ANTIOXIDANTS FROM MALAYSIAN AGARWOOD (AQUILARIA SPP.) LEAF EXTRACTS AND THEIR APPLICATIONS IN IN VITRO MODEL AND FOOD SYSTEM

TAY PEI YIN

FK 2014 170
ANTIOXIDANTS FROM MALAYSIAN AGARWOOD (AQUILARIA SPP.) LEAVES EXTRACTS AND THEIR APPLICATIONS IN IN VITRO MODEL AND FOOD SYSTEM

By

TAY PEI YIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ANTIOXIDANTS FROM MALAYSIAN AGARWOOD (AQUILARIA SPP.) LEAVES EXTRACTS AND THEIR APPLICATIONS IN IN VITRO MODEL AND FOOD SYSTEM

By

TAY PEI YIN

August 2015

Chair : Tan Chin Ping, PhD
Faculty: Food Science and Technology

Agriculture by-products are undervalued substrates that are normally removed and disposed from the food production line. In this study, young leaves from three commercial species of Malaysian agarwood (Aquilaria malaccensis, Aquilaria subintegra and Aquilaria crassna) were examined. These are by-products from agarwood plantations and are usually discarded during the cultivation of agarwood trees. The first part of the present study assessed the effects of the ethanol concentration (0-100%) (v/v), solid-to-solvent ratio (1:10-1:60) (w/v) and extraction time (30-180 min) on the extraction of polyphenols from young agarwood leaves. The total phenolic content (TPC), total flavonoid content (TFC) and DPPH radical-scavenging capacity were used for the quantification of polyphenols, and assessment of antioxidant capacity. The appropriate ranges of the extraction parameters were determined through single-factor experiments, and the optimal conditions for polyphenol extraction were established through response surface methodology (RSM). Among the three species of young agarwood leaves, the extract from A. subintegra young leaves (ASE) obtained through extraction with 64.64% (v/v) ethanol and a solid-to-solvent ratio of 1:70 (w/v) for 120 min was selected for the second part of the study. The antioxidative interactions (synergy, additive and antagonism) between ethanolic ASE and α-tocopherol were evaluated through assays of the DPPH radical-scavenging activity, the β-carotene bleaching system and liposome peroxidation. Among all of the combinations of ASE and α-tocopherol, only fraction 1/3 showed a synergistic interaction, which agrees well with the results from three different assays. In the third part of this study, ASE was incorporated into soybean oil-based mayonnaise at a concentration of 1/3 relative to the tocopherol content to prevent its deterioration during storage. The peroxide value (POV), total oxidation value (TOTOX) and conjugated trienes (CT) of ASE-enriched mayonnaise were significantly (p < 0.05) lower than the negative control mayonnaise samples at the end of the storage period. The addition of ASE to mayonnaise presented comparable ability to protect against deterioration compared with the addition of the commercially available synthetic ethylenediaminetetraacetic acid (EDTA). ASE was further tested for its toxicity via brine shrimp lethality and hemolytic analyses. Low brine shrimp lethality and low
hemolytic activity with IC$_{50}$ values of 96.6 µg/mL and 1864.7 µg/mL against brine shrimp and human erythrocytes, respectively, were observed. In addition, the major bioactive compound in ASE, namely iriflophenone 3-C-β-glucoside (4.1%, w/w) with an IC$_{50}$ of 54.5 mg/L for scavenging DPPH radicals was identified and quantified based on 1D NMR, 2D-NMR, LC-MS and UV-vis spectral data. In summary, this study may serve as a reference for future natural polyphenol applications in the food industry.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENOROKAI ANTIOKSIDAN DARIPADA PRODUK SAMPINGAN TIGA SPESIS KOMERSIL GAHARU MALAYSIA DAN APLIKASI MEREKA DI DALAM MODEL IN VITRO DAN SISTEM MAKANAN

