UNIVERSITI PUTRA MALAYSIA

ADAPTATION AND ATTENUATION OF VERY VIRULENT INFECTIOUS BURSAL DISEASE VIRUS IN AVIAN AND MAMMALIAN CELL CULTURES FOR VACCINE DEVELOPMENT

KHOR SOK FANG

FPV 2007 12
ADAPTATION AND ATTENUATION OF VERY VIRULENT INFECTIOUS BURSAL DISEASE VIRUS IN AVIAN AND MAMMALIAN CELL CULTURES FOR VACCINE DEVELOPMENT

KHOR SOK FANG

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2007
ADAPTATION AND ATTENUATION OF VERY VIRULENT INFECTIOUS BURSAL DISEASE VIRUS IN AVIAN AND MAMMALIAN CELL CULTURES FOR VACCINE DEVELOPMENT

KHOR SOK FANG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2007
Dedicated with love and gratitude to

my family, teachers and friends

who

show me the fun of education.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

ADAPTATION AND ATTENUATION OF VERY VIRULENT INFECTIOUS BURSAL DISEASE VIRUS IN AVIAN AND MAMMALIAN CELL CULTURES FOR VACCINE DEVELOPMENT

By

KHOR SOK FANG

June 2007

Chairman : Mohd. Hair Bejo, PhD
Faculty : Veterinary Medicine

Infectious bursal disease virus (IBDV) is an immunosuppressive virus causing infectious bursal disease (IBD) outbreaks since 1957. The economic impact of IBD is influenced by strain of virus, route of infection, intercurrent primary and secondary pathogens, and environmental management factors. Adaptation of IBDV to replicate in cell culture is associated with attenuation. Repeated passages of classical IBDV (cv IBDV) in avian primary cell culture, results in highly attenuated virus, which is commonly used as a live vaccine for many years. However, this cvIIBDV vaccine does not provide full protection against very virulent IBDV (vvIIBDV) infection. Field isolates particularly vvIIBDV normally do not grow in cell cultures. It requires extensive passages and adaptation in chicken embryonated eggs before it can propagate in cell cultures.

This study attempts to adapt and attenuate two local isolates of vvIIBDV namely B0081 and UPM93273 in mammalian continuous cell line (Vero
cell cultures) and avian primary cell line (Chicken embryo fibroblast, (CEF)). A newly modified method of adaptation and attenuation is introduced in this study. Both isolates were successfully adapted and attenuated in Vero cell cultures of 22 passages throughout the proposed modified method. Furthermore, through the modified method, both isolates can be adapted and propagated faster and easier in mammalian continuous cell cultures when compared with the conventional method. Passage 10 of isolate B0081 in Vero cell cultures using modified method, called B0081T was tested for pathogenicity in specific pathogen free (SPF) chickens. This study showed that UPM0081T caused sudden onset of 100% morbidity with no mortality during infection and the infected bursal recovered from the infection.

Sequence comparison has also been carried out for nucleotides (nt) and deduced amino acids (aa) in hypervariable region (HVR) of VP2 of UPM0081T with the parental isolate B0081 in this study. As a result, the parental isolate B0081 revealed one mutation from G to A in UPM0081T at nucleotide position 850. This nucleotide substitution resulted in the substitution of Ala in the parental virus to Thr in the cell culture attenuated strains at residue 284. Amino acid residues Gln, Asp and Ala at position 253, 279 and 284 were conserved in most strains of high pathogenicity; and His, Asn and Thr were conserved in most of the cell culture attenuated strains of low pathogenicity in SPF chickens. The sequence of hypervariable region of VP2 of UPM0081T was deposited in GeneBank under accession number EF208038.
In conclusion, IBDV B0081 was successfully adapted and propagated in mammalian continuous cell cultures by the proposed modified method. The adapted virus was named UPM0081T. It may serve as a seed virus in the production of local vaccine against vvIBDV infections, for the prevention and control of IBD in Malaysia.
Virus penyakit bursa berjangkit (IBDV) ialah virus yang boleh melemahkan imun dan menyebabkan wabak penyakit infeksi bursa (IBD) sejak tahun 1957. Kesaran ekonomi oleh IBD dipengaruhi oleh jenis virus, cara infeksi, patogen asas dan kedua, dan juga faktor pengurusan alam sekitar. Penyesuaian IBDV untuk membiak dalam sel kultur sering kali dikaitkan dengan pelemahan. Ulangan pemindahan IBDV jenis klasik (cvIBDV) dalam sel kultur ayam asas, dimana pelemahannya tinggi biasanya diguna sebagai vaksin hidup sejak lama lagi. Walau bagaimanapun, vaksin daripada cvIBDV tidak dapat menyediakan perlindungan ayam sepenuhnya daripada infeksi IBDV amat virulen (vvIBDV). Tambahan pula, asingan liar terutamanya vvIBDV biasanya tidak dapat tumbuh dalam sel kultur. Ia memerlukan pemindahan yang panjang dan penyesuaian dalam embrio ayam sebelum dapat membiak dalam sel kultur terutamanya sel kultur berurutan.

