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ABSTRACT 

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement of the degree of Doctor of Philosophy 

 

AN IMPROVED STREAMFLOW MODEL WITH CLIMATE AND LAND 

USE FACTORS FOR HULU LANGAT BASIN 

By 

YASHAR FALAMARZI 

November 2014 

Chairman: Professor Ir. Lee Teang Shui, PhD 

Faculty:      Engineering 

Water is essential for human beings and it is vital in various fields such as 

agriculture, navigation, energy production, recreation and manufacturing. Rapid 

urbanization, population growth and economic developments could potentially put 

stress on the water resources by increasing the water demand. In addition, climate 

change and land use change could also cause variations in the quantity and quality of 

water resources. Therefore, assessing the impacts of these changes on water 

availability is essential and requisite to adapt water resources management and for 

planning sustainable development strategies especially in a rapid socio-economic 

development. The aim of this study is to investigate the impact of past and future 

climate change and land use change on mean monthly and annual streamflows in the 

Hulu Langat basin, Malaysia utilizing a new generation of physically based 

hydrological models. The James W. Kirchner (JWK) model is a new physically 

based model. Although this model does not need any upscaling it is more appropriate 

for cold and humid areas and it considers the basin as a single storage system. These 

limitations could have impacts on the applicability of the model. Thus, in the present 

study, to achieve the objectives, first, the James W. Kirchner (JWK) method was 

modified and the modified model (MJWK) was then combined with the Soil 

Conservation Service (SCS) effective rainfall estimation method (MJWK-SCS 

model) to estimate river flow. An averaging ensemble version of MJWK-SCS model 

was also proposed (E-MJWK-SCS). Afterwards, the MJWK, MJWK-SCS, E-

MJWK-SCS, Soil and Water Assessment Tool (SWAT), Artificial Neural Network 

(ANN), Nonlinear AutoregRessive with eXogenous input (NARX) and wavelet-

NARX models were utilized to predict mean monthly river flow from daily climatic 

data. The models were calibrated for the period 1985-1988 and the validation was 

performed for the period 2002-2005. In the calibration phase, the Wavelet-NARX, E-

MJWK-SCS and SWAT models performed the best with the Nash-Sutcliff 

Efficiency (NSE) values of 0.85, 0.78 and 0.66, respectively. However, in the 

validation phase the SWAT and E-MJWK-SCS models performed the best with the 

NSE values of 0.74 and 0.73, respectively.  

Since the E-MJWK-SCS and SWAT models performed well in both the calibration 

and validation phases based on NSE values, they were utilized to assess the climate 

change and land use change effects on mean monthly and annual streamflows. Prior 
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to applying these models, the uncertainty of their predictions was analyzed utilizing 

the Sequential Uncertainty Fitting 2 (SUFI2) algorithm. The uncertainty analysis 

showed that both the models had an acceptable level of uncertainty. However, the E-

MJWK-SCS model showed lower quantity of uncertainty in prediction with p-factor 

and r-factor of 0.88 and 0.81 than the SWAT model with p-factor and r-factor of 0.69 

and 0.51, respectively. The analysis of the past climate change and land use change 

impacts on streamflow showed that at annual scale the land use change was more 

effective than the climate change and it increased mean annual streamflow (11.43% 

and 5.68% utilizing E-MJWK-SCS and SWAT models, respectively). At monthly 

scale, both the land use and climate change altered streamflows.  

The impact of possible future climate change and land use change on mean monthly 

and annual streamflows was also investigated. Firstly, the climatic variables were 

estimated under the A1B and A2 climate change scenarios employing the LARS-WG 

model and the land use map of year 2025 was generated based on the trend of land 

use changes in the period 1984-2002 utilizing the Land Change Modeler (LCM). 