Oleh

TAY PEI YIN

Ogos 2015

Pengerusi: Profesor Tan Chin Ping, PhD
Fakulti : Sains dan Teknologi Makanan

Produk sampingan pertanian adalah substrat bernilai rendah yang biasanya dikeluarkan dan dibuang daripada proses pengeluaran makanan. Dalam kajian ini, daun muda daripada tiga spesis komersial gaharu Malaysia (Aquilaria malaccensis, Aquilaria subintegra and Aquilaria crassna) telah dikaji. Ia adalah produk sampingan daripada ladang gaharu dan biasanya dibuang semasa penanaman pokok gaharu. Bahagian pertama kajian ini adalah mengenai pengaruh kepekatan etanol (0-100%) (v/v), nisbah pepejal-pelarut (1:10-1:60) (w/v) dan masa pengekstrakan (30-180 min) kepada pengekstrakan polifenol daripada daun muda gaharu. Hasil fenolik (jumlah kandungan fenolik; TPC dan jumlah kandugan flavonoid; TFC) telah digunakan untuk penentuan dan kuantifikasi polifenol, dan kapasiti pengikatan radikal 2,2-diphenyl-1-picrilhydrazil (DPPH) telah dinilai untuk menentukan kapasiti antioksidan. Julat parameter pengekstrakan yang sesuai telah ditentukan dengan menggunakan eksperimen-faktor tunggal dan keadaan pengekstrakan yang optimum untuk pengekstrakan polifenol telah diperolehi dengan cara pengoptimuman melalui metodologi respon permukaan (RSM). Antara tiga spesis daun muda gaharu, ekstrak daripada daun muda A. subintegra (ASE) yang diperolehi dengan menggunakan 64.64% (v/v) etanol, 1:70 (w/v) pepejal-pelarut nisbah dan 120 min masa pengekstrakan telah dipilih untuk bahagian kedua kajian. Interaksi (sinergim tambahan dan antagonistik) antara ASE dan α-tokoferol telah dinilai dengan menggunakan kapasiti pengikatan radikal DPPH, sistem pelunturan β-karotena dan peroksidaan liposom. Di antara semua kombinasi ASE dan α-tokoferol, hanya pecahan 1/3 menunjukkan interaksi sinergim yang sesuai bagi tiga kaedah yang berbeza. Dalam bahagian ketiga kajian ini, ASE telah dimasukkan ke dalam mayones berasarkan minyak soya pada kepekatan 1/3 berbanding dengan kandungan tokoferol dalam minyak soya untuk mengelakkan kerosakan semasa penyimpanan. POV, TOTOX dan CT dari mayones disediakan dengan menggunakan ASE lebih rendah daripada sampel kawalan negatif pada akhir tempoh penyimpanan. Mayones yang disediakan dengan menggunakan ASE mempunyai kemampuan yang standing dengan asid atelindiamintetrasetik (EDTA) sintetik dalam melindungi mayones daripada kemerosotan. Seterusnya ketoksikan ASE telah diuji melalui analisis kadar kemautan
udang brin dan hemolitik. Kadar kemautan udang brin dan aktiviti hemolitik yang rendah dengan nilai IC\textsubscript{50} sebanyak 96.6 µg/mL dan 1864.7 µg/mL terhadap udang brin dan eritrosit manusia telah diperhatikan. Akhirnya, sebatian bioaktif yang utama dalam ASE telah dipencilkan dan diperolehi dengan menggunakan kromatografi turus (CC) and kromatografi lapisan nipis (TLC). Iriflophenone 3-C-β-glucoside telah dikenal pasti berdasarkan resonans magnet nukleus dan spektrometri jisim. Ia telah dikira sebagai polifenol utama (4.1%, w/w) di dalam ASE dengan nilai IC\textsubscript{50} sebanyak 54.5 mg/L dalam pengikatan radikal DPPH. Kesimpulannya, kajian ini boleh digunakan sebagai rujukan dalam aplikasi ekstrak polifenol semulajadi daripada gaharu dalam industri makanan.
ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank to my supervisor, Prof. Dr. Tan Chin Ping for his endless support, inspiring guidance, encouragement and valuable advice throughout this research. The completion of this journey is impossible without him. I am really appreciated especially for his unwearying effort and unflagging patience in reviewing, making corrections and providing constructive comments for my thesis and manuscripts. When I faced difficulties, he always encouraged me by telling me that it’s a learning process. He inspired me that the beautiful thing about learning is that nobody can take it away from you. Under his supervision, I learnt to work unremittingly, efficiently, and independently. Furthermore, I would like to extend my appreciation to my co-supervisors, Assoc. Prof. Dr. Faridah Abas and Assoc. Prof. Dr. Ho Chun Wai for their guidance during my research. Without all of their kind assistance, enthusiasm guidance and patience, its completion would be impossible.

Apart from that, I would like to extend my appreciation to all staffs involved in laboratories especially Ms. Suraya, Ms. Jamaliah, Ms. Rosmawati, Ms. Norhafiza and Mr. Azman for their technical assistance and guidance in various laboratory tasks. Moreover, many thanks to Mr. Salahudin for his technical assistance on the NMR instrument. Heartiest gratitude to all my lab mates, Sook Wah, Tai Boon, Phui Yee, Yih Phing, Shariffa, Biow Ing, Kok Ming, Shy Kai, Yu Hua, Ashikin and Sze Wei for creating an inspiring scientific and social environment with sincere friendships and supports.

I would also like to acknowledge the Ministry of High Education (MOHE) for the financial support through MyPhD scholarship, which supported me to achieve my academic goals.

Above all, a very warm thankfulness also goes to my beloved dad, mum, sisters and Chia Chin for their endless trust, support, encouragements and understandings during my study. Last but not least, sincere and deep thanks to all of them that contributed and helped this thesis to see the light at the end of the tunnel.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Tan Chin Ping, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Faridah Abas, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Ho Chun Wai, PhD
Associate Professor
Faculty of Applied Sciences
UCSI University
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Tay Pei Yin (GS 34050)
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Supervisory Committee: ___________________________ Name of Member of Supervisory Committee: ___________________________

Signature: ___________________________
Name of Member of Supervisory Committee: ___________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION BY GRADUATE STUDENTS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION BY MEMBERS OF SUPERVISORY COMMITTEE</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER I

INTRODUCTION

- Background: 1
- Scope and Objectives: 3

CHAPTER II

LITERATURE REVIEW

- Agarwood Plant Profile: 5
 - Overview: 5
 - Phytochemicals: 6
 - Medicinal Application: 7
 - Non-Medicinal Application: 7
 - Incense: 7
 - Perfume: 8
 - Other Applications: 8
- Antioxidants: 8
 - Antioxidants: 8
 - Free Radicals: 9
 - Antioxidant Activity: 11
 - Mechanism of Antioxidant Activity: 11
- Polyphenols: 12
 - Structures and Classification: 12
 - Flavonoids: 13
- Extraction of Bioactive Compounds: 14
 - Extraction Parameters: 14
 - Extraction Methods: 15
 - Solvent Systems: 15
 - Extraction Time and Temperature: 16
 - Particle Size: 16
 - Solid-to-Solvent ratio: 16
 - Review of Published Studies on Polyphenol Extraction: 17
 - Optimization Method: 19
 - Response Surface Methodology (RSM): 19
- Antioxidant Assays: 20
 - Antioxidant Compound Assays: 20
 - Total Phenolic Content (TPC) Assay: 21
Total Flavonoid Content (TFC) Assay 21
Assays of Antioxidant Capacity 22
2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Capacity Assay 23
Ferrous Iron-Chelating Activity Assay 24
Mechanism of Antioxidant Interaction 25
Synergism 25
Antagonism 27
Oxidation of Foods and Applications of Antioxidants 27
Mayonnaise 28
Isolation and Identification of Potent Antioxidant(s) 29
Liquid-Liquid Partition 29
Chromatography Methods 30
Conventional Column Chromatography (CCC) 32
Thin Layer Chromatography (TLC) 32
High Performance Liquid Chromatography (HPLC) 33
Structure Elucidation 34
Nuclear Magnetic Resonance (NMR) 34
Liquid Chromatography-Mass Spectrometry (LC-MS) 35
Ion Sources 36
Mass Analyzers 36

