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ABSTRACT 

Abstract of the thesis submitted to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Doctor of Philosophy 

 

USING DENSITY DEPENDENT APPROACH FOR SIMULATION AND 

CONTROL OF SEAWATER INTRUSION INTO COASTAL AQUIFERS 

 

By  

 

MOHAMMED SALEH SAAD NUSARI 

 

September 2014 
 

Chairman: Professor Mohd Amin Mohd Soom, Ph.D., P.Eng., FIEM. 

Faculty: Engineering 
 

 

Seawater intrusion threatens freshwater resources in coastal communities worldwide. 

The actual seawater intrusion mechanism is still not well understood. In addition 

availability of benchmark problems used for testing numerical seawater intrusion 

model is limited, and agreeable solutions on existing benchmark test problems are 

still subject to debate and remained unresolved. Laboratory studies that can promote 

better understanding of seawater intrusion mechanism based on the density 

dependent approach and verify numerical density dependent models also have made 

little progress. Hence there is a need to experimentally and numerically simulate 

seawater intrusion based on the density dependent approach to better understand the 

movement and mixing of freshwater and saltwater and produce experimental datasets 

under steady-state and transient conditions. A controlled large-scale physical model 

aquifer was designed and constructed for this study. This tank model was used to 

simulate the advancement of seawater intrusion into coastal aquifers based on the 

density dependent approach under steady-state and transient conditions. Numerical 

model SEAWAT-2000 was then employed to reproduce experimental datasets. Three 

tests were conducted to analyze the applicability of the seawater intrusion 

experimental datasets developed in this study as alternative benchmark problems. 

Physical and numerical models were also used to assess the effectiveness of aquifer 

recharging by injecting freshwater and discharging of brackish water from the 

mixing zone. The 3D density dependent numerical model based on SEAWAT-2000 

code was developed to determine the current condition and predict future situations 

of seawater intrusion into the semi-confined aquifer in the lowlands of Langat Basin, 

Malaysia that served as a case study. After the model was calibrated by using data 

from 2010, it was used to predict future extent of seawater intrusion up to 2045, 

assuming that the current condition of Langat Basin remains unchanged. 

 

The experimental setup of the aquifer physical model provides a novel technique for 

simulating seawater intrusion based on density dependent approach. This in turn 

gives a better understanding of the actual mechanism of movement and mixing of 

fresh and saline water and the factors influencing these processes. This work has 

provided a set of new benchmark datasets for testing saltwater intrusion numerical 

models. This will greatly benefit the density dependent flow and solute transport 

modeling community through the provision of accurate solution to the saltwater 
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intrusion problem. This can then be used as an alternative benchmarking solution. 

The results demonstrated the development, position, pattern or shape of seawater 

intrusion wedge induced by changes in the transmitted freshwater inflow rate through 

the aquifer physical model. The growth and decay of the mixing zone showed a 

narrow mixing zone occurred when freshwater inflow rate was high. However, the 

mixing zone was significantly widened with decreasing freshwater inflow rate. 

Multiple datasets were generated from the collected data on salt concentration 

distribution in the aquifer model and the measurement of transmitted freshwater 

inflow through the aquifer physical model. These experimental datasets were 

compared with the numerical results generated from the SEAWAT-2000 simulation. 

Good agreement was found between the results. The results of the applicability 

analysis of the experimental datasets as alternative benchmark data showed that the 

transient seawater intrusion experimental data can be used to validate the accuracy of 

coupled-density dependent models. To control the advances of seawater intrusion, 

discharging brackish water from the saltwater zone has a considerable effect on the 

retardation of seawater intrusion, but it is less effective than recharging. Recharging 

by multiple injection wells as a control method and discharging saline water by 

multiple discharge wells are more effective than recharging by single injection wells 

and discharging by single discharge wells in reducing the inland movement of 

seawater intrusion wedge. Hence freshwater injection is more effective than 

discharging saline water. The developed model of the Langat basin aquifer has 

provided a clear picture of the current and future situation of seawater intrusion into 

the aquifer. Assessment of the intrusion shows that the aquifer will be significantly 

influenced by seawater intrusion for the next 35 years. This model contributes to 

improve understanding of the dynamic process of seawater intrusion in the area 

being studied. This would aid in choosing the most suitable control method in order 

to prevent the advancement of seawater into the main aquifer. The outcomes of this 

model can be considered as a foundation to protect water resources in other coastal 

aquifers under similar hydrogeological conditions.   