Then mean monthly and annual streamflows were forecasted under different 

combinations of land use and climate change scenarios for the period 2025-2028. At 

annual scale, a rise in streamflow is expected under the land use change (4.07% and 

3.88% utilizing E-MJWK-SCS and SWAT models, respectively) and the combined 

land use change and climate change scenarios (ranged from 1.81% to 4.54% under 

various scenarios). The climate changes scenarios represented a decline in mean 

annual streamflow (ranged from -5.78% to -0.27% for various scenarios). At 

monthly scale, both increases and decreases in flows were seen under all the 

scenarios considered (ranged from a decrease of 8.92% to an increase of 11.76% 

under various scenarios). The findings also showed that the droughts would be 

possible under the combined climate and land use changes scenarios in the dry 

seasons. It is concluded that not only both the E-MJWK-SCS and SWAT models are 

useful tools to simulate mean monthly river flow in the basin but are also suitable for 

investigating the impacts of climate and land use changes on mean monthly and 

annual streamflows. 

Keywords: climate change, land use change, streamflow, Hulu Langat basin, 

Malaysia 
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ABSTRAK 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Malaysia 

sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

SATU MODEL ALIRAN SUNGAI DIPERBAIKI BERSAMA FAKTOR 

IKLIM DAN PENGGUNAAN TANAH UNTUK LEMBANGAN HULU 

LANGAT 

MALAYSIA 

Oleh 

YASHAR FALAMARZI 

November 2014 

Pengerusi:         Professor Ir. Lee Teang Shui, PhD 

Fakulti:              Kejuruteraan 

Air begitu penting untuk manusia dan juga sangat perlu dalam berbagai bidang 

saperti pertanian, pengangkutan air, penjanaan tenaga, kehiburan dan pembuatan. 

Perperbandaran pesat, pertumbuhan jumlah penduduk dan perkembangan ekonomi 

terus menambahan tegangan kepada sumber air dari segi tambahan permintaan air. 

Tambahan pula, perubahan iklim dan perubahan kegunaan tanah boleh juga 

menyebabkan perubahan kuantiti dan kualiti sumber air. Namun, penaksiran impak 

perubahan perubahan tersebut keatas adanya sumber air adalah perlu demi untuk 

menyesesuaikan pengurusan sumber air serta untuk strategi perancangan 

pembangunan sesuai khas dalam pembangunan sosioekonomi yang pesat. Tujuan 

kajian ini ialah untuk menyiasat kesan  perubahan iklim masa lampau dan masa akan 

datang serta perubahan penggunaan tanah ke atas aliran sungai  purata bulanan dan 

tahunan dalam lembangan Hulu Langat, Malaysia menggunakan satu model 

hidrologi generasi baru yang berasaskan fizikal, iaitu model James W. Kirchner 

(JWK). Walaupun model ini tidak memerlukan sebarang upscaling ia lebih sesuai 

untuk kawasan sejuk dan lembap serta ia menganggap lembangan sebagai satu sistem 

penyimpanan tunggal. Had-had ini mungkin mempunyai impak kebolehgunaan 

model ini. Maka, untuk mencapai objektif kajian ini, kaedah James W. Kirchner 

(JWK) telah diubahsuai dan model yang diubahsuai (MJWK) kemudian digabungkan 

dengan kaedah penganggaran air hujan berkesan Soil Conservation Service (SCS)  

(dipanggil model MJWK-SCS)  untuk mentaksir aliran sungai. Versi kelompok 

purata model MJWK SCS juga dicadangkan (dipanggil model E-MJWK-SCS). 

Kemudian, model model MJWK, MJWK-SCS, E-MJWK-SCS, Alat Taksiran Tanah 

dan Air (SWAT) , Rangkaian Saraf Tiruan (ANN), Nonlinear Autoregressive with 

eXogenous input (NARX) dan wavelet-NARX  digunakan untuk meramalkan aliran 

sungai bulanan purata daripada data iklim harian. Model model tersebut ditentukur 

untuk jangkamasa 1985-1988 dan diperpastikan untuk jangkamasa 2002-2005. 

