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The manufacturing companies producing chemical products have to deal with a 

variety of inherent environmental risks in conducting their operations. Nowadays, 

the indoor release of hazardous chemical gases which are heavier than the air is one 

of the risks that require an in-depth scrutiny. The reason for this claim is that the 

dense clouds of gases have a tendency to initially flow on the ground level, which in 

turn, causes fatal injuries or other potential health threats to human beings. Although 

the existences of these gases are dangerous, factories are not able to reduce their 

emissions risk to an absolute zero amount.  Consequently, it is important to 

investigate what factors affect the indoor movements and dispersions of the heavier-

than-air dangerous gases. In this study, computational fluid dynamics (CFD) 

software using FLUENT 14.5 code was employed in order to model the accidental 

indoor dispersion of a common dense gas, chlorine, from a small undetected leak 

into an indoor industrial environment. Computational fluid dynamics (CFD) has 

outstanding capabilities in illustrating realistic simulations even for the cases of 

geometrically complex scenarios. Results of the simulations showed that the 

chlorine dispersion would behave like the liquid when it was being flown on any 

surface. Moreover, it was found that the chlorine density gradually increased on the 

ground level. Specifically, findings from this research revealed that mixing results 

for chlorine dispersion patterns are subject to different levels of temperature, wind 

amount, and wind direction. There is a direct relationship between temperature and 

chlorine gas dispersion. To support, among the temperatures studies in this research, 

namely 270K, 297K, and 315K chlorine gas dispersion was the highest at 

temperature 315K, ranging from 8×10
-3

 to 1×10
-2 

ppm. This study also showed the 

effect of wind velocity on chlorine gas dispersion at different temperatures. 

Specifically, at 270K, chlorine gas dispersion was 0.001 - 0.595 ppm, 0 - 0.0005 

ppm, and 0 - 0.005 ppm at the wind velocities 1 m/s, 3 m/s, and 5 m/s, respectively. 

However, chlorine gas dispersion with the same wind velocity speeds remained 

constant, within the range of 0 - 0.005 ppm. All of these factors had significant 

relations with chlorine dispersion in indoor environment. In this research, the effects 

of ventilation on dispersion of chlorine were analyzed and their results were 
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compared with wind velocity simulations Overall, the effects of the environmental 

factors with the release and spread of chlorine in indoor space were meticulously 

investigated.  

 



© C
OPYRIG

HT U
PM

iii 

 

Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia Sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

 

 

KESAN SUHU DAN KECEPATAN ANGIN KE ATAS PENYEBARAN 

KLORIN DALAM SISTEM PENYIMPANAN DALAMAN MENGGUNAKAN 

SIMULASI PENGKOMPUTERAN DINAMIK BENDALIR 

 

 

Oleh 

 

MOHSEN SAFAKAR 

 

Ogos 2014 

 

 

Pengerusi: Syafiie, PhD 

Fakulti: Kejuruteraan 

 

 

Syarikat-syarikat perkilangan yang menghasilkan bahan kimia perlu mengambil kira 

pelbagai risiko alam sekitar yang wujud dalam menjalankan operasi mereka. Dewasa 

ini,  pelepasan gas kimia secara tertutup berbahaya yang mana lebih berat daripada 

risiko udara yang memerlukan penelitian yang mendalam. Tuntutan tersebut dibuat 

adalah disebabkan oleh kerapatan uap gas yang mempunyai kecenderungan untuk 

mengalir pada permukaan tanah, seterusnya, menyebabkan kecederaan maut atau 

ancaman terhadap kesihatan  manusia. Walaupun kewujudan gas tersebut adalah 

berbahaya, kilang-kilang tidak dapat mengurangkan risiko pelepasan pada satu 

jumlah mutlak sehingga sifar. Oleh yang demikian, ia amat penting untuk mengkaji 

tentang faktor yang memberi kesan terhadap pergerakan dalaman dan penyebaran 

gas berbahaya yang lebih berat daripada udara. Dalam kajian ini, Pengkomputeran 

Dinamik Bendalir (CFD) dengan menggunakan FLUENT kod 14.5 di gunakan  

untuk membentuk penyebaran dalaman  secara tidak sengaja bagi kebiasaan gas 

yang tebal, klorin, dari kebocoran kecil yang tidak dapat dikesan ke dalam 

persekitaran perindustrian yang tertutup. Pengkomputeran Dinamik Bendalir (CFD) 