© C
OPYRIG

HT U
PM

iii 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
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PENGGUNAAN PENDEKATAN KEBERGANTUNGAN KETUMPATAN 

UNTUK SIMULASI DAN PENGAWALAN PENCEROBOHAN AIR LAUT 

KE DALAM AKUIFER PANTAI 

 

Oleh 

 

MOHAMMED SALEH SAAD NUSARI 

 

September 2014 

 

Pengerusi: Professor Mohd Amin Mohd Soom, Ph.D., P.Eng., FIEM. 

Fakulti: Kejuruteraan 

 

 

Pencerobohan air laut menggugat sumber air tawar terhadap komuniti pantai di 

seluruh dunia. Mekanisme sebenar pencerobohan air laut belum difaham 

sepenuhnya. Malah, ketersediaan penanda aras permasalahan yang diguna untuk 

menguji model berangka pencerobohan air laut adalah terhad dan penyelesaian yang 

boleh disetujui bagi pengujian penanda aras permasalahan yang sedia ada masih 

tertakluk kepada debat dan belum selesai. Kajian makmal yang boleh membantu 

kefahaman yang lebih baik terhadap mekanisme pencerobohan air laut yang 

berasaskan kaedah kebergantungan padat dan sedikit memajukan pengesahkan model 

berangka kebergantungan padat. Oleh itu, simulasi percubaan dan berangka adalah 

amat perlu bagi pencerobohan air laut yang berasaskan kaedah kebergantungan padat 

untuk lebih memahami pergerakan dan percamuran antara air tawar dan air masin 

dan juga menghasilkan set data percubaan dibawah keadaan mantap dan keadaan 

fana. Satu fizikal model akuifer yang bersekalar besar yang terkawal telah berjaya 

direkabentuk dan dibangunkan bagi kajian ini. Model tangki ini telah diguna bagi 

simulasi pergerakan pencerobohan air laut ke akuifer pantai berasaskan kaedah 

kebergantungan padat dibawah keadaan mantap dan keadaan fana. Model berangka 

SEAWAT-2000 telah diguna untuk menghasilkan set data percubaan. Kajian ini 

telah dijalankan untuk menganalisis kesesuaian set data percubaan pencerobohan air 

laut yang telah dibangunkan dari kajian ini sebagai penanda aras permasalahan. 

Model fizikal dan berangka turut digunakan bagi penilaian keberkesanan caj akuifer 

dengan cara suntikan air tawar dan pelepasan air payau dari zon campuran. Model 

berangka jenis kebergantungan ketumpatan dalam bentuk 3D yang berasaskan kod 

SEAWAT-2000 telah dibangunkan bagi penentuan keadaan semasa dan 

meanggarkan situasi masa depan pencerobohan air laut ke akuifer separa terkurung 

di tanah rendah  kawasan tadahan Langat, Malaysia yang merupakan kawasan kajian 

kes ini. Setelah model ini ditentukurkan dengan penggunaan data dari tahun 2010, ia 

telah digunakan bagi meanggarkan pencerobohan air laut pada masa akan datang 

sehingga 2045 dengan tanggapan bahawa kondisi semasa bagi kawasan tadahan 

Langat tidak berubah. 