Dalam fasa penentukuran, model model Wavelet-NARX, E-MJWK-SCS dan SWAT 

adalah yang terbaik dengan nilai Kecekapan Nash-Sutcliff (NSE) 0.85, 0.78 dan 

0.66, masing masing. Akan tetapi, dalam fasa perpastian model SWAT dan E-

MJWK-SCS adalah terbaik dengan keputusan nilai NSE sebanyak 0.74 dan 0.73 

masing masing. 
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Memandang bahawa model E-MJWK-SCS dan SWAT berkelakuan baik dalam 

kedua dua fasa fasa  penentukuran dan perpastian, ianya digunapakai untuk 

menaksirkan kesan perubahan iklim dan perubahan kegunaan tanah terhadap 

kadaralir bulanan dan tahunan purata. Sebelum mengguna model model tersebut, 

ketidakpastian ramalan dianalisiskan  dengan algorithm SUFI2. Analisis 

ketidapastian menunjukkan bahawa kedua dua model mencapai paras ketidakpastian 

yang boleh diterima. Walau bagaimanapun, model E-MJWK-SCS menunjukkan 

kuantiti  ketakpastian yang lebih rendah dalam ramalan dengan faktor p dan faktor r 

masing-masing 0.88 dan 0.81 berbanding dengan nilai faktor p dan faktor r masing-

masing 0.69 dan 0.51, daripada model SWAT. Analisis impak kadaralir perubahan 

iklim dan perubahan kegunaan tanah yang lalu menunjukkan pada skala tahunan, 

impak perubahan kegunaan tanah lebih bermakna dibandingkkan kesan perubahan 

iklim dan ia meninggkatkan kadaralir tahunan purata. Pada sekil bulanan, kedua dua 

perubahan kegunaan tanah serta iklim mengubah kadaralir. 

Impak perubahan iklim dan kegunaan tanah akan datang terhadap kadaralir bulanan 

dan tahunan purata juga dikaji. Demi mencapai tujuan ini, pertamanya, perubahan 

iklim ditaksirkan dibawah scenario perubahan iklim A1B and A2, menggunakan 

model TARS-WG dan peta kegunaan tanah untuk tahun 2025 dijanakan berdasarkan 

trend perubahan kegunaan tanah dalam jangkamasa 1984-2002 serta menggunakan 

Land Change Modeler (LCM). Kemudian kadaralir bulanan dan tahunan purata 

diramalkan berasaskan kombinasi berlainan scenario perubahan iklim dan kegunaan 

tanah bagi jangkamasa 2025-2028. Pada sekil tahunan, satu peningkatan kadaralir 

dijangkakan dibawah kolubinasi perubahan kegunaan tanah (4.07% dan 3.88% 

masing-masing, menggunakan model E-MJWK-SCS dan SWAT) dan scenario, 

manakala scenario perubahan iklim memberi kurang kadaralir tahuanan purata 

(berjulat dari 1.81% hingga 4.54% di dalam pelbagai senario). Pada sekil bulanan, 

perambahan dan pengurangan kadarahir boleh dilihat dalam semua senario yang 

dikajikan (berjulat dari 0.27% hingga 5.78% untuk pelbagai senario). Keputusan juga 

menunjukkan bahawa kemarau boleh berlaku dibawah scenario perubahan iklim dan 

kegunaan tanah pada musim kering(berjulat dari pengurangan sebanyak 8.92% 

kepada peningkatan sebanyak 11.76%  di bawah pelbagai senario). Pada 

keseluruhannya, ia boleh disimpulkan bahawa bukan sahaja kedua dua model E-

MJWK-SCS dan SWAT adalah alat berguna untuk menganggarkan aliram sungai 

dalam satu tadahan, tetapi ia juga sesuai untuk mengkaji kesam perubahan iklim dan 

kegunaan tanah. 
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1 CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Water resources play a key role in economic and social developments all over the 

world (Laaboudi et al., 2012). Exclusively, streamflow, which is defined as an 

integrated mechanism of atmospheric and topographic processes, is undoubtedly 

significant in water resources planning (Demirel et al., 2009). Therefore, precise 

estimation of streamflow from rainfall, evaporation and other hydro-climatic 

variables is substantially important for water resources management and planning 

(Machado et al., 2011; Yilmaz et al., 2011). Since the variables, which are affecting 

streamflow, vary in both space and time, the formulation of the Rainfall-Runoff (RR) 

process is a complex task (Machado et al., 2011). The computer models, which 

simulate the RR process, are the best tools to investigate this complex process (Liew 

and Garbrecht, 2003). Thus, developing the hydrological models with more accurate 

predictions of streamflow is required (Guimarães Santos and Silva, 2013; Wijesekara 

et al., 2012). 

