UNIVERSITI PUTRA MALAYSIA

THERAPEUTIC EFFECTS OF Cosmos caudatus Kunth LEAF EXTRACT IN THE PREVENTION AND TREATMENT OF OBESITY IN SPRAGUE DAWLEY RATS

HAFEEDZA BINTI ABDUL RAHMAN

FSTM 2015 25
THERAPEUTIC EFFECTS OF *Cosmos caudatus* Kunth LEAF EXTRACT IN THE PREVENTION AND TREATMENT OF OBESITY IN SPRAGUE DAWLEY RATS

By

HAFEEDZA BINTI ABDUL RAHMAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia, in fulfillment of the requirement for the degree of Doctor of Philosophy

THERAPEUTIC EFFECTS OF *Cosmos caudatus* Kunth LEAF EXTRACT IN THE PREVENTION AND TREATMENT OF OBESITY IN SPRAGUE DAWLEY RATS

By

HAFEEDZA BINTI ABDUL RAHMAN

May 2015

Chairman: Prof. Azizah Abdul Hamid, PhD
Faculty: Food Science and Technology

Obesity is a common nutritional disorder that has become one of the most important health issues of modern society around the world. Accumulating studies have shown that various herbs can be good sources of potent antioxidants. However, little information is available on the anti-obesity potential of these herbs. Preliminary study was carried out to investigate the anti-obesity and antioxidant activity of 8 common herbs, namely *Cosmos caudatus*, *Pluchea indica*, *Lawsonia inermis*, *Carica papaya*, *Piper betle*, *Andrographis paniculata*, *Pereskia bleo* and *Melicope lunu*. Anti-obesity activity was assessed using inhibition of pancreatic lipase (PL) and lipoprotein lipase (LPL) activity whereas antioxidant activity was measured using free radical DPPH (2,2-diphenyl-2-picrylhydrazyl) scavenging activity. Results of the preliminary study revealed that *C. caudatus* exhibited good anti-obesity activity as well as excellent antioxidant activity. Therefore, *C. caudatus* was selected for further study by extraction with different concentrations of ethanol (100%, 80%, 60%, 50% and 40%). Hundred percent ethanol extracts of *C. caudatus* showed highest activity in both anti-obesity (21.8±1.5% and 19.9±1.1% in pancreatic and lipoprotein lipase assay) and antioxidant activity (24.9±1.1 µg/mL) with total phenolic content of 865.8±5.0 mg GAE/g extract and total flavonoid content of 398.8±34.8 mg RE/g extract compared to that of other extracts. Strong positive correlation between antioxidant activity (DPPH) and both phenolic (r = 0.708) and flavonoid (r = 0.766) content was observed. The same trend existed between anti-obesity (PL and LPL) and that of phenolic (r = 0.935, 0.845) and flavonoid (r = 0.945, 0.835) compounds respectively. The extract consisted of various flavonoids (quercetin, quercitrin, catechin, epicatechin, kaempferol, rutin, and chlorogenic acid) as identified by nuclear magnetic resonance (NMR), liquid chromatography mass spectroscopy (LC-MS), and high performance liquid chromatography (HPLC). Based on the results obtained, 100% ethanol extract of *C. caudatus* was further assessed for the preventive and therapeutic effects of...
obesity in vivo. In the preventive study, C. caudatus extract (175 mg/kg and 350 mg/kg body weight) was given to the lean Sprague dawley rats fed with high fat diet (HFD) for 11 weeks whereas in the treatment study, obese rats were treated with C. caudatus extract (200 mg/kg and 400 mg/kg body weight) for 9 weeks. In the preventive study, the extracts significantly suppressed the increase in body weight gain by 33.0 - 42.5% and percentage of abdominal fat by 33.0 - 42.0% when compared to that of control HFD group. However, it failed to reduce the weight and percentage of abdominal fat in HFD induced obese rats. Nevertheless, for both experiments the extract significantly suppressed the increase of plasma triglycerides, total cholesterol, LDL, insulin and leptin level. In addition, plasma ghrelin and adiponectin levels were increased. The extract also increased the fecal excretion of fat in rats (96.9±10.5 - 114.6±9.3 mg/g in preventive