 

Persediaan percubaan model akuifer fizikal memberi teknik yang novel bagi simulasi 

pencerobohan air laut berasaskan kaedah kebergantungan padat. Ini sebenarnya 

memberi kefahaman yang lebih baik terhadap mekanisme sebenar pergerakan dan 
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percampuran air tawar dan air masin dan juga factor yang mempengaruhi proses ini. 

Kajian ini memberi satu set data tanda aras baru bagi pengujian model berangka 

pencerobohan air masin. Ini akan memberi manfaat yang besar kepada komuniti 

pemodelan aliran kebergantungan padat dan pengankutan bahan larut melalui 

peruntukan penyelesaian yang tepat bagi masalah pencerobohan air laut. Ia kemudian 

boleh diguna sebagai penanda aras penyelesaian alternative. Keputusan menunjukan 

pembangunan, kedudukan, corak atau bentuk baji pencerobohan air laut didorongi 

oleh pertukaran kadar aliran masuk air tawar melalui model akuifer fizikal. 

Pertumbuhan dan kerosakan zon campuran semakin sempit apabila kadar aliran air 

tawar tinggi. Walaubagaimanapun, zon campuran menjadi lebar dengan ketara 

apabila kadar aliran masuk air tawar dikurangkan. Pelbagai set data telah dijana dari 

data pertaburan kepekatan garam yang terkumpul dari model akuifer dan pengukuran 

aliran air tawar yang menghantar melalui model akuifer fizikal. Set data percubaan 

ini telah dibandingkan dengan keputusan berangka yang dijana dari simulasi 

SEAWAT-2000. Persetujuan yang baik telah dijumpai dari kedua-dua keputusan. 

Keputusan analisa kesesuaian bagi set data percubaan sebagai data penanda aras 

alternatif menunjukan data percubaan pencerobohan air laut dalam keadaan fana 

boleh diguna untuk pengesahan ketepatan model gandingan kebergantungan padat. 

Untuk mengawal kemajuan pencerobohan air laut, pelepasan air payau  dari zon air 

masin memberi kesan yang besar dalam melambatkan pencerobohan air laut tetapi ia 

kurang berkesan jika dibanding dengan cas air tawar. Pengecas air tawar dengan 

telaga suntikan yang banyak selaku satu kaedah kawalan dan pelepasan air masin 

oleh telaga pelepasan yang banyak adalah lebih berkesan dari pengecas oleh satu 

telaga suntikan dan pelepasan oleh satu telaga pelepasan bagi mengurangkan 

pergerakan baji pencerobohan air laut ke kawasan pendalaman. Oleh itu, suntikan air 

tawar adalah lebih berkesan dari pelepasan air masin. Model akuifer yang telah 

dibangunkan bagi kawasan tadahan Langat memberi gambaran yang jelas tentang 

situasi pencerobohan air laut kedalam akuifer pada masa sekarang dan akan datang. 

Penilaian pencerobohan menunjukan bahawa akuifer akan dipengaruhi secara ketara 

oleh pencerobohan air laut pada masa 35 tahun yang akan datang. Model ini 

menyumbang kefahaman yang lebih baik tentang proses dinamik pencerobohan air 

laut ke kawasan yang sedang dikaji ini. Ini mungkin membantu dalam pemilihan 

kaedah kawalan yang terbaik dalam pencegahan kemajuan air laut ke kawasan 

akuifer utama. Hasil model ini boleh ditanggap sebagai asas untuk mempertahankan 

sumber air bagi kawasan akuifer pantai lain yang kondisi hidrogeologikalnya sama. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General 

In highly populated coastal areas, groundwater is regarded as a major source for 

freshwater. About 70% of global population lives in coastal regions. Population 

growth often increases over time. Population growth is a direct determinant of 

increase in water demands for domestic use. Furthermore, coastal regions are 

frequently heavily urbanized which results in a dramatic increase in the demand for 

water. With increasing demand for water, wherein the groundwater is perhaps most 

important source in coastal areas, the extractions of groundwater from coastal aquifer 

increases. Therefore, intensive groundwater abstraction alters the equilibrium 

between freshwater and saltwater with the net result of an inland movement of the 

wedge (seawater intrusion), and upward movement of saltwater below partially 

penetrating pumping wells (up-coning). Consequently, the intrusion of seawater into 

coastal aquifer results in degradation of groundwater quality.  