III

OPTIMIZATION OF POLYPHENOLS EXTRACTION FROM YOUNG LEAVES OF THREE COMMERCIAL SPECIES OF MALAYSIAN AGARWOOD
Introduction 37
Materials and Methods 38
Chemicals 38
Plant Materials 38
Sample preparation 38
Solvent Extraction 38
Experimental Design 39
Single Factor Experiments 39
Ethanol Concentration 39
Solid-to-Solvent Ratio 40
Extraction Time 40
Response Surface Methodology (RSM) 40
Optimization and Model Validation 41
Analytical Methods 42
Total Phenolic Content (TPC) 42
Total Flavonoid Content (TFC) 42
2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Capacity 42
Comparative study with reference antioxidants 43
Preparation of the IC₅₀ (50% Inhibitory Concentration) Curve for AME, ASE and ACE Antioxidants 43
Preparation of IC₅₀ Curve for Reference Antioxidants 43
Statistical Analysis 44
Results and Discussion 45
 Single Factor Experiments 45
 Ethanol Concentration 45
 Solid-to-Solvent Ratio 48
 Extraction Time 51
 Comparative Study with Reference Antioxidants 54
 Response Surface Methodology (RSM) Experiments 55
 Model Fittings 55
 Effects of Ethanol Concentration and Solid-to-
 Solvent Ratio 61
 Total Phenolic Content (TPC) 61
 Total Flavonoid Content (TFC) 64
 Optimization and Model Verification 67
 Comparative Study with Reference Antioxidants 68
 Comparative Study between Single Factor Experiment 69
 and RSM 69
Conclusions 69

IV
INTERACTION BETWEEN α-TOCOPHEROL AND
POLYPHENOL EXTRACT FROM A. SUBINTEGRA
BY USING IN VITRO ASSAY MODEL SYSTEM
Introduction 71
Materials and Methods 72
 Chemicals 72
 Plant Materials 72
 Preparing Aquilaria subintegra extract (ASE) 72
 Analytical Methods 73
 2,2′-Diphenyl-1-pierylhydrazyl (DPPH) Radical
 Scavenging Capacity 73
 β-Carotene Bleaching System 73
 Liposome Peroxidation 74
 Liposome Preparation 74
 Determining Lag Phase/Induction Period 74
 Isobolographic Analysis 75
 Statistical Analysis 75
Results and Discussion 75
 Antioxidant Activity of ASE and α-Tocopherol 75
 Radical Scavenging Activity of ASE Coupled with α-
 Tocopherol 76
 Oxidative Stability of Antioxidant Mixtures in
 Liposome System 79
Conclusions 81

V
ANTIOXIDANT ACTIVITY AND CHEMICAL
SAFETY OF POLYPHENOL FROM A. SUBINTEGRA
EXTRACT DURING MAYONNAISE STORAGE
Introduction 82
Materials and Methods 83
 Chemicals 83
 Materials 83
 Ferrous Iron-Chelating (FIC) Activity 83
Characterization of Soybean Oil 84
 Fatty Acid Composition Analysis by GC-FID 84
 Tocopherol Determination by HPLC 84
Preparation and Storage of Mayonnaise 84
Lipid Extraction from Mayonnaise 85
pH Measurement 85
Color Measurement 85
Microbiological Analysis 85
Oxidative Stability Analysis 86
Toxicity Study 86
 Brine shrimp (Artemia salina) Lethality Assay 86
 Hemolytic Assay 86
Statistical Analysis 87
Results and Discussion 87
 Ferrous Iron-Chelating (FIC) Activity 87
Characterization of Soybean Oil 88
Stability Evaluation of Mayonnaise during Storage 88
Physical Stability Analysis 88
Microbiological Analysis 89
Oxidative Stability Analysis 90
 Peroxide Value (POV) 90
 p-Anisidine Values 91
 Total Oxidation (TOTOX) Values 92
 Conjugated Dienes (CD) and Trienes (CT) 93
Toxicity Study 95
Conclusions 96

VI BIO-ASSAY GUIDED CHEMICAL INVESTIGATION OF POTENT ANTIOXIDANT 97
Introduction 97
Materials and Methods 97
 Chemicals 97
 Plant Materials 98
 Preparing Aquilaria subintegra Extract (ASE) 98
 Isolation and Purification 98
 Evaluating the Antioxidant Compounds and Activity of Fractions 99
 Total Flavonoid Content (TFC) 99
 DPPH Radical Scavenging Capacity 100
 Structural Elucidation of Bioactive Compound 100
 Nuclear Magnetic Resonance (NMR) 100
 Liquid Chromatography Mass Spectroscopy (LC-MS/MS) 100
 HPLC-DAD Quantification of Compound 1 100
Statistical Analysis 101
Results and Discussion 101
 Comparison of TFC and DPPH Radical Scavenging Capacity among Fractions 101
 Characterization of Compound 1 102
Conclusions 115
VII CONCLUSIONS AND RECOMMENDATIONS 116
Conclusions 116
Recommendations for Future Studies 117

REFERENCES 118
APPENDICES 143
BIODATA OF STUDENT 153
LIST OF PUBLICATIONS 154
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic steps of oxidation</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of polyphenols</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Classes of flavonoids and their corresponding compounds</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Extraction parameters for polyphenol extraction</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Antioxidant assays recently used for the quantification of polyphenols</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Antioxidant assays recently used to examine antioxidant activity</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Examples of the application of natural antioxidants in foods</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Recent chromatography techniques used in isolation and purification of bioactive compounds</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Independent variables and their levels employed in rotatable CCD</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>CCD for optimization of the extraction conditions for phenolic antioxidants from A. malaccensis, A. subintegra and A. crassna</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of IC50 values between AME, ASE, ACE and reference antioxidants (n=6)</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>CCD for optimizing the conditions for the extraction of polyphenols from agarwood (A. malaccensis) young leaves together with the experimental data (Expt.) and their predicted value (Pred.)</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>CCD for optimizing the conditions for the extraction of polyphenols from agarwood (A. subintegra) young leaves together with the Expt. and their Pred.</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>CCD for optimizing the conditions for the extraction of polyphenols from agarwood (A. crassna) young leaves together with the Expt. and their Pred.</td>
<td>58</td>
</tr>
<tr>
<td>3.7</td>
<td>Estimated regression coefficients of the full regression models for two response variables of AME, ASE and ACE (in coded values).</td>
<td>59</td>
</tr>
<tr>
<td>3.8</td>
<td>Estimated regression coefficients of the reduced regression models for two response variables of AME, ASE and ACE (in coded values)</td>
<td>60</td>
</tr>
</tbody>
</table>
3.9 Reduced regression models for three response variables of AME, ASE and ACE (in coded values) 61