Kajian ini cuba untuk menyesuaikan dan melemahkan dua asingan tempatan vvIBDV yang dinamakan UPM93273 dan B0081 dalam sel jenis berurutan.
Kesimpulannya, IBDV B0081 telah berjaya disesuaikan dan membiak sebagai strain lemah UPM0081T dalam sel jenis berurutan mamalia dengan menggunakan cara ubah suai. Strain lemah ini mungkin boleh digunakan sebagai benih vaksin tempatan menentang infeksi vvIBDV di Malaysia pada masa depan.
ACKNOWLEDGEMENTS

I would like to express my heartiest gratitude and appreciation to Associate Professor Dr. Mohd Hair Bejo, chairman of the supervisory committee for providing me invaluable advice and untiring assistance in this Master Science research. His constant guidance, support and encouragement were the motivation that enabled me to accomplish my work.

I would like to express my sincere thanks and appreciation to Professor Dr. Aini Ideris, a member of the supervisory committee for the constructive suggestion, proper guidance and encouragement throughout my study period. My sincere thanks and appreciation also extend to Associate Professor Dr. Abdul Rahman Omar, for constant support and guidance.

I am grateful to all my friends and staff in the laboratory for always being willing to render assistance throughout the course of my study. Special thanks also extended to my family for their understanding and support.
I certify that an Examination Committee met on 25th June 2007 to conduct the final examination of Khor Sok Fang on her Master of Science thesis entitled “Adaptation and Attenuation of Very Virulent Infectious Bursal Disease Virus in Avian and Mammalian Cell Lines for Vaccine Development” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Hassan Hj. Mohd. Daud, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Adbul Rani Bahaman, Ph.D.
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Fauziah Othman, Ph.D.
Associate Professor
Faculty of Medicine
Universiti Putra Malaysia
(Member)

Zulkeflie Zamrod, Ph.D.
Associate Professor
Universiti Kebangsaan Malaysia
(Independent Examiner)

ZAKARIAH ABD. RASHID, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
APPROVAL SHEET

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of Supervisory Committee were as follows:

Mohd Hair Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Abdul Rahman Omar, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 15 November 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHOR SOK FANG

Date: 13 August 2007
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL SHEET x
DECLARATION FORM xii
LIST OF TABLES xvii
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS / NOTATIONS xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW
 2.1 Infectious Bursal Disease 7
 2.2 Infectious Bursal Disease Virus (IBDV) 9
 2.2.1 Strains Classification 9
 2.2.2 Very Virulent Strains of IBDV (vvIBDV) 11
 2.2.3 Viral Proteins 12
 2.2.4 VP2 13
 2.3 Immunosuppression 14
 2.4 Embryonated Chicken Eggs 16
 2.5 Cell Culture 16
 2.6 Clinical Signs 19
 2.7 Gross Pathology 19
 2.8 Histopathology 20
 2.9 Diagnosis 21
 2.10 Reverse Transcription Polymerase Chain Reaction 23
 2.11 Phylogenetic Analysis 25
 2.12 Prevention and Control 27

3 ADAPTATION, REPLICATION AND ATTENUATION OF LOCAL INFECTIOUS BURSAL DISEASE VIRUS ISOLATES IN AVIAN AND MAMMALIAN CELL CULTURES
3.1 Introduction