 

The term saltwater intrusion is usually referred to the encroachment of saline water 

into a coastal aquifer whether the source of saline water is from the sea, or from other 

sources. If the source of this saline water is sea water, this phenomenon is defined as 

seawater intrusion. Seawater intrusion is a widespread contamination problem in 

coastal regions where fresh water aquifers are hydraulically connected with sea. The 

laws of physics demonstrated that seawater always tends to invade formation of the 

coastal aquifer because the density of seawater is slightly higher than freshwater 

density,  further, dissolved salt concentration in seawater is  much higher than 

freshwater (Camas, 2007; Elder, 1967). In addition, seawater intrusion occurs due to 

advection, dispersion and diffusion of the saline solute into freshwater body. 

Therefore, the dynamic movement of seawater inland into freshwater aquifers 

inevitably occurs whether under natural undisturbed conditions or under man-made 

conditions (Ma et al., 2005). 

 

Under man-made conditions, the seawater intrusion is more severe than under natural 

conditions. The man-made processes that induce seawater wedge to further advance 

inland are heavy pumping of groundwater, which permits the heavier saltwater to 

displace the lighter freshwater, and construction of a coastal drainage canal, which 

allows tidal water to move forward  inland and infiltrate into the adjacent freshwater 

aquifer. Since the severe saltwater intrusion occurs mainly due to excessive 

groundwater withdrawals, this study was concerned with seawater intrusion due to 

over pumping of groundwater for agricultural, industrial and domestic uses in the 

coastal areas where the population is more dense. 

 

Deterioration of freshwater quality in coastal aquifers caused by seawater intrusion is 

one of considerable concerns in coastal water resources management because saline 

water restricts use of freshwater from the invaded aquifers for the agricultural, 

industrial, and domestic purposes. To make sure that groundwater in coastal aquifers 

is suitable for its purpose; its quality can be evaluated by monitoring and modeling. 
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In simplest terms, the aim of groundwater monitoring and modeling is to assess the 

groundwater quality and the change of groundwater quality with time. Consequently, 

monitoring and modeling of saltwater intrusion into coastal aquifers are needed 

before initiating a major groundwater development program.  

 

Permanent monitoring and modeling of the saltwater interface is necessary in 

determining proper management technique. The most important thing in determining 

proper control measures to mitigate seawater intrusion is an understanding of the 

mechanism of movement and mixing between freshwater and seawater. The reliance 

on constant monitoring only to understand the mechanism and movement of the 

saltwater interface is insufficient. Thus, seawater intrusion modeling provides a 

better understanding of the mechanism of movement and mixing between freshwater 

and seawater and the factors that affect these processes so as to manage and protect 

freshwater in the coastal aquifer for future use.  

 

Groundwater flow and solute transport models play a vital role in modeling, 

understanding and decision–making for management and prevention of seawater 

intrusion. The groundwater flow and solute transport modeling are used to provide 

sustainable coastal aquifer management. Groundwater flow and solute transport 

models are one of various valuable tools to determine the current aquifer situations, 

to predict future aquifer conditions and are employed to establish remedial action 

plans to mitigate the groundwater quality degradation. 