3.10 Pred. and Expt. of the responses at the optimal extraction conditions 67

3.11 IC₅₀ values obtained from CPE from AME, ASE and ACE in comparison with the reference antioxidants (n=6) 68

4.1 Theoretical versus experimental values of antioxidant activity IC₅₀ (mg/L) of combination of ASE and α-tocopherol by using DPPH radical-scavenging assay 76

4.2 Theoretical versus experimental values of antioxidant activity IC₅₀ (mg/L) of the combination of ASE and α-tocopherol by using β-carotene bleaching assay 77

5.1 Changes of pH values in mayonnaise sample prepared by using EDTA (70 µg/g) and ASE (550 µg/g) during storage at 25 °C 89

5.2 Comparison of the color (L*, a* and b*) of mayonnaise sample prepared by using EDTA (70 µg/g) and ASE (550 µg/g) 89

5.3 Microbiological analysis of mayonnaise sample prepared by using EDTA (70 µg/g) and ASE (550 µg/g) during storage at 25 °C 90

6.1 Antioxidant compound and activities of four fractions from ASE as measured by TFC and DPPH assay, respectively. 102

6.2 ¹H NMR and ¹³C NMR spectral data of Compound 1 103

6.3 COSY correlations of Compound 1 104

6.4 Comparison of NMR shift of Compound 1 with values from the literature 105
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Distribution map of agarwood and the producing and importing/re-exporting countries.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Phenol.</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structures of (a) flavan-3-ol (b) flavones and (c) flavonol.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structures of (a) flavonoid and (b) flavonoid-aluminum complex.</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical structure of DPPH radical.</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Synergistic effects between antioxidants (α-tocopherol, quercetin and ascorbate) in the water-and-phospholipid interface.</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic of an HPLC instrument.</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of the ethanol concentration on the (a) TPC, (b) TFC and (c) DPPH radical scavenging activity of AME (), ASE () and ACE () (n=6).</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of the solid-to-solvent ratio on the (a) TPC, (b) TFC and (c) DPPH radical scavenging activity of AME (), ASE () and ACE () (n=6).</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of the extraction time on the (a) TPC, (b) TFC and (c) DPPH radical scavenging activity of AME (), ASE () and ACE () (n=6).</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Response surface plot corresponding to the TPC of three agarwood species ((a) AME (b) ASE and (c) ACE) as a function of the ethanol concentration and the solid-to-solvent ratio at a constant extraction time (30 min).</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>Response surface plot corresponding to the TFC of three agarwood species ((a) AME (b) ASE and (c) ACE) as a function of the ethanol concentration and the solid-to-solvent ratio at a constant extraction time (30 min).</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Calculation of induction period from the spectrophotometric determination of conjugated dienes in CE protected soybean phosphatidyl choline liposomes.</td>
<td>74</td>
</tr>
</tbody>
</table>
4.2 Isobolographic representation of the interaction between experimentally measured CE and α-tocopherol by using DPPH radical-scavenging assay (a) and β carotene bleaching assay (b).

4.3 Induction period measured by spectrophotometric measurement of conjugated dienes at in soybean phosphatidyl choline liposomes with different concentrations of CE. Experimental values are presented as means ± SD.

4.4 Induction period (min) for ASE (□), α-tocopherol (■) and their combinations (△). The sum of the lag phase of individual antioxidant (ASE or α-tocopherol) was calculated theoretically. F 1/5 refers to the amount of ASE (1/5) to α-tocopherol (4/5) in the binary mixture. *Means that there is significant difference (p<0.05) between the lag phase of combination and the sum of individual antioxidant.

5.1 Changes of POV in mayonnaise samples prepared by using EDTA (70 µg/g) and ASE (550 µg/g) during storage at 25 °C.

5.2 Changes of p-anisidine values in mayonnaise samples prepared by using EDTA (70 µg/g) and ASE (550 µg/g) during storage at 25 °C.

5.3 Changes of TOTOX values in mayonnaise samples prepared by using EDTA (70 µg/g) and ASE (550 µg/g) during storage at 25 °C.

5.4 Changes of CD (a) and CT (b) in mayonnaise samples prepared by using EDTA (70 µg/g) and ASE (550 µg/g) during storage at 25 °C.

5.5 Percentage of hemolysis in different concentrations of ASE. Different letters indicate significance at a 95% level.

6.1 Flow chart of isolation and purification of Compound 1.

6.2 1H NMR spectrum of iriflophone-3-C-β-glucoside.

6.3 1H NMR spectrum of iriflophone-3-C-β-glucoside (Expansion).

6.4 13C NMR spectrum of iriflophone-3-C-β-glucoside.