study and 87.7±10.0 - 124.6±20.2 mg/g in treatment study) when compared to that of control HFD groups (55.4±6.6 - 58.2±2.6 mg/g) respectively, suggesting that C. caudatus reduces the progression of obesity by inhibiting pancreatic lipase, leading to malabsorption of fat, validating the in-vitro results obtained in first part of the study. In the final part of the study, both urine and serum metabolites of rats were analyzed using (NMR) spectroscopy and multivariate data analysis (MVDA). Lean and obese rats were clearly discriminated from each other on Orthogonal partial least square (OPLS-DA) score plot proving the ability of the high fat diet used in inducing obesity. Metabolites associated with lipid, tricarboxylic acid cycle (TCA), glucose, amino acid, creatine and gut microbiota metabolism were found to be responsible for the discrimination observed. Interestingly, the therapeutic effects of C. caudatus extracts, specifically the low dose (200 mg/kg) were found to be better than that of Orlistat, based on the fact that the metabolic profiles of C. Caudatus treated groups were very similar to that of normal group. Betaine, succinate, 3-hydroxybutyrate, creatine, glycine, N-acetylglycine, pyruvate and glutamine were significantly increased/decreased towards the normal level. Finally, partial least square analysis (PLS-DA) showed that the obese group moved away from the position of lean group and after 9 weeks of treatment both treated groups were regulated back closer towards their healthy baseline levels, confirming the therapeutic effects of the extracts obtained from biochemical assays measured in the previous chapter. This study showed the anti-obesity effects of C. caudatus through inhibition of lipase activity as demonstrated by the increase in fecal fat content and also the positive effects on other obesity biomarkers measured. It also successfully demonstrated the ability of NMR based metabolomics in unraveling therapeutic effects of C. caudatus and further provides biochemical insights into the metabolic alterations associated with obesity. Results of the study suggest that C. caudatus has potential as a natural supplement or functional ingredient for the prevention and treatment of obesity.
Obesiti adalah gangguan pemakanan biasa yang telah menjadi salah satu isu kesihatan yang paling penting dalam masyarakat moden di seluruh dunia. Kajian terkumpul telah menunjukkan bahawa pelbagai herba boleh menjadi sumber antioksidan yang baik. Walau bagaimanapun, hanya sedikit maklumat didapati pada potensi anti-obesiti herba ini. Kajian awal telah dijalankan untuk menyiasat aktiviti anti-obesiti dan antioksidan 8 herba, iaitu Cosmos caudatus, Pluchea indica, Lawsonia inermis, Carica papaya, Piper betle, Andrographis paniculata, Pereskia bleo dan Melicope lunu. Keputusan kajian menunjukkan bahawa C. Caudatus menunjukkan aktiviti anti-obesiti serta antioksidan yang sangat baik. Aktiviti anti-obesiti dinilai menggunakan perencatan lipase pankreas (PL) dan lipase lipoprotein (LPL) aktiviti manakala aktiviti antioksidan dinilai menggunakan pemerangkapan radikal bebas DPPH (2,2-difenil-2-picrilhidrazil). C. caudatus telah dipilih untuk kajian lanjut oleh pengekstrakan etanol dengan kepekatan yang berbeza (100%, 80%, 60%, 50% dan 40%). Seratus peratus ekstrak etanol daripada C. caudatus menunjukkan aktiviti paling tinggi dalam kedua-dua aktiviti iaitu anti-obesiti (21.8±1.5% and 19.9±1.1% dalam aktiviti pankreas dan lipoprotein lipase) dan antioksida (24.9±1.1 µg/mL) dengan jumlah kandungan fenolik sebanyak 865.8±5.0 mg GAE/g ekstrak dan jumlah kandungan flavonoid sebanyak 398.8±34.8 mg RE/g ekstrak berbanding dengan ekstrak lain. Korelasi positif yang kuat antara aktiviti antioksidan (DPPH) dan kedua-dua kandungan fenolik (r = 0.708) dan fenolik (r = 0.766) diperhatikan. Trend yang sama wujud antara anti-obesiti (PL dan LPL) dan juga fenolik (r = 0.935, 0.845) dan flavonoid (r = 0.945, 0.835). Ekstrak ini terdiri daripada pelbagai flavonoids (kuersetin, kuersitrin, katekin, epikatekin, kaemferol, rutin dan asid klorogenik) dikenal pasti oleh resonans magnetik nuklear (NMR), cecair kromatografi spektroskopi jisim (LC-MS), dan kromatografi cecair berprestasi tinggi (HPLC). Berdasarkan keputusan yang diperolehi, 100% ekstrak etanol daripada C. caudatus terus dinilai untuk kesan pencegahan dan terapeutik
