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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 

ABSTRACT 

 

INVESTIGATION OF DIFFERENT CONFIGURATIONS FOR SINGLE 

AND DOUBLE SPACING MULTI-WAVELENGTH BRILLOUIN-

RAMAN FIBER LASER  

 

By 

GHAZALEH MAMDOOHI 

December 2014 

Chairman: Mohd Adzir bin Mahdi, PhD 

Faculty: Engineering 

 

The work in this thesis focuses on generation of multi-wavelength Brillouin-Raman 

fiber laser (MBRFL) with single and double frequency Brillouin spacing shift. Three 

main configurations have been proposed to accomplish this aim. These are achieved 

based on the stimulated Brillouin scattering (SBS), stimulated Raman scattering 

(SRS), and stimulated Rayleigh scattering (SRLS). In all architectures, dispersion 

compensating fiber (DCF) is utilized as a nonlinear Brillouin-Raman gain medium. 

Firstly, a new MBRFL utilizing enhanced nonlinear amplifying fiber loop (NAFL) 

design is proposed and demonstrated to produce adjustable 10 and 20 GHz 

wavelength spacing. We developed a detailed theoretical analysis, which represents 

a good foundation on which operation of MBRFL with 10 and 20 GHz spacing is 

satisfied. By proper adjustments of splitting ratio, the wavelength interval can be 

adjusted, thus improving the laser performance. Utilizing 50/50 coupler offers 443 

flat amplitude channels with 10 GHz spacing and 16.5 dB average Stokes optical 

signal-to-noise ratio (S-OSNR). On the other hand, 1/99 coupler is desirable for 

multiple Stokes combs with 20 GHz spacing in which 221 lasing lines with an 

average 25 dB S-OSNR are generated. The employment of a mirror at the end of this 

cavity, which is dubbed as the nonlinear amplifying loop mirror (NALM) design is 

responsible for initiation of lower threshold for SBS effect that leads to the excellent 

results. A total of 28 channels with 10 GHz spacing and an average 17 dB S-OSNR 

are achieved when the Raman pump power (RPP) is fixed at only 300 mW. This is 

the most efficient 10 GHz MBRFL reported at very low RPP through a simple 

configuration. The second configuration is proposed to generate a MBRFL with 20 

GHz spacing via forward pumping scheme. The setup is arranged in a linear cavity 

by employing 7.2 and 11 km DCF in addition to a 30 cm Bismuth oxide erbium-

doped fiber (Bi-EDF). It is found that incorporating 11 km DCF with Bi-EDF results 

in multiple Brillouin Stokes signals with outstanding OSNR. In this case, a total of 

186 Brillouin Stokes combs with -13.5 dBm Stokes peak power (SPP) and an 

average 28 dB S-OSNR are produced. These results are achieved when Brillouin 

pump (BP) power of -2.6 dBm , BP wavelength of 1545 nm , and RPP of 900 mW 

are injected into the cavity. However, characteristics improvement of MBRFL with 

20 GHz spacing in terms of channels count, SPP, and wavelength operation is 
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another aim of this work which is successfully accomplished by introducing the 

third configuration. In this structure, incorporation of Raman pump source with a set 

of couplers with various ratios leads to different Brillouin Stokes lines features. The 

optimization of multi-wavelength laser operation is done with proper adjustments of 

coupling ratio, BP wavelength, BP power, and RPP. The results demonstrate that the 

best S-OSNR performance is satisfied at coupling ratio of 50/50. When setting the 

RPP to 1000 mW, 212 flat amplitude Stokes lines with -10 dBm SPP and an average 

27.5 dB S-OSNR are achieved. In this case, the BP power and its corresponding 

wavelength are set at -2.6 dBm and 1543 nm respectively. Moreover, this 

configuration reveals the highest peak power discrepancy between odd- and even-

order Stokes lines (22.5 dB) in comparison with other configurations with 20 GHz 

spacing. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 
ABSTRAK 

SIASATAN TERHADAP KONFIGURASI-KONFIGURASI BERBEZA 

UNTUK TUNGGAL DAN BERKEMBAR PADA LASER GENTIAN 

BRILLOUIN-RAMAN BERBILANG SALURAN 

Oleh 

GHAZALEH MAMDOOHI 

Decimber 2014 

Pengerusi: Mohd Adzir bin Mahdi, PhD 

Fakulti: Kejuruteaan 

 