 

The hydrologic cycle is complex and the interactions between the hydrological 

components are highly nonlinear. In addition, the measurement techniques of the 

hydrological variables are limited (Beven, 2005). As a consequence, it is virtually 

impossible to understand everything about the hydrological system by 

measurements. Therefore, a sort of simplifications and simulations are necessary to 

understand this process. These simple illustrations of the hydrologic cycle in the 

mathematical form are usually called hydrologic models. Vast numbers of 

hydrological models are available which can be divided into two main categories; 

lumped models and distributed models (Beven, 2005). The lumped models assume 

the watershed as a single unit and all parameters are averaged over the area of the 

basin. In the distributed models, the basin is divided into small grids and the state 

variable equation is solved for each grid. The main usage of the hydrological models 

is to estimate runoff from rainfall. The simulation of rainfall-runoff process is 

essential in water resources management such as flood control, design of hydraulic 

structures, irrigation scheduling, design of irrigation and drainage systems and 

hydropower generation etc. (Geetha et al., 2007). In addition, demands on water 

resources are increasing all over the world and so hydrological modelling is required 

to improve the decision making for the future (Beven, 2005). 

 

Land use and climate play key roles in the hydrologic cycle. Land use distribution 

can have impacts on water resources in a variety of spatial and temporal scales (Ray 

et al., 2010). In addition, any change in land use could have great impacts on water 

resources. Land use change can lead to change in flood frequency (Brath et al., 

2006), base-flow (Wang et al., 2006) and annual mean discharge (Costa et al., 2003). 

As an example, converting green and wetlands to urban and agricultural lands can 
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increase runoff, which consequently could increase flooding problems. In recent 

decades, rapid conversions in land use activities, especially urbanization, have had 

great impacts on the hydrologic cycle.  

 

In addition to land use, climate also influences the hydrological cycle. Climate 

variability can alter flow routing time, peak-flows and volume of flood (Prowse et 

al., 2006). It has been reported that the climate of the earth will become warmer in 

the future (Zhang et al., 2011). It is likely to have more frequent droughts and floods 

in a warmer climate (Gilroy and McCuen, 2012). Therefore, investigating the 

hydrological responses of the basin to these changes is essential for effective 

planning, management and sustainable development of water resources. 

 

1.2 Problem Statement 

A lot of efforts have been done in order to simulate the hydrologic cycle, spatially 

rainfall-runoff process. As a result vast numbers of hydrological models have been 

developed to simulate the water cycle. One class of these models is the physically 

based models. The core assumption of the traditional physically based hydrological 

models is that the measurable physical characteristics of a basin, governing equation, 

initial and boundary conditions can be solely used to forecast the catchment 

behaviour (Teuling et al., 2010). However, the measurements of these characteristics, 

especially those controlling subsurface flows, are done at the scales that are 

considerably smaller than catchment scale (Kirchner, 2009). In these models, scaling 

up of the governing equation at small scale has been utilized to find out the 

behaviour of hydrological system at the catchment scale. The limitation of these 

methods is that identifying the system properties at the appropriate scale is not easy a 

prior. In addition, the validity of the up-scaling assumption and using governing 

equation of the small scale to describe the basin scale physics are questionable. 

Therefore, it is essential to develop methods to identify governing equation at the 

appropriate scale (it means that there is no need to upscale the governing equation). 

James W. Kirchners’s (JWK) model is one of the newest physically based 

hydrological models to simulate rainfall-runoff process in a basin. This method does 

not need any upscaling. However, it has some disadvantages such as: (1) it is 

appropriate for humid and cold areas where there is a low evapotranspiration rate and 

(2) It considers that the basin is a single storage system. The climate of Hulu Langat 

basin is hot and humid; and the rate of evapotranspiration is relatively high. 