obesiti pada tikus Sprague dawley diberi makan diet lemak yang tinggi. Dalam kajian pencegahan, ekstrak C. caudatus (175 mg/kg dan 350 mg/kg berat badan) telah diberikan kepada tikus normal yang diberi makan dengan diet yang tinggi lemak selama 11 minggu manakala dalam kajian rawatan, tikus obes telah dirawat dengan ekstrak C. caudatus (200 mg/kg dan 400 mg/kg berat badan) untuk 9 minggu. Dalam kajian pencegahan, ekstrak berjaya menghalang peningkatan berat badan sebanyak 33.0 - 42.5% dan peratusan lemak sebanyak 33.0 - 42.0% di bahagian abdomen pada kumpulan yang dirawat berbanding kumpulan HFD kawalan. Walau bagaimanapun, ia gagal untuk mengurangkan berat badan dan peratusan lemak di bahagian abdomen tikus obes. Bagi kedua-dua kajian, ekstrak berjaya mengurangkan perubahan kandungan trigliserida, jumlah kolesterol, LDL, insulin dan leptin. Di samping itu, paras grelin dan adiponektin juga meningkat. Ekstrak ini juga meningkatkan perkumuhan lemak dalam tinja tikus yang dirawat (96.9±10.5 - 114.6±9.3 mg/g dalam kajian pencegahan dan 87.7±10.0 - 124.6±20.2 mg/g dalam kajian rawatan) berbanding kumpulan HFD kawalan (55.4±6.6 - 58.2 ±2.6 mg/g) masing-masing, menunjukkan bahawa C. caudatus mengurangkan perkembangan obesiti dengan menghalang aktiviti lipase pankreas, yang membawa kepada kekurangan penyerapan lemak, mengesahkan keputusan in-vitro yang didapati di bahagian pertama kajian. Dalam bahagian akhir kajian ini, kedua-dua urin dan serum metabolit tikus telah dianalisis dengan menggunakan (NMR) spektroskopi dan analisis data multivariat (MVDA). Tikus normal dan obes jelas didiskriminasi antara satu sama lain pada ortogonal separa kurangnya persegi (OPLS-DA), membuktikan keupayaan diet lemak tinggi yang digunakan dalam mendorong obesiti. Metabolit yang berkaitan dengan lipid, kitaran asid trikarboxylic, glukos, asid amino, kreatin dan metabolisma microbiota usus didapati bertanggungjawab untuk diskriminasi yang diperhatikan. Menariknya, khas terapeutik ekstrak C. caudatus, khususnya dos yang rendah (200 mg/kg) didapati lebih baik daripada Orlistat, berdasarkan fakta bahawa profil metabolit tikus yang dirawat C. caudatus adalah hampir sama dengan kumpulan normal. Betaine, sukinat, 3-hydroxybutyrate, kreatin, glysin, N-acetylglysin, piruvat dan glutamin telah meningkat/menurun dengan ketara ke arah tahap yang normal. Akhirnya, sebahagian analisis persegi kurangnya (PLS-DA) menunjukkan bahawa kumpulan yang obes berubah dari pada kedudukan kumpulan normal dan selepas 9 minggu rawatan kedua-dua kumpulan dirawat bergerak lebih dekat ke arah tahap asas sihat mereka, mengesahkan kesan terapeutik ekstrak diperolehi daripada asai biokimia yang diukur dalam bab sebelumnya. Kajian ini menunjukkan kesan anti-obesiti C. caudatus melalui perencanaan aktiviti lipase seperti yang ditunjukkan oleh peningkatan dalam kandungan lemak tinja dan juga kesan positif pada penanda biologi obesiti lain yang diukur. Ia juga berjaya mempamerkan keupayaan metabolomik berdasarkan NMR untuk menunjukkan kesan terapeutik C. caudatus dan seterusnya memberikan pandangan biokimia ke dalam apa-apa perubahan metabolik yang berkaitan dengan obesiti. Keputusan kajian menunjukkan bahawa C. caudatus berpotensi sebagai makanan tambahan semula jadi atau bahan berfungsi untuk mencegah dan merawat obesiti.
ACKNOWLEDGEMENTS