 

Three main classes of groundwater and solute transport models have been used by 

researchers to study seawater intrusion phenomenon. These models include:  physical 

models, analogue models, including viscous analogue and electric analogues, and 

mathematical models, including analytical models and numerical models. With the 

advent of high-speed computational capabilities (digital computer) in 1960's, 

numerical models have been the superior type of model for studying complex 

groundwater flow and solute transport problems such as seawater intrusion 

phenomenon However, the development and application of these models that 

simulate groundwater flow and contamination problems such seawater intrusion is 

more difficult than those that simulate groundwater flow alone. The simulation of 

seawater intrusion into the coastal aquifers is considered difficult task as a result of 

variation of the water density and the salinity concentrations in the water 

substantially throughout the modeled coastal area. To overcome these difficulties, 

two approaches are used to simulate seawater intrusion (Kumar, 2006a). The first 

one is called sharp interface. In this approach, the contact zone between freshwater 

and saline water zones is assumed to be immiscible and separated by a sharp 

interface: This approach is referred to sharp interface (constant-density) model. In 

the second approach, the contact zone between freshwater and saline water is 

considered being a miscible zone (mixing zone/ miscible transport zone/ miscible 

disperse zone) having a spatially variable salt concentration that affects the fluid's 

density: This approach is referred to as density dependent flow approach or density- 

dependent groundwater flow and solute-transport model. 

 

The sharp interface models are very useful for understanding the overall behavior of 

the system before applying the density dependent approach for examining the smaller 

scale effects. The sharp interface approach simplifies the seawater intrusion problem; 

however, it is not applicable for complex, real world seawater intrusion problem. 
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Therefore, the alternative for simulating this phenomenon is the concept of a density 

dependent model. 

 

The density-dependent groundwater flow and solute transport (miscible transport/ 

miscible disperse) models describe the seawater intrusion mechanism due to strong 

saltwater hydrodynamic dispersion and the existence of a wide transition zone. Such 

models account for both advective and dispersive transport of saltwater. The ability 

of a model to realistically simulate the seawater intrusion phenomena, as density 

dependent flow and solute transport model can effectively increase its predictive 

capability regarding the true structure/configuration and position of the disperse 

interface (mixing zone). A set of numerical density dependent flow model codes has 

been developed to study seawater intrusion; however, their accuracy or validity is 

still being debated. It is noteworthy that there are considerable discrepancies in 

simulation results between numerical model codes for the same problem in previous 

studies (Werner et al., 2013). This implies that different codes may produce different 

results for the same problem, due to differences in their governing equations and to 

numerical errors. The numerical models are approximative, and errors inevitably 

exist (Diersch & Kolditz, 2002). The major drawback of numerical models is that 

numerical errors are introduced during the computational simulations procedure. 

These errors include round-off error, truncation error, and numerical dispersion. All 

of these numerical errors affect the accuracy of the simulation results. They may lead 

to quantitative and even qualitative changes in simulation results, potentially 

affecting the management of field sites (Woods, 2004). 

 

To reduce the uncertainty associated with numerical simulations, few benchmark 

problems have been developed for testing performance of density-dependent flow 

codes. They can provide assessments with respect to accuracy and reliability of 

numerical codes. These benchmarking problems include the Henry Problem (Henry, 

1964), Elder Problem (Elder, 1967), and Hydrocoin Problem (Konikow et al., 1997). 

However, each of these solutions has drawbacks and many unresolved issues remain 

with respect of accuracy of these benchmarking tests. In addition, the most common 

benchmarking problem in use concerning saltwater intrusion into coastal aquifer is 

saltwater Henry’s solution. However, it has many drawbacks too and it remains 

questionable (Goswami & Clement, 2007; Simpson & Clement, 2004). A few 

laboratory models have also been used to investigate seawater intrusion problem 

based on density-dependent approach. However, they are based on small laboratory-

scale physical model experiments and various forms of the Henry problem. 

Therefore, they could not provide in- sights into mixing-zone development, which 

can be illustrated by means of large scale model. Various forms of the Henry 

problem continued to be used as a replacement for seawater intrusion process 

understanding, and while this affords advantages of simplicity, the representativeness 

of the Henry problem to real-world seawater intrusion remains questionable. In 

addition, most of the previous laboratory studies and Henry’s problem have been 

used to study seawater intrusion under steady state only (Chang & Clement, 2012). 