Hysteresis in storage discharge relationship could also affect the efficiency of the 

JWK model. One way to reflect this hysteresis in storage responses is to combine the 

JWK model with a transfer function. Thus, in this study, this model was modified for 

the Hulu Langat basin. This modified James W.Kirchner’s (MJWK) model is 

combined with the SCS-rainfall estimation as the transfer function to reflect the 

hysteresis in storage discharge relationship in storage responses. 

 

Beside the physically based hydrological models, a lot of data-driven methods have 

been developed over the past two decades to dispel the problems of rainfall-runoff 

modelling (Besaw et al., 2010). Multi linear regression (MLR), varieties of 
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autoregressive moving average (ARMA) models, artificial neural networks (ANNs) 

and Nonlinear AutoRegressive with eXogenous input (NARX) are the most common 

data-driven approaches. Neural network has been used and developed in various 

fields as a good non-linear predictor and it has been also utilized to predict runoff 

from rainfall data. Neural networks try to simulate the learning process, which is 

occurring in the human brain. The artificial neural networks (ANNs) with sigmoid 

activation functions are the most common type of neural networks. The NARX 

neural network, which is a recurrent neural network, has found to be more suitable 

for simulating nonlinear systems than other networks (Çoruh et al., 2014) and it also 

converges faster (Chen et al., 1990). However, ANN and NARX are both sensitive to 

the quality of input data. The hydro-climatic data often have noise as well as 

autocorrelation. A noisy signal can have a negative impact on the prediction accuracy 

of the ANN type models (Wu et al., 2009). Existence of strong correlation in the 

input data set of ANN type models can lead to introduce lagged prediction. In order 

to overcome these deficiencies, Wu et al. (2009) suggested preprocessing the data 

before applying the ANNs models. A lot of studies have been carried out to find out 

the most appropriate filtering method. One of these approaches is using a local and 

orthogonal function. Wavelets are the functions with these characteristics which can 

have advantages such as orthogonally, compact support, localization in time and 

frequency and fast algorithms (Zainuddin and Pauline, 2011). Utilizing wavelets as a 

preprocessing step in ANNs have shown positive influences on the performance of 

these models (Adamowski and Sun, 2010; Kisi, 2010; Maheswaran and Khosa, 2012; 

Nayak et al., 2013; Nourani et al., 2009b). Since none of the ANN, NARX and 

wavelet-NARX models were utilized in the Hulu Langat basin, in this study, these 

models were also evaluated in estimating monthly streamflow in the basin. 

 

The Langat River Basin is an important watershed in Malaysia. Two third of water 

demand of the state of Selangor is provided from the Langat River Basin (Juahir et 

al., 2010). Since surface water, especially streamflow is the main source for 

providing water in the Langat River Basin, accurate estimation of streamflow is 

essential for water management and conservation. Rapid urbanization (from 31.47 

km2 in 1984 to 296.24 km2 in 2010 (161.59%)) in the area has caused huge changes 

in land use activities. These land use changes have led to increase in the impervious 

surface area and consequently they may have impacts on river flow and water 

resources in the basin. In addition, climate change could also cause to see variations 

in streamflow (Toriman et al., 2012). According to IPCC (2007), the 100-year linear 

increase of surface temperature (1905-2005) is 0.74°C, while the global average sea 

level has risen since 1961 at a rate of 1.8 mm/yr. Furthermore, IPCC forecasted much 

higher increases in temperature by 2100 relative to 1980-1999. Such multiple 

increases in temperature and consequently sea level could have disastrous impacts on 

various sectors, especially hydrologic cycle of the basin. Therefore, studying the 

effects of these changes on the hydrologic cycle, specifically streamflow, of the basin 

is significant. Predicting the effects of changes, notably land use and climate 

changes, on streamflow is a significant issue for the hydrologic sciences (Singh et al., 

2011). Using a physically based hydrological model which is calibrated on historical 

or estimated data is the most common approach to deal with this issue (Singh et al., 

2011).  
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With these descriptions, in this study a modified version of the JWK physically 

based hydrological model, which does not need upscaling, was developed to estimate 

streamflow in the upper zone of the Langat River Basin. In addition, since the 

wavelet transform coupled with ANN type models has showed feasible results in 

previous researches (Adamowski and Sun, 2010; Chua and Wong, 2010; Kisi and 

Cimen, 2011; Nowak et al., 2011; Shiri and Kisi, 2010; Tiwari and Chatterjee, 2010; 

Wei et al., 2012), in this study this type of models were trained and tested for 

simulating the Rainfall-Runoff (RR) process for the first time in the basin. 