First and foremost, I am grateful to Allah S.W.T for having made this project successful and for guiding me through the critical and difficult times.

I would like to express my special appreciation and thanks to my supervisor Professor Dr. Azizah Abdul Hamid, you have been a tremendous mentor for me. I would like to thank you for the encouragement, help and support throughout my research years. Your advice on both research as well as on my life have been priceless.

I am also truly grateful to my committee members, Professor Dr. Amin Ismail, Professor Dr. Nazamid Saari, and Assoc. Prof. Dr. Faridah Abas for serving as my committee members and for their help. I also want to thank all of you for your insightful suggestions and comments upon completing this thesis. I would especially like to thank all lecturers and staff at Faculty of Food Science and Technology.

My warmest thanks also goes to my family. Words cannot express how grateful I am to my parents, brothers and sister for all of the sacrifices that you’ve made on my behalf. Your prayers was what sustained me this far.

I would also like to thank all of my friends (Najla, Ahmed, Ani and Yana) who helped me in my data analysis and thesis writing, supported me to strive towards completing the thesis.

This thesis would have never been possible without my loving husband Ahmad Bazli. You were always around and helped me at times I thought that it is impossible to continue, thank you for your continued unfailing love, patience and support upon completing this thesis. I couldn’t imagine doing my Ph.D without you.

Finally to my son Amir Hariz, the best gift from Allah SWT. I owe you lots and lots of fun hours. My bundle of joy, your smile gave me the courage to overcome the difficulties encountered in my pursuit of this Ph.D. Words cannot describe how grateful I am to both of you.
I certify that a Thesis Examination Committee has met on 11 May 2015 to conduct the final examination of Hafeedza binti Abdul Rahman on her thesis entitled "Therapeutic Effects of Cosmos caudatus Kunth Leaf Extract in the Prevention and Treatment of Obesity in Sprague Dawley Rats" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdulkarim Sabo Mohammed, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Tan Chin Ping, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Khozirah binti Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Young Hae Choi, PhD
Senior Lecturer
Leiden University
Holland
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Azizah Abdul Hamid, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Faridah Abas, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

__

BUJANG BIN KIM HUAT, PhD
Professor and Dean,
School of Graduate Studies,
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations, have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institution;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules, 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules, 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity in upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules, 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________ Date: ________________

Name and Matric No: Hafeedza Binti Abdul Rahman (GS27327)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to

Signature: __________________________
Name of Chairman of Supervisory Committee: Azizah Abdul Hamid

Signature: __________________________
Name of Member of Supervisory Committee: Amin Ismail

Signature: __________________________
Name of Member of Supervisory Committee: Nazamid Saari

Signature: __________________________
Name of Member of Supervisory Committee: Faridah Abas
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER 1 GENERAL INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Cosmos caudatus</td>
<td></td>
</tr>
<tr>
<td>2.1.1 General description of Cosmos caudatus</td>
<td></td>
</tr>
<tr>
<td>2.1.2 Nutritional composition of Cosmos caudatus</td>
<td></td>
</tr>
<tr>
<td>2.1.3 Pharmacological Properties and bioactive compounds of Cosmos caudatus</td>
<td></td>
</tr>
<tr>
<td>2.1.3.1 Antioxidant</td>
<td></td>
</tr>
<tr>
<td>2.1.3.2 Antidiabetic</td>
<td></td>
</tr>
<tr>
<td>2.1.3.3 Antihypertensive</td>
<td></td>
</tr>
<tr>
<td>2.1.3.4 Antifungal, antimicrobial and antimutagen</td>
<td></td>
</tr>
<tr>
<td>2.1.3.5 Antityrosinase</td>
<td></td>
</tr>
<tr>
<td>2.2 Obesity</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Description and prevalence</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Causes of obesity</td>
<td></td>
</tr>
<tr>
<td>2.2.3 Hormones implicated in obesity</td>
<td></td>
</tr>
<tr>
<td>2.2.3.1 Leptin and Insulin</td>
<td></td>
</tr>
<tr>
<td>2.2.3.2 Ghrelin</td>
<td></td>
</tr>
<tr>
<td>2.2.3.3 Adiponectin</td>
<td></td>
</tr>
<tr>
<td>2.2.4 Phytochemicals and obesity</td>
<td></td>
</tr>
<tr>
<td>2.2.5 Obesity and its relation to oxidative stress</td>
<td></td>
</tr>
<tr>
<td>2.3 Treatment for obesity</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Treatment of obesity using Drugs</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Treatment of obesity using plant-originated natural products</td>
<td></td>
</tr>
<tr>
<td>2.3.2.1 Lipase inhibitory effect</td>
<td></td>
</tr>
<tr>
<td>2.3.2.2 Appetite suppressive effect</td>
<td></td>
</tr>
<tr>
<td>2.3.2.3 Stimulation of energy expenditure</td>
<td></td>
</tr>
<tr>
<td>2.3.2.4 Inhibition of adipocyte differentiation</td>
<td></td>
</tr>
<tr>
<td>2.3.2.5 Combination of multiple effects for obesity treatment</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Lipases 19
 2.4.1 Digestion and absorption of dietary fats 19

2.5 High fat diet induced obese rat models for obesity research 21

2.6 Metabolomics 21
 2.6.1 Application of metabolomics in research on obesity 22
 2.6.2 NMR-Based metabolomics 23
 2.6.3 Identification of metabolites 24
 2.6.4 Quantification of metabolites 25
 2.6.5 Multivariate data analysis (MVDA) 26
 2.6.5.1 Data processing 26
 2.6.5.2 Statistical analysis 26

3 ANTI-OBESEITY, ANTIOXIDANT ACTIVITY, PHENOLIC AND FLAVONOIDS CONTENT OF COSMOS CAUDATUS LEAF EXTRACTED WITH DIFFERENT CONCENTRATION OF ETHANOL 28