3.2 Materials and Methods

3.2.1 IBDV Isolates

3.2.2 IBDV Inoculums Preparation

3.2.3 Propagation of Viruses on SPF Embryonated Chicken Egg through Chorio-Allantoic Membrane (CAM)

3.2.4 Adaptation, Replication and Attenuation of vvIBDV in CEF Cell through Routine Method

3.2.5 Adaptation, Replication and Attenuation of vvIBDV in CEF Cell through Modified Method

3.2.6 Adaptation, Replication and Attenuation of vvIBDV in Vero Cell through Routine Method

3.2.7 Adaptation, Replication and Attenuation of vvIBDV in Vero Cell through Modified Method

3.2.8 IBDV Identification through Indirect-Immunoperoxidase Staining (IIPS)

3.2.9 IBDV Titration for Passage 10 in Vero Cell Cultures Using Modified Method (UPM0081T)

3.2.10 Pathogenicity Study of UPM0081T in Specific Pathogen Free (SPF) Chickens

3.3 Results

3.3.1 Chorio-Allantoic Membrane (CAM) for UPM0081

3.3.2 Chorio-Allantoic Membrane (CAM) for UPM93273

3.3.3 IBDV Adaptation, Replication and Attenuation CEF via Routine Method

3.3.4 IBDV Adaptation, Replication and Attenuation CEF via Modified Method

3.3.5 IBDV Adaptation, Replication and Attenuation in Vero Cell Cultures via Routine Method

3.3.6 IBDV Adaptation, Replication and Attenuation in Vero Cell Cultures via Modified Method

3.3.7 IBDV Identification through IIPS Test

3.3.8 IBDV Titration for UPM0081T

3.3.9 Pathogenicity Study of UPM0081T in SPF Chickens

3.4 Discussion

4 MOLECULAR CHARACTERISATION OF AN ATTENUATED INFECTIOUS BURSAL DISEASE VIRUS ISOLATE IN VERO CELL CULTURE
4.1 Introduction 71
4.2 Materials and Methods 75
 4.2.1 Sample Preparation 75
 4.2.2 RNA Extraction 75
 4.2.3 Determination of RNA Concentration and Purity 76
 4.2.4 First-Strand Complementary (cDNA) Synthesis by Polymerase Chain Reaction 77
 4.2.5 Agarose Gel Electrophoresis and Ethidium Bromide Staining 78
 4.2.6 Purification of PCR Products 79
 4.2.7 DNA Sequencing 80
 4.2.8 Sequence Assembly and Analysis Using Bioinformatics Software 80

4.3 Results 83
 4.3.1 RT-PCR 83
 4.3.2 VP2 Sequence Analysis 84
 4.3.3 Phylogenetic Relationship of UPM0081T with Other IBDV Isolates 100

4.4 Discussion 103

5 GENERAL DISCUSSION AND CONCLUSION
 5.1 Adaptation, Replication and Attenuation of IBDV in Cell Cultures 110
 5.2 Molecular Characterisation of Attenuated IBDV in Mammalian Cell Cultures 112
 5.3 Conclusion 113