Kerja penyelidikan ini memfokus kepada penghasilan laser gentian Brillouin-Raman 

berbilang saluran (MBRFL) dengan anjakan selang Brillouin berfrekuensi tunggal 

dan berkembar. Tiga konfigurasi utama telah disyorkan dalam kerja penyelidikan 

ini. Ianya dicapai berdasarkan penyerakan Brillouin terangsang (SBS), penyerakan 

Raman terangsang (SRS), dan penyerakan Rayleigh terangsang (SRLS). Di dalam 

semua binaan, gentian gantian penyebaran (DCF) digunakan sebagai sebuah media 

pengganda Brillouin-Raman tidak lurus. Pertamanya, sebuah MBRFL yang baru 

menggunakan rekaan geluang gentian gandaan tidak lurus (NAFL) termaju telah 

disyorkan dan didemonstrasikan untuk menghasilkan selang saluran boleh-ubah iaitu 

10 dan 20 GHz. Kami juga telah membangunkan suatu analisis teori yang terperinci, 

di mana ianya adalah suatu penemuan yang bagus, yang mana operasi MBRFL 

dengan selang 10 dan 20 GHz adalah memuaskan. Dengan pengubahan yang betul 

terhadap nisbah pecahan, selang saluran boleh diubah, seterusnya meningkatkan 

prestasi laser. Menggunakan pengganding 50/50  menawarkan selang-selang 

amplitud rata sejumlah 443 garisan laser dengan 10 GHz dan hampir kepada nilai 

16.5 dB untuk nisbah isyarat-kepada-kebisingan optik Stokes (S-OSNR). Selain 

daripada itu, pengganding 1/99 diperlukan untuk sesikat Stokes berbilang dengan 

selang 20 GHz, di mana bilangan saluran sejumlah 221 dengan S-OSNR bernilai 25 

dB telah dihasilkan. Penggunaan cermin pada hujung kaviti ini di gelar sebagai 

rekaan cermin gelung gandaan tidak lurus (NALM) dan bertanggungjawab untuk 

penghasilan nilai ambang yang lebih rendah untuk kesan SBS yang membawa 

kepada keputusan yang bagus. Sejumlah 28 saluran dengan selang 10 GHz dan 

purata S-OSNR bernilai 17 dB telah dicapai apabila kuasa pam Raman (RPP) 

ditetapkan pada 300 mW sahaja. Ia merupakan laporan MBRFL untuk 10 GHz yang 

paling efisien pada RPP yang paling rendah berdasarkan kepada konfigurasi yang 

ringkas. Konfigurasi kedua mensyorkan penghasilan suatu MBRFL dengan selang 

20 GHz melalui skim pengepaman hadapan. Penyediaan ini disusun dalam kaviti 

lurus dengan menggunakan DCF yang panjangnya 7.2 dan 11 km, dengan 

penambahan gentian erbium-terdop Bismuth teroksida (Bi-EDF) yang panjangnya 

30 cm. Menggunakan Bi-EDF berserta DCF yang panjangnya 11 km, didapati 

isyarat Stokes Brillouin berbilang dengan OSNR yang bagus terhasil. Dalam kes ini, 
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sejumlah 186 sesikat Stokes Brillouin dengan kuasa puncak Stokes (SPP) bernilai -

13.5 dBm dan S-OSNR bernilai 28 dB telah dihasilkan. Keputusan ini dicapai 

apabila kuasa pam Brillouin (BP) adalah -2.6 dBm, saluran BP adalah 1545 nm, dan 

RPP adalah 900 mW dimasukkan ke dalam kaviti. Akan tetapi, peningkatan ciri 

MBRFL dengan selang 20 GHz dari segi pengiraan saluran, SPP, dan operasi 

saluran adalah matlamat lain dalam kerja peneyelidikan ini, yang mana telah berjaya 

dicapai dengan memperkenalkan konfigurasi ketiga. Dalam struktur ini, kemasukan 

sumber pam Raman dengan set pengganding pelbagai nisbah menunjukkan kepada 

sifat garisan Stokes Brillouin yang berbeza. Pengoptimuman operasi laser berbilang 

