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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Master of Science

FINITE ELEMENT ANALYSIS OF BUCKLING OF
COMPOSITE-STIFFENED PANELS

By

ARASH ZAIGHAMI

November 2014

Chairman: Rizal Zahari, PhD
Faculty: Engineering

Buckling of laminated composite plates can be improved by introducing stiffeners
to the plate. Majority of the researches concentrate on the buckling response of
unstiffened and stiffened panels subjected to in-plane compressive loadings. Some
contributions in the form of design charts and guidelines have been developed for
unstiffened panels subjected to in-plane compression and shear loadings, but still
there is a relative lack of investigation into this area of research. This study
considers the effects of radius of the fillet of stiffener-and-plate joint under com-
pression loading and to investigate the effects of stiffener depth and pitch length
under combined in-plane compression and shear loading using Finite Element
Method (FEM). In total, 46 panels were modeled using ABAQUS software. In
the first study, the effects of a filleted joint on the local and global buckling loads
of the panels were investigated. The results show that increasing the radius of
the fillet results in an increase in the buckling load. It had been found that 2.18%
and 43.7% stability improvements are obtained for the panel with a 5-mm fillet
radius in the global and local buckling, respectively. In the next study, the effects
of the stiffener pitch length under combined compression and shear loading on
the buckling of the panels with various plate aspect ratios were investigated nu-
merically. The results indicate that increasing the number of stiffeners (reducing
stiffener pitch length) results in an increase in the buckling load. In the last study,
the effects of the height of the stiffener (stiffener depth) on the stability of the
panels with different plate aspect ratios were investigated. The results show that
increasing the height of the stiffeners results in the improvement of the stability
of the panels. Although the improvement is significant in the panels with shorter
stiffeners, this value is not noticeable after a certain value of stiffener depth.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Sarjana Sains

ANALIS UNSUR TERHINGGA BAGI LENGKOKAN PANEL
KOMPOSIT-TERKUKUH

Oleh

ARASH ZAIGHAMI

November 2014

Pengerusi: Rizal Zahari, PhD
Fakulti: Kejuruteraan

Lengkokan plat komposit berlapis boleh diperbaiki dengan memperkenalkan pen-
gukuh kepada plat. Sebahagian besar penyelidikan menumpukan perhatian kepada
lengkokan panel penyambut tidak terkukuh dan panel yang terkukuh tertakluk
kepada dalam-satah beban mampatan. Beberapa sumbangan dalam bentuk carta
reka bentuk dan garis panduan yang telah dirumus untuk panel penyambut tidak
terkukuh tertakluk kepada mampatan dalam sotoh dan beban ricih, tetapi masih
terdapat kekurangan relatif penyiasatan bidang ini penyelidikan. Kajian ini cen-
derung untuk mempertimbangkan kesan jejari filet daripada penyambut-dan-plat
bersama di bawah beban mampatan, dan untuk menyiasat kesan mendalam bagi
penyambut dan panjang pic di bawah gabungan mampatan dalam-satah ricih
dan beban menggunakan Kaedah Unsur Terhingga (FEM). Secara keseluruhan,
46 panel telah dimodelkan menggunakan perisian ABAQUS. Dalam kajian per-
tama, kesan sendi filet pada beban lengkokan tempatan dan global panel telah
disiasat. Keputusan menunjukkan bahawa peningkatan jejari filet telah menye-
babkan peningkatan dalam beban lengkokan. Hasil daripada penemuan, didap-
ati bahawa 2.18% dan 43.7% peningkatan kestabilan diperolehi dengan panel 5
mm filet jejari dalam lengkokan global dan tempatan, masing-masing. Dalam
kajian seterusnya, kesan panjang pic penyambut bawah gabungan mampatan
dan beban ricih pada lengkokan panel dengan pelbagai nisbah aspek plat, disi-
asat secara berangka. Keputusan menunjukkan bahawa peningkatan bilangan
pengukuh (mengurangkan panjang pic penyambut) menyebabkan peningkatan
dalam beban lengkokan. Dalam kajian yang lalu, kesan ketinggian penyambut
(kedalaman penyambut) terhadap kestabilan panel dengan nisbah aspek plat yang
berbeza telah disiasat. Keputusan menunjukkan bahawa peningkatan ketinggian
pengukuh meningkatan kestabilan panel. Walaupun peningkatan adalah ketara
dalam panel dengan pengukuh lebih pendek, nilai ini tidak ketara selepas men-
capai nilai tertentu kedalaman penyambut.
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CHAPTER 1

