth load 

distribution and hence reduce the power shortage or blackout throughout the region. In 

case there is any opening of new township or expansion of the existing township, the 

model could easily be corporated with the adjustment and increase in the load 

consumption.  Both time series and neural network models are compared in this research 

in implementing more accurate forecasts. 

 

1.1.2 Research Problems 

 

Mathematical modeling of power load in Malaysia is currently independent of weather      

elements. Therefore the models are inadequate to predict the amount of electricity that 

should be generated to supply special groups of consumers over a specific period and 

location that was affected by weather parameters. Hence it is of interest to develop a 

model that serves the above purposes as well as to improve on the supply of load. 

Variety of techniques such as short term, moderate term and long term forecasting and 

approaches such as time series, linear and non linear regression and neural network have 

been proposed and applied in this area to improve the quality of forecasting accuracy, 

making the operation at least cost and maintaining an acceptable reliability (Kung et al., 

1998).  

 

Besides weather parameters, factors such as long term variation which is due to factors 

such as population growth, economic development and consumers’ awareness on 

electricity consumption conservations will also affect the load consumption especially 

in long term load forecasting. Short term load forecasting or power load forecasting of 
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several hours ahead to a week ahead is essential in electric power system operation and 

planning. To enable an accurate forecasting, the effects of all influencing factors such 

as weather information, time of the day and special days and holidays should be 

considered and included in the forecasting process. In Malaysia, the effects of four 

moving holidays representing religious and cultural celebrations , Aidil Fitri, Aidil 

Adha, Chinese New Year and Deepavali lead to inaccurate load forecasting (Razak, 

2013). 

 

The accuracy of short-term load forecasts can have significant effects on power system 

operations, as the economy of operation and the control of the power system may be 

quite sensitive to forecasting errors. Significant forecasting errors can lead to either 

overly conservative or overly risky scheduling, which can in turn induce heavy 

economic penalties. Forecasts that are too high may result in the start-up of too many 

units and unnecessarily high levels of reserves. On the other hand, forecasts that are too 

low may result in failure to provide the necessary spinning and operating reserve 

required by power pool agreements. In both cases, forecasts errors could result in 

increased operating costs (Papalexopoulos and  Hesterberg, 1990). Further study on the 

impact of weather parameters like humidity, precipitation, wind-speed/velocity on load 

forecasting is needed as short-term load forecasting is mainly affected by weather 

parameters. 

 

In general the style of load forecast in Malaysia as in other countries in the world, 

emphasized aggregate load forecasting. Such load forecasting could not incorporate 

temperature as the later varies according to locations and the results not only cannot 

identify where the power load takes place but also is not helpful for power facilities 

construction location planning. 

 

Regional load forecasting instead involves predicting the amount of electricity that 

should be generated to supply specific kinds of consumers over a specific period and 

location. It is explicitly intended for applications in generation capacity installation, 

long term capital investment, electricity price setting and transmission capacity 

expansion in different regions (Hsu and Chen, 2003). 

 

In an age of spiraling of oil and coal prices with rapid urban and rural industrialization 

revealed the futile hope for a cheap and reliable electricity supply. Regional load 

forecast that incorporates temperature could no longer be ignored in Malaysia.  

However, such regional load forecasting is still lacking in Malaysia.  

 

 

1.2 Research Objectives 

 

1.2.1 General Objective 

 

The ultimate objective of the study is to implement an hourly regional temperature 

sensitive peak load demand model by comparing both statistical time series and neural 

network techniques. The main focus is on the significant effect of temperature on the 

electrical load consumption. 
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1.2.2 Specific Objectives 

 

The specific objectives are as follows: 

 

i) To determine the effects of temperature on load consumption in Malaysia. 

ii) To select the most accurate model that is able to capture the effect of 

temperature for the regional peak hourly load forecasts in Malaysia. 

iii) To implement the model for the regional peak hourly load forecasts in 

Malaysia. 

 

1.3 Research Scope 

 

Hypothesis related to the study objectives are as follows: 

 

i) In implementing time series Auto Regressive Integrated Moving Average 

(ARIMA) model for the peak hourly load forecasting, it is hypothesized that 

the peak load demand will be totally dependent on the weather parameters 

especially the temperature. Other weather parameters might have slight 

impact on the load demand. 

ii) ARIMA transfer function with temperature model is implemented to 

determine the effect of temperature on the peak hourly load consumption. 

iii) The Dynamic Narx with temperature model is hypothesized to be more 

efficient in forecasting load demand especially on days when there is sudden 

change in the weather condition and in terms of computing time. 

iv) Time series (linear) and Neural Network (nonlinear) models without/with 

temperature are to be implemented and compared  using real data obtained 

from the power utility company. 

v) The temperature sensitive regional peak hourly load forecasting model 

provides more accurate  results for forecasting peak hourly load demand in 

Malaysia. 