saluran dapat dicapai dengan pengubahan nisbah penggandingan, saluran BP, kuasa 

BP dan RPP. Keputusan ini menyatakan bahawa prestasi S-OSNR terbaik telah 

dicapai pada nisbah penggandingan 50/50. Apabila RPP ditetapkan pada 1000 mW, 

212 garisan Stokes amplitud rata dengan SPP bernilai -10 dBm dan purata S-OSNR 

bernilai 27.5 dB telah diperolehi. Dalam kes ini, kuasa BP ditetapkan kepada -2.6 

dBm, manakala panjang gelombang saluran BP ditetapkan kepada 1543 nm. Selain 

itu, konfigurasi ini mendedahkan bahawa perbezaan kuasa puncak tertinggi di antara 

garisan Stokes pada susunan ganjil dan genap adalah bernilai 22.5 dB dalam 

perbandingan dengan konfigurasi lain dengan selang 20 GHz. 
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  CHAPTER ONE 

1 INTRODUCTION 

1.1 Introduction 

There is currently an increasing demand for transmission bandwidth used for dense 

wavelength-division-multiplexing (DWDM) optical communication systems as 

resulted from the remarkable advancement both in the data traffic and the internet 

[1-2]. DWDM has a potential transmission system with large number of closely 

spaced channels through optical fiber. In addition, employment of optical amplifiers 

for regenerating the multi-channel light wave without requiring to demultiplexing of 

individual channels makes a revolution in multi-wavelength optical system designs. 

This makes a demand for multi-wavelength light source. In order to fulfill such a 

demand, using the multi-channel laser source has turned into a noticeable and 

conceivable solution. Multi-wavelength fiber lasers are highly desirable for the cost 

and size reduction, improvement of system integration and their compatibility with 

optical communication networks. Researchers have focused their efforts on 

producing a multi-wavelength fiber laser (MFL) which is able to generate a higher 

number of channels with precise wavelength spacing between them. In the past few 

years, generating multi-wavelength based on nonlinear effects are one of the 

attractive approaches which were mostly designed in a single or hybrid technology. 

The single configuration means that only a single-technology has been deployed for 

this purpose such as the ones based on Brillouin fiber laser (BFL) [3-4], erbium-

doped fiber laser (EDFL) [5-6], Raman fiber laser (RFL) [7-8], ytterbium fiber laser 

(YFL) [9], and others. However, this type of BFL suffers from a limitation in output 

power due to the small coefficient of the Brillouin gain. Moreover, the EDFL or 

RFL have some drawbacks, mainly resulting from few laser Stokes line count (SLC) 

and non-flattened laser Stokes spectra. These features have forced the researchers to 

explore the hybrid technology. Hybrid-gain configuration is another nonlinear-based 

multi-wavelength fiber laser which is more attractive due to its ability to generate 

more multi-wavelength laser. This type of configuration combines Brillouin and 

other gains for generating multiple wavelengths. Brillouin-Erbium fiber laser 

(BEFL) in ring and linear cavity have attracted many interests [10-14]. The BEFL 

operation is also extremely sensitive to resonance detuning between the pump laser 

frequency and the Brillouin cavity mode [12, 15]. However, the homogeneous 

nature of its gain medium limits the bandwidth and amplitude envelope profiles of 

the output multi-wavelength Brillouin-Erbium fiber laser (MBEFL) comb spectrum  

[16]. Since the number of wavelengths that can be generated in a fiber laser is 

critical as it is directly proportional to the transmission system capacity. Hence, a 

new configuration of hybrid multi-wavelength Brillouin–Raman fiber laser 

(MBRFL) has been regarded as a potential and prosperous solution with several 

important advantages. These include stable multi-wavelength operation at room 

temperature and the extremely broad workable wavelength band nearly without 

limitation. This technique was first proposed by B. Min et al. at 2001 [17] in which 

the narrow linewidth Brillouin gain is integrated with broad bandwidth Raman gain 

to generate hundreds of channels. Later on K.D. Park et al. [18-19] have studied the 