INTRODUCTION

1.1 Overview

For many years, metals have been largely used as structural material mostly be-
cause of their strength and ductility. With the growing demand for stronger and
lighter materials, composites have become very important for structural appli-
cations. A composite material is a combination of a discontinuous phase called
reinforcement embedded in a continuous phase called matrix. The reinforcement
is responsible for carrying the load. The matrix keeps the reinforcement together,
transfers the load to the reinforcement, and provides environmental protection.
The constituents keep their properties and identities, i.e. they do not dissolve or
merge completely into one another whilst performing in harmony. This allows
the newly formed material to exhibit better engineering behavior and properties
than its constituents.

Environmental moisture, chemical corrosion and oxidation are prevented by ma-
trix material. Also, matrix holds together the fibers and keeps fibers in the proper
orientation and position. Matrix materials can be polymers, metals, and ceram-
ics. Polymeric Matrices are divided into two categories. These are Thermosets
such as Epoxy and Thermoplastics such as Polyethylen [1].

Reinforcement materials, which are used in the composite industry, can be written
as Fiberglass, Kevlar, Polyethylene, Carbon/Graphite, Ceramic fibers. Carbon
fibers have high strength and stiffness properties. Carbon fiber reinforced com-
posites are stronger and stiffer than the metallic parts which have same weight
with carbon fibers [1].

1.1.1 Plates

A thin plate is, by definition, a two-dimensional flexural element of which the
thickness is much smaller than its other two dimensions. A plane that divide the
plate into two identical part is known as the middle plane.

Thin plate elements are utilized in different structures; these elements can be part
of a complex structure or they can themselves form the main part of a structure.
Walls of containers, silos, and reservoirs, flat roofs, flat elements of vehicles and
aircraft, and sheet piles are some instances of plate elements. Plate elements may
be homogeneous and isotropic or they may be stiffened and/or have a composite
construction.
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1.1.2 Buckling of Structures

Buckling is loss of stability due to geometric effects rather than material failure.
But it can cause failure of material and collapse if the ensuing deformation are
not restrained. Most structures can operate in a linear elastic range. That is,
they return to the undeformed configuration upon removal of the load. Perma-
nent deformations result if the elastic range is exceeded, as when matrix cracking
occurs in a composite.

Consider a simply supported column of area A, length L, and moment of inertia
I, made of homogeneous material with modulus E and strength F along the
length of the column. the column is loaded by a compressive load P acting on
the centroid of the cross section [2]. If the column geometry, loading, and material
have no imperfections, the axial deformation is

u = PL/EA (1.1)

With no lateral deformation (w = 0). The deformation of the structure (u, v, w)
before buckling occurs is called the Primary path, which u, v and w represent the
displacements in x, y and z directions, respectively. The slightest imperfection
will make the column buckle when

Pcr = π2(EI)/L2 (1.2)

What happens after the column reaches its critical load depends largely on the
boundary conditions. The behavior of the structure after buckling has occurred
is called post buckling.

Depending on the mode of application, a plate can be subjected to various lateral
as well as in-plane forces. Under certain circumstances, applied in-plane loading
may cause global or local buckling. Concerning thin plates, buckling is a phe-
nomenon that can affect the load-bearing capacity of plate elements. Therefore,
it should be taken into consideration in the design of plate elements.

1.1.3 Buckling of Stiffened Panels

There are several ways to improve the stability of the plates such as increasing
the thickness of the plate. An efficient and creative approach to improve the
buckling load of the plate is to introduce stiffeners to the plate. The stiffeners
can be located longitudinally or in a grid form. The shape of the stiffeners can
be blade, I-, J- or T-shaped.