3.1 Introduction 28

3.2 Materials and Methods 29
 3.2.1 Plant Materials 29
 3.2.2 Preparation of extracts 30
 3.2.3 Chemicals 30
 3.2.4 In-vitro pancreatic lipase (PL) inhibitory assay 30
 3.2.5 In-vitro lipoprotein lipase (LPL) inhibitory assay 31
 3.2.6 Total phenolic content (TPC) 32
 3.2.7 Total flavonoid content (TFC) 32
 3.2.8 DPPH radical scavenging assay 32
 3.2.9 Extraction and NMR measurement of Cosmos caudatus 33
 3.2.10 Flavanoids determination using HPLC 33
 3.2.11 Flavanoids determination using LCMS 34
 3.2.12 Statistical analysis 34

3.3 Results and discussion 35
 3.3.1 Pancreatic lipase (PL) inhibitory Activity 35
 3.3.2 Lipoprotein lipase (LPL) Inhibitory Activity 37
 3.3.3 Total phenolic content (TPC) 39
 3.3.4 Total flavonoid content (TFC) 41
 3.3.5 DPPH radical scavenging assay 42
 3.3.6 Correlation of bioactive compounds with antioxidant and anti-obesity activity 42
 3.3.7 Metabolite identification of Cosmos caudatus from 1H-NMR spectra 44
 3.3.8 Flavanoids determination by HPLC and LCMS 49

3.4 Conclusion 53
4 EFFECT OF COSMOS CAUDATUS EXTRACTS IN THE PREVENTION OF BODY WEIGHT GAIN IN LEAN RATS FED A HIGH FAT DIET
4.1 Introduction 54
4.2 Materials and Methods 55
4.2.1 Materials 55
4.2.2 Plant Materials 55
4.2.3 Sample preparation 55
4.2.4 Method of extraction 56
4.2.5 Experimental animals 56
4.2.6 Experimental design 56
4.2.7 Administration of the extract 59
4.2.8 Determination of body weight, food intake and energy intake 59
4.2.9 Collection of plasma, liver, lung, kidney, heart, testis, epididymal and perirenal fats, and feces 59
4.2.10 Determination of fecal fat content 59
4.2.11 Determination of plasma lipid parameters 60
4.2.12 Determination of plasma insulin, leptin, adiponectin and ghrelin levels 60
4.2.13 Determination of kidney and liver function test 60
4.2.14 Statistical analysis 60
4.3 Results and discussion 61
4.3.1 Effects of Cosmos caudatus extracts on body weight gain, abdominal fat mass, food and energy intake of rats 61
4.3.2 Effects of Cosmos caudatus extracts on organ weights of rats 66
4.3.3 Effects of Cosmos caudatus extracts on fecal fat content of rats 68
4.3.4 Effects of Cosmos caudatus extracts on plasma lipid profiles of rats 69
4.3.5 Effects of Cosmos caudatus extracts on plasma insulin, leptin, adiponectin and ghrelin levels of rats 72
4.3.6 Effects of of Cosmos caudatus extracts on kidney and liver function test of rats 77
4.4 Conclusion 80

5 ANTIOBESITY EFFECTS OF COSMOS CAUDATUS EXTRACT ON HIGH FAT DIET INDUCED OBESE RATS
5.1 Introduction 81
5.2 Materials and Methods 82
5.2.1 Materials 82
5.2.2 Plant Materials 82
5.2.3 Sample preparation 82
5.2.4 Method of extraction 82
5.2.5 Experimental animals 82
5.2.6 Experimental design 82
5.2.7 Administration of the extract 84
5.2.8 Determination of body weight, food intake and energy intake 84
5.2.9 Collection of plasma, liver, lung, kidney, heart, testis, epididymal and perirenal fats, and feces 84
5.2.10 Determination of fecal fat content 84
5.2.11 Determination of plasma insulin, leptin, adiponectin and ghrelin levels 84
5.2.12 Determination of plasma lipid profiles 85
5.2.13 Determination of kidney and liver function test 85
5.2.14 Statistical analysis 85

5.3 Results and discussion 86
5.3.1 Effects of Cosmos caudatus extracts on body weights, percent abdominal fat, food and caloric intake of obese rats 86
5.3.2 Effects of Cosmos caudatus extracts on fecal fat content of obese rats 94
5.3.3 Effects of Cosmos caudatus extracts on plasma insulin, leptin, adiponectin and ghrelin levels of obese rats 95
5.3.4 Effects of Cosmos caudatus extracts on lipid profiles of obese rats 99
5.3.5 Effects of Cosmos caudatus extracts on organ weights, liver and kidney function of obese rats 102