dynamic and threshold features of Brillouin Stokes lines (BSL) generation in Raman
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fiber amplifier. Multiple-wavelength Brillouin-Raman fiber lasers having ring and 

linear cavity configurations have been demonstrated in [20-21]. These two studies 

used highly nonlinear fiber (HNLF) and dispersion shifted fiber (DSF) as a 

Brillouin-Raman gain medium which represent 20 and 75 Stokes lines as well as the 

roughly 10.5 GHz spacing for both configurations correspondingly. A. K. Zamzuri 

et al. recommended architectures for MBRFL which employ two feedback mirrors at 

the both ends of the cavities [22-23]. Moreover, they have studied the contribution 

of Rayleigh scattering on Brillouin comb line generation and the effect of spectral 

broadening on Stokes-optical signal-to-noise ratio (S-OSNR) [24-26]. Another 

MBRFL is also proposed by Wu et al. [27] which is performed in a half-open cavity 

and capable of creating uniform Stokes combs with 210 channels. Furthermore, 

Sonee Shargh et al. [28] have demonstrated a simple linear cavity MBRFL with a 

single Raman pump wavelength and employed large effective area fiber (LEAF) 

with the aim of the S-OSNR enhancement. Other report that accomplished a 

MBRFL with a double-pass structure and are able to produce a comb fiber laser with 

more than a few hundred of Stokes lines with 10 GHz spacing is also introduced by 

[29]. Despite these advantages, the main drawbacks associated with these lasers are 

their lower average output power and the non-uniformed Brillouin combs. Current 

research performed by Wang et al. with the aim of enhancing the flatness of the 

Brillouin Stokes lines utilizing only a single Raman pump [30]. Although, over 500 

Stokes lines have been produced across 40 nm bandwidth, it suffers from very low 

S-OSNR of 12.5 dB and low output power. This is the highest number of channels 

acquired from a single Raman pump source reported until now. All of the 

aforementioned reported assessments are designed to attain multiple wavelengths 

with single wavelength spacing (10 GHz). Despite the research success, these 

techniques are not feasible as they are either very costly, or not well suited for 

practical application. In addition, due to the spectral broadening effect at higher 

pump power, the quality of Stokes lines in terms of optical signal-to-noise ratio 

(OSNR) is deteriorated [25]. As a result, together with the disadvantages existing in 

10 GHz MBRFL the needs to explore alternative MBRFL sources have been 

increased. 

 

1.2 Motivation 

As discussed in the previous section, several MBRFL with 10 GHz wavelength 

spacing through different kinds of cavity configurations have been reported [17-18, 

20-24, 27-30]. Nevertheless, these laser structures with low S-OSNR and narrow 

channel spacing is not practical for DWDM applications as it is difficult to 

demultiplex the channels at the receiver end. Thus, another design offering higher 

spectrum performances in terms of flatness, output peak power, and S-OSNR must 

be considered for MBRFL with 10 GHz spacing. However, the problem associated 

with the narrow wavelength spacing can be addressed by the development of 

MBRFL with wider spacing between BSL. In the earlier work [31], a MBRFL in a 

ring cavity with 22 GHz wavelength spacing is reported which is able to produce 

only 16 lines with a 11.7 dB S-OSNR. Although a MBRFL with double wavelength 

spacing has been realized, the exploitation of higher wavelength numbers with wider 

bandwidths and average excellent S-OSNR have been rarely demonstrated. 

Therefore, an alternative setup that improves MBRFL performance with double 

wavelength spacing (20 GHz) is also preferable. In this thesis, two different linear 



© C
OPYRIG

HT U
PM

 

3 

 

cavity configurations are designed to achieve this objective. Moreover, in order to 

provide design flexibility and functionality, it is desirable to demonstrate a MBRFL 

source with an adjustable wavelength spacing (10 and 20 GHz spacing) with 

excellent performances to be more feasible for DWDM systems. Because the current 

DWDM systems have different channels spacing based on their specific 

applications. To achieve this, a new cavity design of MBRFL that utilizes a 

nonlinear amplifying fiber loop (NAFL) is proposed. In addition, further 

advancement in this cavity is performed as an alternative source for generation of 

MBRFL with 10 GHz spacing. The advantages of developing this configuration are 

due to its operation at very low Raman pump power (RPP) which permits the 

generation of multiple Brillouin Stokes signals (MBSS) with good performances. 