1.2 Problem Statement 

Seawater intrusion into coastal aquifers is one of the most challenging environmental 

issues faced by hydrologists, engineers and water resource planners especially with 
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the world experiencing climate change and global warming. Modelling seawater 

intrusion based on density dependent flow approach can play an important role in 

understanding and decision–making for control and prevention of such problems. 

Understanding the mixing dynamics of sea water within freshwater aquifer systems 

is extremely complex because physics of seawater-freshwater movement in coastal 

aquifers is difficult to conceptualize. To make sense the complexity, scientists and 

researchers have developed a variety of numerical density dependent flow models 

(computer codes) that describe the real seawater intrusion mechanism.  Therefore, 

density dependent groundwater flow computer codes have become the favoured type 

of model for studying such a complex seawater intrusion problem. Unfortunately, 

there are difficulties and inconsistencies in previous studies that clearly show 

dependent density flow simulation can be problematic. These difficulties and 

inconsistencies are attributed to a number of issues that limit the accuracy and 

usefulness of numerical simulations of dependent-density groundwater flow and 

solute transport problems such seawater intrusion.  

 

There is disagreement within the literature on the best choice of numerical computer 

model codes. Different codes might exhibit different solutions for the same problem 

because different codes do use a different form of governing equations, and different 

solution strategies and techniques. These numerical model computer codes are 

approximative, and errors inevitably occur. This means that there is an error or 

uncertainty in results inherent in the solutions from simulations performed with these 

computer codes. These inherent inaccuracies are due solely to the fact that we are 

approximating a continuous system by a finite length and discrete approximation. 

These numerical errors inherent in a code may lead to large quantitative or 

qualitative differences between the expected and simulated results unless extremely 

accurate solution techniques are used. Thus, the assessment of numerical errors is 

very important to test the accuracy of density dependent flow computer codes. The 

testing of models is performed by comparing model performance with so- called 

benchmark problems. 

 

The availability of benchmark problems for testing these model codes is limited, and 

the existing benchmark problems are defined differently by different researchers. The 

agreeable solutions on these benchmark test problems are still subjected to debate 

and remain unsolved. For instance, saltwater intrusion Henry’s solution is the most 

common benchmarking problem in use; however, it remains questionable. Thus, 

there are hard questions in this area that needs to be answered by investigators. 

 

Henry problem is a semi-analytical solution which has not been reproduced in a 

physical model. In the classic Henry’s problem, an important consideration is given 

to the assumption that saline water intrusion occurs in steady flows, which is 

resolved using semi-analytical technique developed by (Henry, 1964). Henry’s 

analytical solution is highly controversial  (Segol, 1994; Simpson & Clement, 2004). 

Over the past 50 years, Henry’s problem has undergone several revisions that have 

included the use of different dispersion coefficients, both constant (Voss & Souza, 

1987) and spatially variable (Frind, 1982), different outflow boundary conditions 

(Segol et al., 1975), and different freshwater recharge rates (Simpson & Clement, 

2004). Several authors have improved the original Henry’s analytical solution but it 

still not corresponds well with numerical solutions (the accurate solution), because of 

the inaccurate total dispersion coefficient, varying boundary conditions and different 
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diffusivities and inflow velocities that have been used by several analysts. In 

addition, a prominent drawback in the Henry problem is the fact that the model is 

typically unresponsive to coupled density-dependent problems because 

hydrodynamic dispersion is not taken into account. Therefore, the transition zone in 

original Henry’s profiles surfaces as a result of increased molecular diffusion which 

to a considerable degree conceals the coupled density-dependent flow. 