6.5 COSY spectrum of iriflophone-3-C-β-glucoside.

6.6 HSQC spectrum of iriflophone-3-C-β-glucoside.

6.7 HSQC spectrum of iriflophone-3-C-β-glucoside (Expansion).
6.8 HMBC spectrum of iriflophone-3-C-β-glucoside. 112
6.9 HMBC spectrum of iriflophone-3-C-β-glucoside (Expansion). 113
6.10 LC-MS spectrum of iriflophone-3-C-β-glucoside. 114
6.11 UV-vis spectrum of iriflophone-3-C-β-glucoside. 114
LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 (\text{ArOH} + R^* \rightarrow \text{ArO}^* + \text{RH})</td>
<td>11</td>
</tr>
<tr>
<td>2.2 (\text{ArOH} + R^* \rightarrow \text{ArOH}^+ + \text{R}^-)</td>
<td>11</td>
</tr>
<tr>
<td>2.3 (y = f(x_1, x_2, \ldots, x_n) + \epsilon)</td>
<td>19</td>
</tr>
<tr>
<td>2.4 (\text{DPPH} + \text{AH} \rightarrow \text{DPPH-H} + \text{A}) Purple Yellow</td>
<td>23</td>
</tr>
<tr>
<td>2.5 (\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{OH}^-)</td>
<td>24</td>
</tr>
<tr>
<td>3.1 Scavenging activity (%) = ([1 - (A_s/A_c)] \times 100%)</td>
<td>43</td>
</tr>
<tr>
<td>3.2 (Y = \beta_0 + \sum \beta_i X_i + \sum \Sigma \beta_{ij} X_i X_j)</td>
<td>44</td>
</tr>
<tr>
<td>4.1 BCB inhibition capacity (%) = ([(\text{DR}_c - \text{DR}_s)/\text{DR}_c] \times 100%)</td>
<td>73</td>
</tr>
<tr>
<td>4.2 (\text{DR}_c \text{ or } \text{DR}_s = \ln (a/b)/120)</td>
<td>73</td>
</tr>
<tr>
<td>4.3 (\text{ROO}^* + \alpha\text{-tocopherol} \rightarrow \text{ROOH} + \text{TO})</td>
<td>79</td>
</tr>
<tr>
<td>5.1 FIC activity (%) = ([1 - (A_s/A_c)] \times 100%)</td>
<td>83</td>
</tr>
<tr>
<td>5.2 Mortality (%) = ((N_d/N_i) \times 100%)</td>
<td>86</td>
</tr>
<tr>
<td>5.3 Hemolysis (%) = ([(A_s - A_{nc})/(A_{pc} - A_{nc})] \times 100%)</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>redness</td>
</tr>
<tr>
<td>AAPH</td>
<td>2,2′ azobis (2-aminopropane) dihydrochloride</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)</td>
</tr>
<tr>
<td>A. crassna</td>
<td>Aquilaria crassna</td>
</tr>
<tr>
<td>ACE</td>
<td>Aquilaria crassna extract</td>
</tr>
<tr>
<td>A. malaccensis</td>
<td>Aquilaria malaccensis</td>
</tr>
<tr>
<td>AME</td>
<td>Aquilaria malaccensis extract</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AR</td>
<td>analytical reagent</td>
</tr>
<tr>
<td>ArO•</td>
<td>aroxy radical</td>
</tr>
<tr>
<td>ArOH</td>
<td>antioxidant</td>
</tr>
<tr>
<td>ASE</td>
<td>Aquilaria subintegra extract</td>
</tr>
<tr>
<td>AOCS</td>
<td>American Oil Chemists’ Society</td>
</tr>
<tr>
<td>APCI</td>
<td>Atmospheric pressure chemical ionization</td>
</tr>
<tr>
<td>b*</td>
<td>yellowness</td>
</tr>
<tr>
<td>BCB</td>
<td>β-carotene bleaching</td>
</tr>
<tr>
<td>BHA</td>
<td>butylated hydroxyanisole</td>
</tr>
<tr>
<td>BHT</td>
<td>butylated hydroxytoluene</td>
</tr>
<tr>
<td>C</td>
<td>carbon-13</td>
</tr>
<tr>
<td>CAT</td>
<td>catalase</td>
</tr>
<tr>
<td>CCC</td>
<td>conventional column chromatography</td>
</tr>
<tr>
<td>CCD</td>
<td>central composite design</td>
</tr>
<tr>
<td>CD</td>
<td>conjugated dienes</td>
</tr>
<tr>
<td>CD₃OD</td>
<td>deuterated methanol</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>CT</td>
<td>conjugated trienes</td>
</tr>
<tr>
<td>CTC</td>
<td>condensed tannins content</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient variation</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet doublet</td>
</tr>
<tr>
<td>1D</td>
<td>one dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>two dimensional</td>
</tr>
<tr>
<td>DAD</td>
<td>diode array detector</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2′-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>DPPH-H</td>
<td>1,1-diphenyl-2-picryl hydrazine</td>
</tr>
<tr>
<td>DW</td>
<td>dry weight</td>
</tr>
</tbody>
</table>

xxi
E
E⁰ reduction potential
EDTA ethylenediaminetetra-acetic acid
ESI electrospray ion source
Expt. experimental data

F
FAME fatty acid methyl esters
FC folin-Ciocalteu
FIC ferrous iron-chelating
FID flame ionization detector
FRAP ferric ion reducing antioxidant power
FTIR fourier transform infrared
F-value statistical significance

G
GAE gallic acid equivalent
GC gas chromatography
GC-MS gas chromatography mass spectrometry
GPx glutathione peroxidase
GR glutathione reductase
GRAS generally recognized as safe
GSH glutathione

H
¹H proton
H₂O water
H₂SO₄ sulphuric acid
HAT hydrogen atom transfer
HMBC heteronuclear multiple bond correlation
HO• hydroxyl radical
H₂O₂ hydrogen peroxide
HO₂• perhydroxyl radical
HPLC high performance liquid chromatography
HSQC heteronuclear single quantum coherence