BIBLIOGRAPHY 116
APPENDICES 135
BIODATA OF THE AUTHOR 145
LIST OF PUBLICATIONS 146
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Case history of the local infectious bursal disease virus isolates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Primers used in amplification of VP2.</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Forty isolates used in alignment and phylogenetic tree construct of UPM0081T.</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Comparison of hyper-variable region of VP2 nucleotide and deduced amino acids between UPM0081T and 40 isolates.</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Sequence different of hyper-variable region between the parental very virulent IBDV UPM0081 and the attenuated UPM0081T.</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Nucleotide and deduced amino acid exchanges after sequence comparison of VP2 hyper-variable region between UPM0081T with three cell culture attenuated very virulent IBDV OKYMT, DV86J and XJ9.</td>
</tr>
<tr>
<td>Table C1</td>
<td>Fifty percent tissue culture infective dose (TCID<sub>50</sub>/ml)</td>
</tr>
<tr>
<td>Table E1</td>
<td>Mortality rates of SPF eggs at 1 to 7 day pi of the CAM route in four passages for isolate B0081.</td>
</tr>
<tr>
<td>Table E2</td>
<td>Mortality rates of SPF eggs at 1 to 7 day pi of the CAM route in four passages for isolate UPM93273.</td>
</tr>
<tr>
<td>Table F1</td>
<td>Bursa weight, body weight and ratio of bursa to body weight of the infected chickens for IBDV UPM0081T.</td>
</tr>
<tr>
<td>Table F2</td>
<td>Bursa weight, body weight and bursa to body weight ratio of the control group.</td>
</tr>
<tr>
<td>Table F3</td>
<td>Mean value of body weight, bursa weight and bursa to body weight ratio of the control and infectious bursal disease infected group at days 0, 4 and 18 pi.</td>
</tr>
<tr>
<td>Table G1</td>
<td>Lesion scoring for bursa of Fabricius.</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>IBDV inoculation in chicken embryonated eggs via CAM.</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>IBDV UPM93273T in CEF cell cultures monolayer via modified method.</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>IBDV UPM0081T in Vero cell monolayer via modified method.</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Identification of CPE forming agent in Vero cell cultures (via modified method) using IIPS, infected cell cultures stained with HRP-conjugated antibody.</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Identification of CPE forming agent in CEF cell cultures (via modified method) using IIPS, infected cell cultures stained with HRP-conjugated antibody.</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Bursa of Fabricius in SPF chickens, UPM0081T.</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Bursa of Fabricius in SPF chickens.</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Bursa sections stained with HE.</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Amplified full length of VP2.</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Nucleotide sequences of the 438 bp VP2 hypervariable regions of 40 published full length serotype I IBDV strains.</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Alignment of amino acid corresponding to the VP2 hypervariable region of 40 published full-length serotype I IBDV strains.</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Phylogenetic relationship of UPM0081T with 39 isolates.</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v/v)</td>
<td>Volume/Volume</td>
</tr>
<tr>
<td>(w/v)</td>
<td>Weight /Volume</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>aa</td>
<td>Amino Acid</td>
</tr>
<tr>
<td>AGPT</td>
<td>Agar Gel Diffusion Precipitation Test</td>
</tr>
<tr>
<td>at</td>
<td>Attenuated</td>
</tr>
<tr>
<td>ATV</td>
<td>Antibiotic-Trypsin-Versine</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CAM</td>
<td>Chorio-Allantoic Membrane</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>CEB</td>
<td>Chicken Embryo Bursa Cell</td>
</tr>
<tr>
<td>CEF</td>
<td>Chicken Embryo Fibroblast</td>
</tr>
<tr>
<td>CEK</td>
<td>Chicken Embryo Kidney</td>
</tr>
<tr>
<td>CMI</td>
<td>Cell-Mediated Immunity</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic Effect</td>
</tr>
<tr>
<td>CT</td>
<td>Threshold Cycle</td>
</tr>
<tr>
<td>cv</td>
<td>Classical Virulent</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl Pyrocarbonate</td>
</tr>
<tr>
<td>DH₂O</td>
<td>Distilled Water</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleoside Triphosphate</td>
</tr>
<tr>
<td>ds</td>
<td>Double Stranded</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra Acetic Acid</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>HIS</td>
<td>Hyperimmune Serum</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>hv</td>
<td>Hypervariable</td>
</tr>
<tr>
<td>IBD</td>
<td>Infectious Bursa Disease</td>
</tr>
<tr>
<td>IBDV</td>
<td>Infectious Bursa Disease Virus</td>
</tr>
<tr>
<td>IFT</td>
<td>Immunofluorescent Test</td>
</tr>
<tr>
<td>Ig G</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IIPS</td>
<td>Indirect immunoperoxidase Staining</td>
</tr>
<tr>
<td>KCl</td>
<td>Kalium Chloride</td>
</tr>
</tbody>
</table>
kDa Kilodalton
ml Milliliter
mM Milimolar
NaOH Sodium Hydroxide
NCBI National Centre for Biotechnology Information
ng Nanogram
NJ Neighbour-Joining
nt Nucleotide
°C Degree Celcius
OD Optical Density
OK Ovine Kidney
ORF Open Reading Frame
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
pi Post Inoculation
pmol Picomole
RFLP Restriction Fragment Length Polymorphism
RNA Ribonucleic Acid
rpm Revolution Per Minute
RT Room Temperature
RT-PCR Reverse Transcriptase Polymerase Chain Reaction
SPF Specific Pathogen Free
TCID₅₀ Tissue Culture Infectivity Dose
UPGMA Un-Weighted Pair Group Method with Arithmetic Mean
UPM Universiti Putra Malaysia
UV Ultra-Violet
va Variant
vac Vaccine
Vero Green Monkey Kidney
VN Virus Neutralization
VP Viral Protein
vv Very Virulent
UPM 0081T Passage 10 of isolate UPM0081 in cell culture
UPM 93273T Passages of isolate UPM93273 in cell culture