2



© C
OPYRIG

HT U
PM

1.2 Problem Statement

An important criterion typically used in structural design is the prevention against
buckling. However, it is known that a rectangular plate supported at its bound-
aries can carry considerable load beyond its critical buckling load. Therefore, a
design based on the buckling strength results in lighter structures. The possibility
of saving weight makes the study of buckling in plates important. It also helps
in understanding of failure mechanisms.

Numerical methods, that are adequately accurate, are utilized by researchers for
the analysis of laminated composite stiffened panels. Due to the advent of super
computers and the versatility of finite element method as an indispensable tool,
different attempts have been done worldwide to understand the buckling behav-
ior of laminated composites. The reports include parametric results for various
plate aspect ratios, plate thickness to length ratios, degree of layer orthotropy,
ply orientations, and stiffener depth to plate thickness ratios [3, 4].

Considering the fact that buckling phenomenon of laminated composite stiffened
panels occurs under various types of loading in nature, conceive the idea of study
the buckling behavior of laminated composite stiffened panels under combined
loading. Majority of the researches concentrate on the buckling behavior of the
stiffened and unstiffened panels which are subjected to the in-plane compression
loadings [5].

Some contributions in the form of design charts and guidelines have been devel-
oped for unstiffened panels subjected to in-plane compression and shear load-
ings [6], but still there is a relative lack of investigation into this area of research
such as the effects of the stiffener depth and the pitch length under combined
in-plane compression and shear loading. Also, there is no report on the effect
of the radius of fillet of the stiffener and plate joint using laminated composite
stiffened panels.

1.3 Objectives of the study

The objectives of this study are:

1. Investigate the effect of radius of fillet of stiffener-and-plate joint on the
buckling of composite stiffened panels under in-plane compression loading.

2. Investigate the effects of pitch length and stiffener depth on the buckling of
composite stiffened panels under combined in-plane compression and shear
loading.

3
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1.4 Scope of the study

Regarding aforementioned facts, in the present study a database is developed by
using finite element investigations and based on the results a number of effective
parameters and their effects on buckling behavior of simply supported laminated
composite stiffened panels is discussed. This study is divided into two main sec-
tions i.e., the panels which are subjected to the pure compression loading and the
ones which are exposed to the combined in-plane compression and shear loading.
Stiffener depth and pitch length are the parameters that are investigated under
combined loading and the radius of filleted joints is investigated under compres-
sion loading. This guidelines will be helpful for the designers.

A number of 46 samples using ABAQUS (v6.10) are modeled and a database is
prepared for the effects of different geometrical parameters including pitch length
of stiffeners, depth of stiffeners and the radius of the fillet of stiffener and plate
joint based on the various plate aspect ratios.

1.5 Significance of the Study

Aerospace and automotive industry demand cost efficiency for development and
operating. Reducing cost can be achieved by utilizing lightweight structures or
employing new materials with a high strength-to-weight ratio. Composite struc-
tures can satisfy mentioned demands. To increase the stability of composite
panels, the thickness should be increased. But the increase in thickness results
in heavier structure. So the economic way to increase the stability while keeping
weight as low as possible is to introduce stiffeners. Now the question is ”how
to employ stiffeners?” The most efficient state of the structure will achieve by
knowing the effect of height and number of stiffeners on the structure. In man-
ufacturing process, a fillet may apply to the jointing area between stiffeners and
plate. How sensitive is the stability of the plate to the radius of the filleted area?

This study answers the above questions and prepare a database which can help
designers in terms of needless to do time consuming simulations to figure out the
trends.

1.6 Outlines of Thesis

Chapter 1 presents the introductory words including a brief background of com-
posite structures which continues with stating the problem and the objectives
that is set in this study. This chapter also discuss about the significance of this
thesis and come to end with an outline of this study.

Chapter 2 presents a literature review of previous researches related to this study
including composite definition and its types, buckling of plates and its solutions

4
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using Finite Element Method (FEM), buckling of stiffened panels subjected to
various loads and boundary conditions.

Chapter 3 describes the procedure of getting the results from the initial steps of
modeling to simulation of the panels and also represents the employed methods
and formula to achieve the results. Chapter 4 gives a complete description of the
attained results in details and conclusions based on the results are presented in
chapter 5 which is followed by some recommendations for future work in chapter 6.

5
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