 

There is little progress in laboratory studies that can promote a better understanding 

of seawater intrusion mechanism based on density dependent approach where 

transport of salt by means of advection and hydrodynamic dispersion are taken into 

account, and they can provide confident verification for numerical density dependent 

flow computer codes. A few published laboratory studies include enough details for 

simulating seawater intrusion based on density dependent approach, but some 

drawbacks are associated with these studies. For instance, transient conditions were 

not taken into account, also mixing zone was considered as sharp interface, and many 

other drawbacks will be discussed later in Chapter 2. 

 

Therefore, there is a need to simulate seawater intrusion based on density dependent 

approach experimentally and numerically to provide a better understanding of the 

movement and mixing between freshwater and saltwater, to produce experimental 

data sets that include a steady state seawater wedge data set, and transient seawater 

wedge data set which can then be used as an alternative benchmarking problem, 

which in turn result in enhancing the accuracy of the saltwater intrusion models. 

There is a need to analyse seawater intrusion control methods under steady state and 

transient conditions in order to manage and protect coastal aquifers for future use.  

1.3 Hypothesis, Goal and Objectives 

In this study, a hypothesis was proposed that the rate of freshwater flow may 

significantly influence the movement of the salt-wedge, and growth and decay of the 

mixing zone between freshwater and seawater. This hypothesis was examined by 

performing experimental and numerical simulations of seawater intrusion based on 

density dependent (mixing zone) approach in order to better understand the 

movement and mixing of freshwater and saltwater. Experimental data sets were 

produced under steady-state and transient conditions to be used as an alternative 

benchmarking solution. The movement of the salt-wedge and the development and 

decay of the mixing zone occur due to complex effects of the landward boundary. An 

example is the differences in fresh groundwater flow rates transmitted through the 

aquifer caused by seasonal variations in fresh groundwater heads. The advancement 

of salt-wedge and development of mixing zone can be created by reducing 

freshwater level at the landward boundary while receding salt-wedge and decay of 

the mixing zone can be caused by raising the freshwater level at the landward 

boundary. 

 

The main goal of this study was to investigate the movement and the extent of 

seawater intrusion into coastal aquifers based on density-dependent approach 

(mixing zone) using physical and numerical models. This includes investigation of 

possibilities of control for seawater intrusion in the coastal aquifer under steady state 

and transient conditions and determination of aquifer parameters. A large scale 
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laboratory physical model aquifer (large flow tank) was constructed for experimental 

simulation of seawater intrusion and its controlling methods as well as for 

determining the aquifer parameters.  Density dependent numerical model represented 

by SEAWAT computer code was selected for numerical simulation of seawater 

intrusion and its controlling methods. 

 

The specific objectives of this study were as follows: 

1. To simulate saltwater intrusion into an unconfined aquifer  based on the 

density dependent approach (mixing zone) under steady state and 

transient state by using a well-controlled large scale laboratory model.  

2. To simulate seawater intrusion in coastal aquifers by using SEAWAT-

2000 computer model on the physical model scheme under steady state 

and transient state conditions, and under different hydraulic gradient 

conditions and compare the output of these simulations against the 

experimental data.  

3. To simulate the seawater intrusion control in coastal aquifer under 

steady state and transient conditions using the methods of recharge by 

injection of freshwater and discharge by pumping of brackish water 

from the dispersion zone. 

4.  To develop a three dimensional density dependent numerical model 

based on SEAWAT-2000 code to assess the current and future situation 

of seawater intrusion into semi confined aquifer in the lowlands of 

Langat Basin, as a case study. 

1.4 Scope of the Study 

This work is a study on the seawater intrusion due to over pumping of groundwater 

for agricultural, industrial and domestic uses in the coastal areas where the 

population is more dense as an important real world issue in the field of water 

resources management. The scope of this study is to simulate seawater intrusion as 

induced by human interventions (over-pumping) based on density dependent 

approach. It focuses on gaining insight into the complex, real world seawater 

intrusion problem caused by advection and strong saltwater hydrodynamic 

dispersion, enhancing the accuracy of the numerical density dependent model codes 

through generating experimental data sets for alternative benchmarking, and 

analyzing of the fresh water injection and brackish water pumping methods.   