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Single/Three Letter Amino Acid Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>A</td>
</tr>
<tr>
<td>Arginine</td>
<td>R</td>
</tr>
<tr>
<td>Asparagine</td>
<td>N</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>D</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Q</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>E</td>
</tr>
<tr>
<td>Glycine</td>
<td>G</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>I</td>
</tr>
<tr>
<td>Leucine</td>
<td>L</td>
</tr>
<tr>
<td>Lysine</td>
<td>K</td>
</tr>
<tr>
<td>Methionine</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>F</td>
</tr>
<tr>
<td>Proline</td>
<td>P</td>
</tr>
<tr>
<td>Serine</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>T</td>
</tr>
<tr>
<td>Typtophan</td>
<td>W</td>
</tr>
<tr>
<td>Valine</td>
<td>V</td>
</tr>
</tbody>
</table>
Infectious bursal disease (IBD) is caused by a birnavirus, infectious bursal disease virus (IBDV). IBD was first described by Cosgrove (1962). The first outbreak of the disease in 1957 was occurred around Gumboro, Delaware. Since then, the name Gumboro disease was used extensively in the past. However, clinical outbreak of the disease due to very virulent IBDV (vvIBDV) was only reported in Malaysia in 1991 (Hair-Bejo, 1992a; Loganathan et al., 1992). Infectious bursal disease is endemic in most poultry producing areas of the world, widespread in commercial chicken. The acute stage of the disease, the immunosuppression that follows, and the widespread distribution of the disease, are the major factors contributing to the economic significance. The virus is ubiquitous and under natural conditions, chickens acquire infection by the oral route.

The bursa of Fabricius is the primary site of virus replication, but lesions are also detected in the spleen, thymus, cecal tonsils and Harderian gland. The outcome of infection depends on the age of the bird and the virulence of the infecting strain. Infectious bursal disease can cause high mortality in young, susceptible chicks but in older birds effects are usually mild unless complicated by secondary bacterial or other viral infections. The acute phase of the disease lasts for about 7-10 days.
Within this phase, bursa follicles are depleted of B cells and the bursa becomes atrophic.

Infection with IBDV often results in immunosuppression. Allan et al. (1972) first reported the immunosuppressive nature of IBDV. The immunosuppressive effects appear to be more pronounced if virus exposure occurs within the first 2-3 weeks after hatched. The degree of immunosuppression varies depending on the virulence of the virus and, when the infection occurs. Immunosuppression may accompany overt clinical or subclinical outbreaks of IBD. The humoral immune response is clearly depressed, but a transient depression occurs in the cellular immune response (Confer et al., 1981).

IBDV is a member of the genus *Avibirnavirus* in the family *Birnaviridae*, member of this family contain a genome consists of two segments of double-stranded RNA (dsRNA), designated A and B (Dobos et al., 1979b; Muller et al., 1979b), with icosahedral symmetry and a diameter of about 50 to 55nm (Leong et al., 2000). The virus has five proteins recognized as VP1, VP2, VP3, VP4 and VP5. The smaller RNA segment known as segment B of the genome, with a length of about 2.8kb, encodes for VP1, which is a 90-kD multifunctional protein with polymerase and capping enzyme activities (Spies et al., 1987; Kibenge and Dhama, 1997). The larger segment A with a length of about 3.2kb, encodes for VP2, VP3, VP4 and VP5. The VP2 and VP3 are the major proteins of the virion constituting 51% and 40%, respectively of the total
proteins and contain the major neutralizing epitopes. The VP2 has the serotype specific epitope and VP3 has a group specific antigen. VP4 is a minor protein involved in the processing of the precursor polyprotein (Birghan et al., 2000).

There are two recognized serotypes of IBDV, designated 1 and 2. Viruses of both serotypes naturally infect chickens and turkeys, but the disease is recognized only in chickens and only serotype 1 viruses are pathogenic. Chicken is the only avian species to be susceptible to clinical disease and characteristic lesions caused by IBDV. It occurs as clinical or subclinical IBDV infection. According to antigenic variation and virulence, serotype 1 strains can be divided into several groups: classical, variant and very virulent strains (Winterfield and Thacker, 1978). Classical strains can cause mortality (<20%) and bursal lesions. It is able to break through a moderate level of maternal derived antibody. Variant strains do not express certain virus (neutralisation) epitopes typical for classical strains. It is able to break through higher levels of maternal derived antibody than classical strains causing an early IBDV infection with severe bursal damage (atrophy), resulting in immunosuppression, and, the mortality rate is less than 5%. Very virulent strains of IBDV emerged in Europe in the late eighties and spread throughout the world causing substantial economic losses. Very virulent strains are characterized by their ability to break through high level of maternally derived antibodies and to induce mortality more than 20%.