I
IC₅₀ 50% inhibitory concentration

J
J coupling constant

L
L* lightness
LC liquid chromatography
LC₅₀ 50% lethality concentration
LC-MS liquid chromatography mass spectrometry
LDL low density lipoproteins
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>Meq</td>
<td>milliequivalents of peroxide per kilogram</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysia palm oil board</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acids</td>
</tr>
<tr>
<td>N</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO•</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>O</td>
<td>superoxide anion</td>
</tr>
<tr>
<td>O$_2$•</td>
<td>hydroxyl group</td>
</tr>
<tr>
<td>-OH</td>
<td>hydroxyl group</td>
</tr>
<tr>
<td>ORAC</td>
<td>oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>O/W</td>
<td>oil-in-water</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PCA</td>
<td>plate count agar</td>
</tr>
<tr>
<td>PDA</td>
<td>photodiode array/potato dextrose agar</td>
</tr>
<tr>
<td>PG</td>
<td>propyl gallate</td>
</tr>
<tr>
<td>PORIM</td>
<td>palm oil research institute of Malaysia</td>
</tr>
<tr>
<td>POV</td>
<td>peroxide values</td>
</tr>
<tr>
<td>PPO</td>
<td>enzyme polyphenol oxidase</td>
</tr>
<tr>
<td>Pred.</td>
<td>predicted value</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acid</td>
</tr>
<tr>
<td>Q</td>
<td>quercetin equivalent</td>
</tr>
<tr>
<td>R</td>
<td>free radical</td>
</tr>
<tr>
<td>R2</td>
<td>coefficient of determination</td>
</tr>
<tr>
<td>R$_r$</td>
<td>retention factor</td>
</tr>
<tr>
<td>RNS</td>
<td>reactive nitrogen species</td>
</tr>
<tr>
<td>RO•</td>
<td>alkoxyl radicals</td>
</tr>
<tr>
<td>ROO•</td>
<td>peroxy radical</td>
</tr>
<tr>
<td>ROOH</td>
<td>lipid hydroperoxide</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RSM</td>
<td>response surface methodology</td>
</tr>
<tr>
<td>S</td>
<td>singlet</td>
</tr>
<tr>
<td>s</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SET</td>
<td>single electron transfer</td>
</tr>
<tr>
<td>SOD</td>
<td>dismutase superoxide</td>
</tr>
</tbody>
</table>

| T | total anthocyanin content |

xxiii
TBA thiobarbituric acid
TBHQ tertbutyl hydroquinone
TFA total flavanol assay
TFC total flavonoid content
TLC thin layer chromatography
TMS tetramethylsilane
TO• α-tocopheroxyl radical
TOTOX total oxidation values
TPC total phenolic content
TRAP total radical trapping antioxidant parameter
TVC total viable counts

U
UV-Vis ultraviolet-visible

X
X₁ linear coefficients
X₂ linear coefficients
X₁² quadratic coefficients
X₂² quadratic coefficients
X₁X₂ interaction coefficient

Y
Yₙ response variables
CHAPTER I

INTRODUCTION

Background

The health deterioration information is currently widespread, and the awareness of health problems is increasing. One of the crucial substances that cause problems to human health is free radicals. Free radicals are essential for human immune system responses and are produced in normal cell metabolism or physiological processes that utilize oxygen (Kalaivani & Mathew, 2010). However, the uncontrolled production of oxygen-derived free radicals leads to diseases, such as cancer, rheumatoid arthritis, cirrhosis and degenerative processes associated with aging (Tachakittirungrod, Ikegami, & Okonogi, 2007). Therefore, free radicals have been justified as harmful when they react with important cellular components, such as proteins, DNA and the cell membrane (Mantena, et al., 2008).

Other than health deterioration, free radicals have negative impacts in the food industry, including the induction of lipid oxidation by reacting with food lipids (Chan, Lee, Yap, Wan Aida, & Ho, 2009). Hence, to prolong the storage life of foods and to diminish damage to the human body, synthetic antioxidants, such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), are added to fresh or processed foods (Soong & Barlow, 2004). Nevertheless, a decline in the use of synthetic antioxidants has been observed due to their possible toxic and carcinogenic effects (Arabshahi-Delouee & Urooj, 2007). In some countries, such as Japan, Canada and Europe, BHA and tert-butylhydroquinone (TBHQ) are prohibited. Thus, the use of natural antioxidants that not only are low in toxicity but also possess pronounced antioxidant activity is encouraged in this health-conscious society.

Today, there are increased lines of evidence suggesting that phytochemicals from natural plant sources possess antioxidant properties associated with a lower risk of mortality from many diseases (Dixon, Xie, & Sharma, 2005; Rice-Evans, 2004). The first marketed natural antioxidant was rosemary extract, which was found to have antioxidant activity as effective as that of synthetic antioxidants (Martínez, Penci, Ixaina, Ribotta, & Maestri, 2013). In addition, bamboo leaf extracts have been approved as a natural food additive by the Ministry of Health in China (Zhang, Jiao, Liu, Wu, & Zhang, 2008). The antioxidant properties of plant extracts are mainly attributed to the presence of polyphenols. Polyphenols of plants are hydroxylated derivatives of benzoic acid and cinnamic acids and have been reported to exert antioxidative and anticarcinogenic effects (Muanda, Kone, Dicko, Soulimani, & Younos, 2011).
Agarwood was recently categorized as one of the seven types of herbs that obtained approval from Terengganu to be developed into a high-value herbal plantation on 461 hectares of land in Pasir Raja, Terengganu (ETP 2011). In the last ten years, 1000 hectares of agarwood have been planted in Malaysia, as reported by Barden, Noordainie, Mullihan, and Song (2000). Malaysia is the third largest exporter in the world after India and Indonesia, and more than 200 products that contain Aquilaria are currently registered with the Ministry of Health (Lim & Noorainie, 2010). As a consequence, the widely available agarwood assures the availability of easy accessible and sustainable sources of its by-product, namely young leaves. Agarwood leaves were prepared as tea and used traditionally for the treatment of trauma-related illness. It has also been reported to have analgesic, anti-inflammatory, laxative and anti-diabetics activities (Zhou, Wang, Suolangjiba, Kou, & Yu, 2008). As a result, a comprehensive exploration of the young agarwood leaf would be an interesting research topic.

Solvent extraction is a common and popular approach used to obtain desired nutrients and nutraceuticals from plant materials (Gupta, Naraniwal, & Kothari, 2012). However, the extraction of bioactive compounds is complicated by the complexity of bioactive compounds and plant matrices. An effective solvent extraction system is a good way to achieve cost efficiency and economic feasibility in an industrial process. Various novel extraction techniques and parameters have been developed; however, there is no universal standardized optimal extraction condition for achieving maximal yields of antioxidant compounds and activity in different plants. Consequently, a systematic study of the efficiency of solvent extraction from young agarwood leaves to obtain polyphenols with high antioxidant activity at a reduced production cost is essential.