The study is a major contribution to knowledge in the continuous quest by 

researchers in the development of density-dependent groundwater flow and solute 

transport models. The study compiles tools and techniques that include laboratory 

scale experiments and density dependent groundwater flow and solute transport 

numerical modeling, to provide a meaningful solution to seawater intrusion in the 

coastal aquifer. 

 

In this study, a well–equipped large laboratory scale physical aquifer model was 

developed to simulate and control seawater intrusion based on density dependent 

approach under steady state and transient state conditions. The density dependent 

flow numerical model code SEAWAT-2000 (Bear et al., 1999) was applied to 

simulate the steady state and transient experiments. This was to test whether the 

experimental data are consistent with the predictions made by this widely used 
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numerical model. A three dimensional density dependent numerical model based on 

SEAWAT-2000 code was developed to simulate seawater intrusion into a semi 

confined aquifer in the lowlands of Langat basin, Selangor, Malaysia as a case study. 

1.5 Significance of the Study 

The significance of the study lies in the development of the experimental setup of a 

well–equipped large laboratory scale physical aquifer model that provides a novel 

approach for simulating seawater intrusion based on density dependent approach. 

This in turn provides a better understanding of the mechanism of movement and 

mixing between fresh and saline water and the factors influencing these processes. 

This will aid in managing and protecting freshwater resources for future use, and 

create new opportunities for enhancing the accuracy of the saltwater intrusion 

models. This work provides a set of new benchmark data sets for testing saltwater 

intrusion numerical models, which will greatly benefit the density dependent flow 

and solute transport modeling community throughout the provision of accurate 

solution to the saltwater intrusion problem, which can then be used as an alternative 

benchmarking solution. This new benchmarking is a more robust alternative to the 

original Henry's problem since it considers saltwater transport under both steady 

state and transient conditions, and due to both advection and hydrodynamic 

dispersion. 

 

The development of a three dimensional (3D) density dependent numerical model 

based on SEAWAT-2000 code, which constitutes one of the most comprehensive 

and versatile state-of-the-art software packages for investigating seawater intrusion, 

is considered as a valuable contribution because it provided a clear picture of the 

current and future situation of seawater intrusion into the lowland Langat basin’s 

aquifer. The outputs of this model provide some insights and information to water 

resource planners and decision makers in the Langat basin, on how to establish 

remedial action plans to attenuate the groundwater quality deterioration. 

Consequently, the developed numerical model would aid in choosing the 

most suitable control method in order to prevent the advancement of seawater into 

the main aquifer. Moreover, this model contributes to improve understanding of the 

dynamic process of seawater intrusion in the studied area, which in turn will 

contribute to water resource management policy in Langat basin. The outcomes of 

this model can be considered as a foundation which can be used in other coastal 

aquifers under similar hydrogeological conditions in order to protect the coastal 

water resources. 

1.6 Thesis Organization 

This thesis is organized into five chapters. Chapter 1 gives the background of the 

seawater intrusion into coastal aquifers. It also discusses seawater intrusion 

modeling. The objectives and significance of the study are presented in this chapter. 

Chapter 2 is the literature review which presents in-depth discussions of 

groundwater, groundwater contamination, groundwater modeling, seawater intrusion 

problem, methods of investigating seawater intrusion, seawater intrusion modeling, 



© C
OPYRIG

HT U
PM

1.8 

 

seawater intrusion numerical models shortcomings and benchmarking, and seawater 

intrusion control measures. The general methodology adopted in this research in 

order to achieve the objectives is described in Chapter 3. The results and discussions 

are presented in Chapter 4. In Chapter 5, a summary of the work is presented, 

suggestions of possible areas of improvement are given, and some conclusions from 

the study are highlighted. 
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