 

1.3 Problem Statements 

Even though MBRFL is an excellent approach to generate hundreds of Stokes line, it 

still has the following problems, 

i. Lower value of S-OSNR for both 10 and 20 GHz spacing. 

ii. Multi-frequency pump sources or multi-gain media requirement when high 

count, flattened multi-Stokes lines are needed. 

iii. There is no report on generating MBRFL with adjustable wavelength 

spacing. 

iv. Generation of a few MBSS with 10 GHz spacing and acceptable OSNR are 

achieved at the expense of high RPP and complex design. 

v. There is no study on generation of 20 GHz MBRFL with higher number of 

channels and good S-OSNR values reported. 

In addition, an amplified spontaneous emission (ASE) noise and spectral broadening 

are two main drawbacks which impact on the MBRFL spectrum performances in 

terms of SLC and S-OSNR. In this doctoral research, all the aforementioned issues 

are addressed in the linear cavity MBRFL.  

 

1.4 Objectives of This Research Work 

Based on the problem statements stated in the earlier sections, there are some 

objectives needed to be realized and fulfilled in this research. The statements below 

are the objectives that are going to be achieved: 
 

i. To design a new MBRFL configuration with adjustable wavelength 

spacing (10 and 20 GHz spacing) with high number of channels and S-

OSNR using only a single Raman pump source. 

ii. To design and develop a simple MBRFL with 10 GHz spacing with ability 

of generating MBSS at very low RPP. 

iii. To design and develop a simple MBRFL source with a 20 GHz spacing 

and enhance its spectral combs in terms of SLC, S-OSNR, SPP, and 

wavelength operation.  
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1.5 Scope of Research Work 

Figure 1.1 shows the scope of works covered in this doctoral research. This work 

focuses on the MBRFL, which can be divided based on the wavelength spacing. The 

objective of this thesis is to propose and demonstrate simple configurations for 

MBRFL with single and double Brillouin frequency spacing shift. However, the 

main motivation is to design configurations for generating MBRFL with 20 GHz 

spacing. In this work, all configurations are based on linear cavity due to many 

advantages such as higher numbers of channels, wider multi-wavelength bandwidth, 

and higher S-OSNR in comparison with the ring cavity structures. A new structure 

for MBRFL with an adjustable 10 and 20 GHz spacing is realized by employing an 

enhanced NAFL design. Moreover, generation of more channels number with a 

reasonable S-OSNR at very low RPP has been successfully achieved by employing a 

mirror at the end of the NAFL design which dubbed as a nonlinear amplifying loop 

mirror (NALM). In addition, utilizing forward pumping (FWP) scheme and a new 

structure which involves various pump power distributions in forward-backward 

directions named as a bidirectional pumping (BiDP) scheme is also proposed. In all 

configurations, by varying the Brillouin pump (BP) power, BP wavelength, and 

RPP, their detail performances; namely SLC, wavelength operation, spectral combs 

and S-OSNRs are analyzed thoroughly. Finally, the output of the proposed 

architectures is compared to the prior works in terms of the SLC, S-OSNR, Stokes 

peak power (SPP), and RPP. 



© C
OPYRIG

HT U
PM

 

5 

 

 

Figure 1.1: Scope of doctoral research. 

 

1.6 Research Methodology  

The methodology of this research is presented in Figure 1.2. Briefly, the thesis 

works are conducted through an experimental process that involves analysis of the 

optical parameters of generated MBSS as SLC, S-OSNR, SPP, and wavelength 

operation. Three main architectures are investigated which include enhanced NAFL 

and NALM designs in Chapter 3 and FWP-MBRFL, and BiDP-MBRFL in Chapter 
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4. In Chapter 3, a new design of NAFL with different set of couplers is demonstrated 

to achieve adjustable 10 and 20 GHz spacing operation. To realize this, a theoretical 

analysis is developed first which agrees well with the experimental results. By 

proper adjustment of coupling ratios, and optimization of laser parameters, MBRFL 

with 10 and 20 GHz spacing is satisfied with good characteristics. By employing a 