Furthermore, in order to compare the efficiency of the developed models with a well-

established model, the SWAT model, which is a semi-distributed hydrological 

model, was also utilized to estimate monthly streamflow in the basin. Finally, the 

land use and climate changes impacts on streamflow were investigated. 

 

1.3 Objectives 

The main aim of this study is to simulate and forecast the mean monthly streamflow 

from daily rainfall and evapotranspiration data considering the land use and climate 

change effects in the Hulu Langat basin. The specific objectives of the study are as 

follows: 

1. To simulate mean monthly streamflow using the modified James W. 

Kirchner’s model (Kirchner, 2009) in the Hulu Langat basin. 

2. To compare the performance of the modified James W. Kirchner’s model 

with those of the SWAT, ANN, NARX and wavelet-NARX models in 

estimation of mean monthly streamflow. 

3. To investigate the impacts of the past and future land use and climate changes 

on mean monthly and mean annual streamflow. 

 

1.4 Scope of work and limitations 

The scope of the study is to firstly introduce a new physically based hydrological 

model, which does not need any upscaling, to estimate monthly streamflow for the 

Hulu Langat basin and secondly assessing the impacts of land use and climate 

changes on streamflow in the study area. This study is limited to simulation of 

rainfall-runoff process at monthly scale in the north part of the Langat River Basin 

(Hulu Langat basin), Malaysia for two periods of 1985-1988 and 2002-2005. The 

reason for selecting these two time frames are that missing data in hydro-climatic 

data of the period 1984-2012 were a lot (more than 10%). These missing data could 

have negative impacts on the results of the analysis. Furthermore, the impact of the 

future climate change and land use change were assessed during 2025-2028. 

 

1.5 Significance of the Study 

Water resources are essential for human beings and vital in various fields such as 

agriculture, navigation, energy production, recreation and manufacturing. Reliable 

runoff estimation is required in various engineering applications such as water 

supply, disaster management and power production (Guimarães Santos and Silva, 
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2013; Nilsson et al., 2006). The mathematical models, known as RR models, could 

be utilized to estimate runoff from the related hydro-climatic variables such as 

rainfall and evaporation in both long and short terms. Thus, the RR models have 

turned into useful tools to investigate the hydrologic cycle at watershed scale. 

Streamflows forecasting at monthly scale can be utilized in various applications such 

as water resources assessments, discharge estimation, climate change impact studies 

and streamflow data augmentation (Xu and Singh, 1998). 

 

In recent decades, land use change and climate change have been found to be 

substantially effective on streamflow. Land use conversion from for example forest 

to urban land could lead to increase flood frequency which have economic and social 

side effects. Similarly, climate change can increase the possibility of floods and 

droughts that threaten the food and water security as it is happening in some places in 

the world. Therefore, considering these two changes in simulation of the catchment 

water cycle is extremely essential to develop effective watershed modelling 

approach. Consequently, any proposed RR model should be able to take in to account 

the effect of climate and land use on the RR process. In this study, a physically based 

lumped RR model will be proposed to estimate monthly streamflow from rainfall and 

evapotranspiration in the Hulu Langat basin. The capability of this model in 

predicting monthly river flows will then be compared with those of the Artificial 

Neural Network (ANN), Nonlinear AutoRegressive with eXogenous (NARX) input 

and, the widely utilized model in watershed modelling studies, Soil and Water 

Assessment Tool (SWAT) models. The most accurate models will next be employed 

to assess the impacts of climate change and land use change on streamflow. The 

results of this study would be valuable for managers and decision makers to establish 

new policies as well as modifying the current policies in various hydrologic related 

fields such as water resources management, natural resources conservation, 

agricultural water management and urban development planning. 
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