5.4 Conclusion 107

6 'H-NMR BASED METABOLOMIC ANALYSIS OF URINE AND SERUM FROM HIGH FAT DIET INDUCED OBESE AND COSMOS CAUDATUS TREATED RATS 108
6.1 Introduction 108
6.2 Materials and Methods 109
6.2.1 Materials 109
6.2.2 Methods 109
6.2.2.1 Collection of urine and serum of rats 109
6.2.2.2 'H-NMR acquisition of urine and serum 109
6.2.2.3 'H-NMR spectral data processing and multivariate data analysis 110
6.3 Results and discussion 112
6.3.1 Multivariate statistical analysis of urine and serum metabolites and identification of biomarker for obesity 112
6.3.2 Effect of Cosmos caudatus extracts on serum metabolites of treated rats 125
6.4 Conclusion 149

7 SUMMARY 150
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scientific classification of C. caudatus</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameters used in HPLC analysis of C. caudatus extract</td>
</tr>
<tr>
<td>3.2</td>
<td>Inhibitory effects (%) of different extracts of C. caudatus, Epicatechin and Orlistat on pancreatic lipase at different concentrations</td>
</tr>
<tr>
<td>3.3</td>
<td>Determination of DPPH, TPC and TFC in different extracts of C. caudatus</td>
</tr>
<tr>
<td>3.4</td>
<td>Pearson’s correlation coefficients (r) between total phenolic content, total flavonoid content, antioxidant capacity, and lipases enzyme inhibitory activities of C. caudatus extracts</td>
</tr>
<tr>
<td>3.5</td>
<td>1H-NMR chemical shifts (δ) and coupling constants (Hz) of metabolites identified in C. caudatus extract</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition of normal and high fat diet used</td>
</tr>
<tr>
<td>4.2</td>
<td>Organ weights of rats treated with C. caudatus extracts for 11 weeks</td>
</tr>
<tr>
<td>4.3</td>
<td>The effects of C. caudatus extracts on plasma lipid profiles in rats after 11 weeks of treatment</td>
</tr>
<tr>
<td>4.4</td>
<td>The effects of C. caudatus extracts on plasma insulin, leptin, adiponectin and ghrelin level in obese rats after 11 weeks of treatment</td>
</tr>
<tr>
<td>4.5</td>
<td>The effects of C. caudatus extracts on liver and kidney function test in rats after 11 weeks of treatment</td>
</tr>
<tr>
<td>5.1</td>
<td>The effects of C. caudatus extracts on plasma insulin, leptin, adiponectin and ghrelin level in obese rats after 9 weeks of treatment</td>
</tr>
<tr>
<td>5.2</td>
<td>The effects of C. caudatus extracts on lipid profiles of obese rats after 9 weeks of treatment</td>
</tr>
<tr>
<td>5.3</td>
<td>The effects of C. caudatus extracts on organ weights of obese rats after 9 weeks of treatment</td>
</tr>
</tbody>
</table>
5.4 The effects of *C. caudatus* extracts on liver and kidney function tests of obese rats after 9 weeks of treatment

6.1 1H NMR assignment of the metabolites from *Sprague dawley* rat’s urine and serum

6.2 Summary of parameters for assessment of the quality of OPLS-DA models

6.3 Summary of urine metabolites differentiating between obese and lean after 11 weeks induction of obesity

6.4 Summary of serum metabolites differentiating between obese and lean after 11 weeks induction of obesity

6.5 Significant metabolites in rat serum identified by 1H NMR and their variations between HFD obese group and ND lean group and treated groups (HFD + 200 mg/kg, HFD + 400 mg/kg and HFD + Orlistat) after 9 weeks of experimental period (n=6 for each group)

6.6 Summary of potential marker metabolites in rat serum identified by 1H NMR and their variations among groups after 9 weeks of treatment with *C. caudatus* extract
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Inhibitory effects (%) of different extracts of C. caudatus and Epicatechin on lipoprotein lipase (0.1 mg/mL)</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Representative of 500 MHz 1H-NMR spectra of C. caudatus extract from δ 0.50 to 10.0</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Expended 500 MHz 1H-NMR spectra of C. caudatus extract from δ 6.1 to 7.1</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Expended 500 MHz 1H-NMR spectra of C. caudatus extract from δ 7.1 to 8.1</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Structure of compounds found in C. caudatus leaf extract</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Identification of rutin and quercetin 3-O-rhamnoside in C. caudatus extract by HPLC method</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Identification of catechin in C. caudatus extract by HPLC method</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Total ion chromatogram of C. caudatus extract</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental design for the determination of C. caudatus extract on prevention of obesity in lean rats fed a high fat diet</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>The effects of C. caudatus extracts on percent body weight gain in rats for 11 weeks of treatment</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>The effects of C. caudatus extracts on total percent body weight gain in rats</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>The effects of C. caudatus extracts on percentage of abdominal fats in rats for 11 weeks of treatment</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>The effects of C. caudatus extracts on food and energy intake in rats for 11 weeks of treatment</td>
<td>65</td>
</tr>
<tr>
<td>4.6</td>
<td>The effects of C. caudatus extracts on fecal fat content in rats for 11 weeks of treatment</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Experimental design for the determination on the treatment effects of C. caudatus extract in HFD induced</td>
<td>83</td>
</tr>
</tbody>
</table>
obese rats