mempunyai keupayaan tersendiri dalam menunjukkan simulasi realistik termasuk 

kes situasi geometri yang kompleks. Keputusan simulasi menunjukkan bahawa 

penyebaran klorin kelihatan seperti cecair apabila ia telah mengalir pada mana-mana 

permukaan. Selain itu, didapati bahawa ketumpatan klorin secara beransur-ansur 

meningkat kepada paras tanah. Secara khususnya, hasil kajian ini menunjukkan 

pencampuran keputusan bagi corak penyebaran klorin  bergantung pada  perbezaan 

tahap suhu, jumlah angin, dan arah angin. Kajian ini menggambarkan terdapat 

hubungan antara suhu dan serakan gas klorin.  Bagi menyokong kenyataan ini, pada 

suhu 270K, 297K, dan 315K, penyebaran gas klorin adalah yang tertinggi pada suhu 

315K, daripada 8×10
-3

ppm  untuk 1×10
-2

 ppm. Kajian ini juga menunjukkan kesan 

halaju angin ke atas penyebaran gas klorin pada suhu yang berbeza. Secara khusus, 

pada suhu 270K, penyebaran gas klorin adalah 0.001 – 0.595 ppm, 0 – 0.0005 ppm, 

dan 0 – 0.005 ppm  dengan halaju angin dicatat pada jumlah 1m/s, 3m/s, dan 5m/s. 

Walau bagaimanapun, penyebaran gas klorin dengan kelajuan yang sama halaju 

angin tetap kekal, dalam julat 0 – 0.005 ppm Semua faktor-faktor ini didapati 
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mempunyai hubungan yang signifikan dengan penyebaran klorin dalam persekitaran 

dalaman. Kesan pengudaraan terhadap penyebaran klorin telah dianalisis dan 

keputusan tersebut didapati berbeza dengan simulasi halaju angin. Secara 

keseluruhan, kesan faktor-faktor alam sekitar terhadap pembebasan dan penyebaran 

klorin dalam ruangan tertutup telah dikaji dengan teliti. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

One of the most significant current challenges in both the developing and developed 

countries is to protect the workers and the individuals who are employed in factories 

or reside near the industrial cities against toxic and dangerous substances, such as 

chlorine, dichlorodiphenyltrichloroethane (DDT), asbestos and so forth that are 

produced or used in various industries. Chlorine is a great antiseptic bleaching agent 

and it is solvent as well. Having two forms namely the liquid and gas, chlorine is a 

toxic material which brings about numerous hazards. In details, it can cause death or 

serious injuries if suitable safety measures are not taken, among which an 

appropriate room with ventilations, alarms, gas detectors, and other necessary 

equipment for keeping cylinders or tanks (Chlorine Safe Work Practices, 2006). In 

order to protect the people who have a direct contact with the chlorine equipment or 

live next to it, governments should be required to expand and perform safety, health, 

and environment instructions (OHSAS18001) in the industrial places. For instance, 

years ago in the morning of 14 July 2010, a chlorine leak incident was reported at 

Haji Bunder hazardous cargo warehouse in the Mumbai Port Trust (MPT), Sewri, 

affecting over 120 people in the neighborhood, including students, laborers, port 

workers and firefighters, of whom 70 were reported critical. This was observed to be 

a blatant case of ignorance and negligence as well as contraventions to the safety 

and environmental safeguards requirements under existing statues as well as non-

maintenance of failsafe conditions at the site requisite for the chlorine storage 

(Sharma et al, 2010). If the chlorine tanks had been stored in accordance with the 

health, safety, and environment standards and the individuals had been cognized on 

chlorine leak gas in the short time, people would have never been killed in Mumbai.  
 