The application of natural antioxidants has not been widely adopted by the food industries due to their undesirable flavor, color, aroma, and, most importantly, higher production cost, which may not be affordable compared with conventional food processing. The addition of exogenous antioxidants from extracts to a food system may interact with each other or with the endogenous antioxidants present in the food, resulting in different overall effects as expected. Therefore, it is of special interest to search for synergistic combinations of natural antioxidants that would enhance the expected pronounced antioxidant effects and eventually reduce the production cost in the food industry. In general, the antioxidants present in plant extracts in various combinations and their interactions are found to be important for their overall effect. The interactions between these bioactive compounds have been categorized as synergistic, additive and antagonistic interactions. Synergism is defined as an interaction that exerts a larger overall effect compared with the effect expected from the simple addition of the effects of the individual bioactive compounds (Uri, 1961). To achieve synergism, the types of compounds, their concentration and the ratios at which they are mixed play important roles (Schwarz, Frankel, & German, 1996). For example, Thoo, et al. (2013) reported that polyphenols work synergistically with α-tocopherol when mixes at a 2:1 ratio via the regeneration of α-tocopherol by polyphenols to provide long-lasting tocopherol.

In food processing, lipid oxidation is the major cause of food quality deterioration, including flavor, texture, aroma and nutritional value (Li, Kim, Li, Lee, & Rhee, 2014). Lipid oxidation is initiated in unsaturated fatty acids and causes the formation of hydroperoxides, which are susceptible to decomposition and results in the formation of
secondary reaction products, such as aldehydes, ketones, acids and alcohols (Kolakowska, 2003). These compounds are responsible for changes in the overall food quality. Mayonnaise is a semi-solid oil-in-water (O/W) emulsion with a high content of polyunsaturated fatty acids (PUFAs), which are very susceptible to oxidation (Alamed, McClements, & Decker, 2006). The oxidation in mayonnaise can be reduced by applying antioxidant agents to retard spoilage, extent shelf life and maintain quality and safety (Devatkal & Naveena, 2010). However, the study and use of natural herb extracts as natural food additives in mayonnaise has been limited. Therefore, the development of natural antioxidant-enriched mayonnaise is encouraged.

Over the last few decades, the methodologies used in the research of natural products have evolved significantly. Older methodologies or strategies, such as chemotaxonomic investigation, focused on the chemistry of compounds instead of their activity, and hence, chemical compounds with no activity were always identified from natural sources (Sarker, Latif, & Gray, 2006). In recent years, the isolation and identification of natural products were mainly based on biological activity testing. It is known that young agarwood leaf is an abundant source of antioxidants, and thus, it was interesting to isolate and identify the major constituents that contribute to its antioxidant activity using a bioassay-guided isolation technique. Moreover, an adequate understanding of the chemical components, chemical natures, solubility and glycosylation positions may provide consistent functional food applications (Ito, et al., 2012).

Scope and Objectives

The first part of present study undertakes a systematic optimization of the solvent extraction of polyphenols from young A. malaccensis, A. subintegra and A. crassna leaves using single-factor experiments and response surface methodology (RSM) to gain a better understanding of the effects of the ethanol concentration, solid-to-solvent ratio and extraction time on the yield of polyphenols and the antioxidant capacity. After obtaining the maximal yields and antioxidant capacities of the extracts, the antioxidant properties of the extracts from three agarwood species were compared, and one species was selected for further study. The second part describes the effects of the interaction between agarwood extracts and α-tocopherol on the antioxidant properties in various in vitro model systems. The combination ratio of extracts and α-tocopherol that exhibited synergism in all of the model systems was used for the subsequent study described in Chapter V, which aimed to evaluate the capability of the extracts to inhibit lipid oxidation in a mayonnaise food system during eight weeks of storage. The toxicological risks of the extracts were evaluated before the incorporation of the extract into mayonnaise. The last part elucidates the structure of the potent antioxidant(s) in the extracts that were found to contribute to their antioxidant capacity using a detailed bioassay-guided isolation protocol.
The main objectives of this research study were:

1. to extract bioactive compounds (polyphenols) from young *A. malaccensis*, *A. subintegra* and *A. crassna* leaves (Chapter III);

2. to evaluate the synergism of the isolated antioxidant with α-tocopherol in *in vitro* model systems (Chapter IV);

3. to study their toxicological risks and ability to inhibit lipid oxidation in mayonnaise (Chapter V); and

4. to identify the major bioactive compound in the extracts (Chapter VI).
characterization of more bioactive compounds with pronounced biological activities present in young agarwood leaf extracts may be useful for their application in the nutraceutical and pharmaceutical industries.

REFERENCES

Bettaieb Rebey, I., Bourgou, S., Ben Slimen Debez, I., Jabri Karoui, I., Hamrouni Sellami, I., Msaada, K., Limam, F., & Marzouk, B. (2012). Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (*Cuminum cyminum L.*) seeds. *Food and Bioprocess Technology, 5*, 2827-2836.

Kalaivani, T., & Mathew, L. (2010). Free radical scavenging activity from leaves of Acacia nilotica (L.) Wild. ex Delile, an Indian medicinal tree. *Food and Chemical Toxicology, 48,* 298-305.

Laranjinha, J., Vieira, O., amp, x, lia, Madeira, V., amp, x, tor, & Almeida, L. (1995). Two related phenolic antioxidants with opposite effects on vitamin e content in low density lipoproteins oxidized by ferrylmyoglobin: Consumption vs regeneration. *Archives of Biochemistry and Biophysics, 323*, 373-381.

134

Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: a review. *Food and Bioprocess Technology, 5*, 409-424.

Thoo, Y. Y., Ho, S. K., Liang, J. Y., Ho, C. W., & Tan, C. P. (2010). Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (*Morinda citrifolia*). *Food Chemistry, 120*, 290-295.

sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28, 279-285.