5.2 Effects of ND and HFD on body weights of rats during 11 weeks induction of obesity 86

5.3 Initial and final body weight of rats in each group after 9 weeks of treatment 87

5.4 The effects of *C. caudatus* extracts on body weights of obese rats during 9 weeks of treatment 88

5.5 The effects of *C. caudatus* extracts on daily food and energy intake in obese rats during 9 weeks of treatment 89

5.6 The effects of *C. caudatus* extracts on percentage of abdominal fats in obese rats after 9 weeks of treatment 90

5.7 The effects of *C. caudatus* extracts on fecal fat content in obese rats after 9 weeks of treatment 94

6.1 Representative of 500 MHz 1H NMR spectra of rat urine from normal and obese groups 113

6.2 Representative of 500 MHz 1H NMR spectra of rat serum from normal and obese groups 114

6.3 OPLS-DA scores plot derived from rat urine of lean ND (n=9) and obese HFD groups (n=24) after 11 weeks induction of obesity 118

6.4 OPLS-DA scores plot derived from rat serum of lean ND (n=9) and obese HFD groups (n=17) after 11 weeks induction of obesity 118

6.5 OPLS-DA S-plot derived from rat urine of lean ND (n=9) and obese HFD groups (n=24) after 11 weeks induction of obesity 120

6.6 OPLS-DA S-plot derived from rat serum of lean ND (n=9) and obese HFD groups (n=17) after 11 weeks induction of obesity 120

6.7 OPLS-DA loading plot derived from rat urine of lean ND (n=9) and obese HFD groups (n=24) after 11 weeks induction of obesity 121

6.8 OPLS-DA loading plot derived from rat serum of lean ND (n=9) and obese HFD groups (n=17) after 11 weeks induction of obesity 121
6.9 OPLS-DA loading column plot derived from rat urine of lean ND (n=9) and obese HFD groups (n=24) after 11 weeks induction of obesity

6.10 OPLS-DA loading column plot derived from rat serum of lean ND (n=9) and obese HFD groups (n=17) after 11 weeks induction of obesity

6.11 The overlaid representative 500 MHz 1H NMR spectra of rat serum from normal, C. caudatus, and Orlistat treated groups

6.12 OPLS-DA score plot of rat serum collected from obese HFD, lean ND, C. caudatus and Orlistat treated groups after 9 weeks of treatment

6.13 OPLS-DA scores plot derived from rat serum of lean ND (n=6) and obese HFD groups (n=6) after 9 weeks experimental period

6.14 OPLS-DA loading plot derived from rat serum of lean ND (n=6) and obese HFD groups (n=6) after 9 weeks experimental period

6.15 OPLS-DA scores plot derived from rat serum of obese HFD (n=6) and obese HFD200 groups (n=6) after 9 weeks of treatment with 200 mg/Kg of C. caudatus extract

6.16 OPLS-DA loading plot derived from rat serum of obese HFD (n=6) and obese HFD200 groups (n=6) after 9 weeks of treatment with 200 mg/Kg of C. caudatus extract

6.17 OPLS-DA scores plot derived from rat serum of obese HFD (n=6) and obese HFD400 groups (n=6) after 9 weeks of treatment with 400 mg/Kg of C. caudatus extract

6.18 OPLS-DA loading plot derived from rat serum of obese HFD (n=6) and obese HFD400 groups (n=6) after 9 weeks of treatment with 400 mg/Kg of C. caudatus extract

6.19 OPLS-DA scores plot derived from rat serum of obese HFD (n=6) and obese Orlistat groups (n=6) after 9 weeks of treatment with 30 mg/Kg of Orlistat

6.20 OPLS-DA loading plot derived from rat serum of obese
HFD (n=6) and obese Orlistat groups (n=6) after 9 weeks of treatment with 30 mg/Kg of Orlistat

6.21 PLS-DA score plots of 1H-NMR spectra of rat serum from low dose C. caudatus treated groups (HFD+200 mg/Kg extract) at different time points. Week 0 (Baseline); week 11 (Initial); week 20 (Final)

6.22 Permutation test of PLS-DA model from low dose C. caudatus treated groups (HFD + 200 mg/kg extract) at different time points. Week 0 (Baseline); week 11 (Initial); week 20 (Final)

6.23 PLS-DA score plots of 1H-NMR spectra of rat serum from high dose C. caudatus treated groups (HFD+400 mg/Kg extract) at different time points. Week 0 (Baseline); week 11 (Initial); week 20 (Final).