Due to the extensive usage of chlorine in various industries along with increasing the 

risks of release gas in the spaces for the humans and environments, it is essential to 

conduct studies with the purpose of scrutinizing the chlorine release. In this research 

to examine the effects of natural factors on chlorine spread in indoor environments 

such as small storages. It is clear that various factors can be affected on dispersion of 

heavy gas in indoor environment such as wind velocity, temperatures and direction 

of wind.  

 

1.2 Problem statement 

Chlorine is toxic gas therefore, the Chlorine storage tanks should be located in 

separate clearly-defined areas that can be isolated in emergencies and need to be 

accessible for the emergency personnel. The chlorine storage areas should be 

protected by barriers or separated from the other processes or materials which might 

impose damage on the storage tanks (Chlorine Safe Work Practices, 2006). Indeed, 

in the current chlorine storages the alarm detectors are being used in order to protect 

them from the hazard of release (usually gas detectors) so that in case of any release, 

the detector will identify the chlorine particles from the indoor air, sending the alarm 

signals to the control center (Sun et al, 2004). There are cases of recorded events to 
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prove that the sensitivity of gas detectors can be affected by various factors such as 

low amount of the chlorine concentration, location of the detectors, defected power 

supply, high level of humidity, and so on (Stelling et al, 1999). According to the 

preceding statements, detectors are not appropriate to make a safe place for workers 

in the toxic gas storage and need to get more information about behavior of gases in 

different situations and will be investigated on parameters can be affected on 

chlorine dispersion in indoor environments.  
 

The release of chlorine in the open area (Turner, 1994) or a big storage having good 

ventilations have been so far approved by some surveys (Siddiqui et al, 2012). In the 

most of the chlorine leakage in the open area, it is observed that the OHSAS 18000 

instructions have not been included and the best description is the Mumbai Port 

disaster. Also, some of the small industries that utilize chlorine in their processes do 

not have appropriate ventilations or detectors and alarm systems. 
 

According to the pervious paragraphs, investigate on repercussions of heavy gas 

dispersion in different situations are important point to reduce the damage of release 

it in indoor environment. Environmental factors, such as temperature and wind 

speed have direct relationship to spread dense gas. In this study, the effects of 

environmental factors on behavior of chlorine gas dispersion in the storage are 

investigated. In the previous work, researchers investigated the performance of 

ventilations in indoor environments. In these surveys the effects of environmental 

factors such as difference temperatures and wind velocity on chlorine dispersion in 

the storage were neglected.  
 

Computational Fluid Dynamics allows the simulation of complex physical processes 

describing heat and mass transport phenomena with fully developed mathematical 

models. Specific models incorporated in CFD codes predict the turbulent mixing 

between gas molecules and air particles, in addition to cavity regions in the flow 

field (building wakes), which may result in entrapment of escaping gas at low 

heights for relatively long time with increased health effects (Sklavounos & Rigas, 

2004). In this study, CFD shows the details of the gas spread in the storage with 

various parameters and helps researchers to forecast the behavior of chlorine 

dispersion in the room. 
 

1.3 Scopes and Limitations 
 

The case under investigation was a confined storage room, being used to store a 

chlorine storage tank. Chlorine was kept inside the tank at its vapor pressure and 

under room conditions. The intent was to simulate a leakage of chlorine from the 

tank with the aim of comparing the dispersion of chlorine in different conditions. 

The first limitation in this study was surveyed the effects of various temperatures in 

winter (270K), spring (297K) and summer (315K). Next limitation was surveyed the 

consequences of different wind velocity such as 1m/s, 3m/s and 5m/s in various 

temperatures in mention seasons on spread of chlorine in the open area. 
 

1.4 Objectives 
 

1. To simulate the dynamic of chlorine discharge from storage tank based on 

computational fluid dynamic (CFD) 
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2. To investigate chlorine distribution pattern in an indoor storage room with a 

closed, opened window and ventilated system. 
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