 

The research focuses mainly on short term load forecast (STLF). The STLF is the 

prediction of load that varies from an hour to a week. Eventhough the load data obtained 

through online system was in ten minutes interval, the data was reduced to hourly data 

to be accommodated into the model. The peak hourly load data from eight stations for 

a period of three years comprising of  all sectors, industrial, commercial and residential 

from 1st January 2006 to 31st December 2008 were used in the research. However only 

an hourly weather data including temperature at 5 stations from 1st January until 31st 

December 2006 were applied to the model. Statistical time series techniques are 

developed as comparison due to their users friendly algorithm accessibility and they 

allow better understanding of the problem through explicit models equations and 

justified significance testings. 

 

 

1.4  Thesis Organization 

 

The thesis is organized  into 5 chapters: 

Chapter 1 states the background, the problems, the objectives and the scope of the 

research. Chapter 2 reviews a number of previous and current published research 

techniques on statistical time series and neural network methods pertinent to the short 
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and medium term load forecasting. The strength and the weakness on the 

implementation of each technique is discussed to identify the gap in load forecasting. 

Common problems in current practice of load forecasting are laid out and the 

possibilities of applying the implemented method in regional peak hourly load 

forecasting with temperature would reduce the problems and thus improved the 

forecasting results. Chapter 3 discusses on the implementation of  time series ARIMA, 

ARIMA transfer function with temperature, regression models and neural network, 

Focused Time Delay Neural Network (FTDNN) and Narx without/ with  temperature 

models. All  the steps involved in the implementation of each model are summarized in 

the form of flowcharts.  

 

The first part of this chapter focuses on the implementation of time series ARIMA 

model using small data values and large data values. The methodology for each time 

series model includes the phases of model identification and selection, the parameter 

transformation and estimation, and model application. The requirements of forecasting 

accuracy criteria, diagnostic plots and statistical tests are essential in the selection of 

best fit model.  

 

The models with small data values were executed using integrated time series modeling 

(ITSM) soft ware that employed the first 250 peak hourly load data of the year 2006. 

The peak hourly  load data from all the five stations were separately applied to the 

models and the hour ahead peak load , the next day peak hourly load and the next week 

peak hourly load forecasts are calculated and anlaysed based on the fitted time series 

ARIMA models. Large data values consist of peak hourly load data for the year 2006  

that are applied and executed through the time series SPSS packages and similar peak  

hourly load forecasts were performed and the forecasting errors were calculated.  

 

The second part of the chapter  concentrates on the linear regression analysis of load 

with respect to temperature and other weather parameters respectively. The correlation 

between load as dependent variable and weather parameters as independent variables 

are established. The correlation coefficient that measures the strength of the relationship 

between the variables are calculated and the equation of the best fitting line is derived. 

  

The third part is the implemetation of ARIMA transfer function with temperature model 

where the peak hourly load and temperature are applied and executed using program 

from SPSS packages. 

 

The fourth part of this chapter presents the implementation of FTDNN and NARXNET 

models through training and testing of neural networks. Different iteration numbers for 

network training are tried and the selection of the best model was based on the mean 

absolute percentage error  MAPE of 1%. The effect of temperature to the the peak 

hourly load forecast captured by NARXNET with temperature model that outperformed 

ARIMA transfer function with temperature model that results with small forecast error 

measured in MAPE of less than 1% could not be ignored as temperature is one the 

intervening factors in Malaysia regional load forecasting. 

 

The last part of chapter 3 presents the daily load profiles on 1st January  at the stations 

for the period of three years from 2006 to 2008 in the form of graphs. The trends and 

patterns of peak load consumption are analyzed and discussed in the last chapter.  
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Chapter 4 discusses, compares and assess the results of data analysis from all the models 

involved in the research.  

 

Chapter 5 summarizes and concludes the outcome of the research and proposes 

recommendations for future related research topics. 

 

1.5  Thesis Contribution 

 

The results of the implemented regional peak hourly load forecasting using Narx Neural 

Network with temperature model will contribute to the improvement in the peak hourly 

load forecast for an hourly ahead, a week ahead and the five hundreds -hours interval 

ahead. The ability of the model to capture the effect of temperature on the peak hourly 

load system and to predict the peak hourly load with small errors of forecast and speedy 

computing time is expected to improve on the load forecast and thus will be beneficial 

to the future planning and operations of the power system. 

 

The implementation of improved load forecasting model using neural network approach 

that has the ability to recognize the data pattern occurring on any time of the chosen 

interval would hopefully result with more accurate and reliable  forecasts of peak load 

demand. Hence the implemented model can be applied to other real world time series 

problems in economics, social sciences and others. 
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