mirror at the one end of this configuration that dubbed as a NALM, multiple 

channels with 10 GHz spacing and a reasonable S-OSNR at very low RPP has been 

successfully accomplished. In Chapter 4, a simple linear cavity configuration 

through FWP scheme is arranged by employing 7.2 and 11 km DCFs in addition to a 

30 cm Bismuth oxide erbium-doped fiber (Bi-EDF). This is done to achieve MBRFL 

with 20 GHz spacing with good lasing characteristics. Although 20 GHz spacing 

MBSS with good features is achieved, to enhance the lasing combs characteristics in 

terms of SLC, S-OSNR, SPP, and wavelength operation a new configuration of 

BiDP that implements a variable pumping scheme in backward and forward 

directions is also demonstrated. This scheme offers MBRFL with 20 GHz spacing 

and excellent performance. For all configurations, the effect of different input 

parameters including BP power, BP wavelength, and RPP on output spectra are 

studied experimentally. The trends of the Raman gain profile before launching the 

BP signal into the cavity are analyzed as well. For all configurations, the SLC and S-

OSNR are measured when the Brillouin pump wavelength is selected at 1555 nm, 

while the RPP is varied from 800 mW to 1000 mW. In addition, the optical features 

of generated laser comb spectrum such as SLC are investigated when the BP power 

is varied from -2.6 to 5 dBm when the RPP is varied from 800 to 1000 mW. The 

wavelength operation is also investigated for all structures. The RPP is optimized to 

produce a flat amplitude MBRFL comprising maximum number of channels with 

high S-OSNR. Consequently, the outputs of each proposed configurations are 

measured by optical spectrum analyser (OSA). It is noted that the threshold of first 

Brillouin Stokes line is measured for all configurations when the RPP, BP power 

and BP wavelength are set at 1000 mW, 5 dBm and 1555 nm respectively. Finally, 

after analyzing experimental results from all configurations, the results that meet the 

thesis objectives are considered.  
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Figure 1.2: Research methodology flow-chart. 

 

1.7 Thesis Overview  

This thesis comprehensively studies the performance parameters of three proposed 

linear MBRFL sources, which employs dispersion compensating fiber (DCF) as the 

Brillouin-Raman gain medium. In general, this thesis consists of five chapters. 

Chapter 1, which is this current chapter, gives a general introduction of the topics 

and defines the context of the work. 

 

Chapter 2 introduces an overview background on the basic concepts of nonlinear 

fiber optics effects and explains the theoretical backgrounds of nonlinear optical 

loop mirror (NOLM) and NALM. Moreover, principle operation of MBRFL 

generation and review of previous works on MBRFL generation is briefly discussed 

at the end of this chapter.  

 

Chapter 3 proposes new configuration of NAFL for generating MBRFL with 

adjustable wavelength spacing. It started with the theoretical analysis of the NALM. 
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Afterward, experimental results are explained where good agreement is found with 

the theoretical results. The spectral characteristics of this cavity at optimized 

coupling ratios are studied thoroughly. In addition, by employing a mirror at one end 

of the NAFL design, generating a high number of lasing lines with a reasonable S-

OSNR at very low RPP has been successfully satisfied.  

 

Chapter 4 is devoted to the generation of MBRFL with 20 GHz spacing which 

includes two linear cavities through FWP and BiDP schemes. The setup 

implemented via FWP scheme arranged with different DCF lengths in addition to a 

30 cm Bi-EDF. The influences of varying several parameters such as RPP, BP 

power, and BP wavelength on spectra features of all cavity arrangements are studied 

thoroughly. In order to enhance the characteristics of MBSS in terms of SLC, SPP, 

and wavelength operation, a simple configuration by employing various coupling 

ratios is constructed to provide different pump power distributions along the fiber 

longitudinal structure. By optimization pumping ratios, and BP characteristics, the 

lasing characteristics are improved. This scheme strongly offers a few advantages 

specially enhanced feasibility and simplicity due to the utilization of only one RPU. 

 

The finding of this work is summarized and concluded in Chapter 5. The 

performances of the proposed configurations in contrast to each other and prior 

works are detailed in this chapter. Moreover, it includes the contribution of this 

thesis and the recommendation for further research work is also presented in this 

chapter.  
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