140

APPENDICES

A1: Calibration curves for gallic acid for determination of TPC.

\[y = 0.0039x + 0.0638 \]
\[R^2 = 0.9966 \]

A2: Calibration curves for quercetin for determination of TFC.

\[y = 0.0031x - 0.0723 \]
\[R^2 = 0.9927 \]
A3: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of AME obtained at optimum extraction condition by using single factor experiment.

\[
y = 1.5533x + 2.4904 \\
R^2 = 0.9989
\]

\[
\begin{array}{c|c|c|c|c|c|c|c}
\hline
\text{Concentration (mg/L)} & 0 & 10 & 20 & 30 & 40 & 50 \\
\hline
\text{% Scavenging Activity} & 0 & 10 & 20 & 30 & 40 & 50 \\
\hline
\end{array}
\]

A4: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of ASE obtained at optimum extraction condition by using single factor experiment.

\[
y = 1.6115x + 2.1661 \\
R^2 = 0.9981
\]

\[
\begin{array}{c|c|c|c|c|c|c|c}
\hline
\text{Concentration (mg/L)} & 0 & 10 & 20 & 30 & 40 & 50 \\
\hline
\text{% Scavenging Activity} & 0 & 10 & 20 & 30 & 40 & 50 \\
\hline
\end{array}
\]
A5: IC₅₀ curves of DPPH % scavenging activity versus concentration of ACE obtained at optimum extraction condition by using single factor experiment.

\[y = 1.6328x + 1.8848 \]
\[R^2 = 0.9994 \]

A6: IC₅₀ curves of DPPH % scavenging activity versus concentration of AME obtained at optimum extraction condition by using RSM.

\[y = 1.3287x + 1.5234 \]
\[R^2 = 0.9998 \]
A7: IC₅₀ curves of DPPH % scavenging activity versus concentration of ASE obtained at optimum extraction condition by using RSM.

\[
y = 1.5364x + 2.3079
\]
\[
R^2 = 0.9996
\]

A8: IC₅₀ curves of DPPH % scavenging activity versus concentration of ACE obtained at optimum extraction condition by using RSM.

\[
y = 1.5267x + 1.8972
\]
\[
R^2 = 0.9996
\]
A9: IC₅₀ curves of DPPH % scavenging activity versus concentration of ascorbic acid.

\[y = 2.1785x + 21.89 \]
\[R^2 = 0.9996 \]

A10: IC₅₀ curves of DPPH % scavenging activity versus concentration of α-tocopherol.

\[y = 3.8585x - 2.664 \]
\[R^2 = 0.9978 \]
A11: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of (+)-catechin hydrate.

\[y = 3.8619x + 5.9742 \]
\[R^2 = 0.9953 \]

A12: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of BHA.

\[y = 3.2021x + 7.1275 \]
\[R^2 = 0.9963 \]
A13: Color of mayonnaises

A14: Yield of *Aquilaria subintegra* young leaves extracted from different solvent fractions.

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Yield of samples (g)</th>
<th>Recovery rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>1.7822</td>
<td>2.31</td>
</tr>
<tr>
<td>Chloroform</td>
<td>3.7520</td>
<td>4.86</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>7.0238</td>
<td>9.09</td>
</tr>
<tr>
<td>Water</td>
<td>59.3425</td>
<td>76.82</td>
</tr>
<tr>
<td>Total</td>
<td>71.9005</td>
<td>93.07</td>
</tr>
</tbody>
</table>

Total weight of the sample before liquid-liquid extraction = 77.2529 g
A15: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of hexane fraction.

\[y = 0.3054x - 0.297 \]
\[R^2 = 0.9988 \]

A16: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of chloroform fraction.

\[y = 0.1664x + 1.185 \]
\[R^2 = 0.9912 \]
A17: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of ethyl acetate fraction.

\[y = 0.6485x + 1.4752 \]
\[R^2 = 0.9931 \]

A18: IC$_{50}$ curves of DPPH % scavenging activity versus concentration of water fraction.

\[y = 0.3308x + 6.8442 \]
\[R^2 = 0.9963 \]
A19: HPLC chromatogram of iriflopheone-3-C-β-glucoside.

A20: IC₅₀ curves of DPPH % scavenging activity versus concentration of Compound 1.

\[y = 0.895x + 1.1321 \]
\[R^2 = 0.9981 \]
BIODATA OF STUDENT

Tay Pei Yin was born on 17th February 1989 and raised in a small town, Muar in a state of Johor. She comes from a family of six and is the second daughter to her parents. She completed her primary and secondary school education at SJK(C) Chung Hwa Presbyterian and Chung Hwa High School, respectively.

After graduating from secondary school, she enrolled UCSI University in the subsequent year and successfully completed with First Class Honours in Bachelor of Science in Food Science and Technology in 2011. Her honour thesis entitled “Effects of ethanol concentration, solid-to-solvent ratio and extraction time on antioxidant properties of gaharu (Aquilaria crassna) young shoots (3.0mm)” was presented in August 2011 under the supervision of Assoc. Prof. Dr. Ho Chun Wai.

After the graduation, she had worked as a research assistant at the Faculty of Applied Sciences, UCSI for one year. In September 2012, she entered Universiti Putra Malaysia (UPM) as a PhD candidate under the supervision of Prof. Dr. Tan Chin Ping. As indicated in the present thesis, the principle objectives of her project were to extract the polyphenols from three commercial species of Malaysian agarwood by-product, followed by the evaluation of antioxidant synergism with α-tocopherol in various in vitro model system and its ability to inhibit lipid peroxidation in mayonnaise, as well as the identification and quantification of the major polyphenol constituent presented in agarwood by-product.
LIST OF PUBLICATIONS

3. Tay, P. Y., Tan, C. P., Abas, F., Yim, H. S., and Ho, C. W. (In preparation). Effects of binary solvent extraction system, solid-to-solvent ratio, and extraction time on polyphenol content, antioxidant capacity, epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and iriflophenone 3-C-β-glucoside from agarwood (Aquilaria subintegra) young leaves.