6.24 Permutation test of PLS-DA model from high dose C. caudatus treated groups (HFD+400 mg/Kg extract) at different time points. Week 0 (Baseline); week 11 (Initial); week 20 (Final).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Acetyl-CoA Carboxylase</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ACUC</td>
<td>Animal Care and Use Committee</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Aminotransferase</td>
</tr>
<tr>
<td>AMPK</td>
<td>Monophosphate-Activated Protein Kinase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APOC-II</td>
<td>Apolipoprotein C II</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Aminotransferase</td>
</tr>
<tr>
<td>BAT</td>
<td>Brown Adipose Tissue</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>BMI</td>
<td>Basal Metabolic Rate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CEBP-α</td>
<td>Cancer Enhancer Binding Protein - Alpha</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CNTF</td>
<td>Ciliary Neurotrophic Factor</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of Doublets</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-diphenyl-2-picrylhydrazyl</td>
</tr>
<tr>
<td>ECG</td>
<td>Epicatechin Gallate</td>
</tr>
<tr>
<td>EGC</td>
<td>Epigallocatechin</td>
</tr>
<tr>
<td>EGCG</td>
<td>Epigallocatechin Gallate</td>
</tr>
<tr>
<td>EL</td>
<td>Endothelial Lipase</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FFA</td>
<td>Free Fatty Acid</td>
</tr>
<tr>
<td>FTC</td>
<td>Ferric Thiocyanate</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GA</td>
<td>Gallic Acid</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic Acid Equivalent</td>
</tr>
<tr>
<td>GGT</td>
<td>Ggamma-glutamyl Transferase</td>
</tr>
<tr>
<td>GhR</td>
<td>Ghrelin Receptor</td>
</tr>
<tr>
<td>GSE</td>
<td>Grape Seed Extract</td>
</tr>
<tr>
<td>HCA</td>
<td>Hydroxycitric Acid</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HFD</td>
<td>High Fat Diet</td>
</tr>
<tr>
<td>HL</td>
<td>Hepatic Lipase</td>
</tr>
<tr>
<td>1H-NMR</td>
<td>Proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IC50</td>
<td>Inhibition Concentration at 50 Percent</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate Density Lipoprotein</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant in Hz</td>
</tr>
<tr>
<td>JAK/STAT</td>
<td>Janus Kinase/Signal Transducer</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
</tbody>
</table>
LCMS Liquid Chromatography – Mass Spectroscopy
LDL Low density lipoprotein
LPL Lipoprotein Lipase
m Multiplet
mg Milligram
min Minute
mL Millilitre
mL Micro litre
mm Millimetre
mRNA Messenger Ribose Nucleic Acid
MVDA Multivariate Data Analysis
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NAOD Sodium Deuterioxide
ND Normal Diet
NHMS National Health and Morbidity Survey
nm Nanometer
NPY Neuropeptide Y
OPLS-DA Orthogonal Partial Least Square Data Analysis
PAI-1 Plasminogen Activator Inhibitor Type 1
PC Principal Component
PL Pancreatic Lipase
PLS-DA Partial Least Square Data Analysis
PPAR Peroxisome Proliferator Activated Receptor
PPM Part Per Million
RE Rutin Equivalent
ROS Reactive oxygen species
rpm Revolution per minute
s Singlet
SOD Superoxide dismutase
SPSS Statistical Package for Social Science
TBA Thiobarbituric Acid
TC Total Cholesterol
TFC Total flavanoid content
TG Triglyceride
TNF-α Tumor Necrosis Factor-α
TPC Total phenolic content
TSP trimethylsila nepropionic Acid Sodium Salt
UV Ultraviolet
VLDL Very Low Density Lipoprotein
WAT White Adipose Tissue
WHO World Health Organization
δ Chemical Shift in ppm
µg Microgram
µm Micro meter
°C Degree Celsius
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Standard curves</td>
<td>202</td>
</tr>
<tr>
<td>B</td>
<td>Determination of IC\textsubscript{50} in DPPH assay for standard and samples</td>
<td>207</td>
</tr>
<tr>
<td>C</td>
<td>HPLC optimisation for \textit{C. caudatus} extract</td>
<td>209</td>
</tr>
<tr>
<td>D</td>
<td>Total ion chromatogram for \textit{C.caudatus} extract and flavonoids standards</td>
<td>210</td>
</tr>
<tr>
<td>E</td>
<td>Ethics approval</td>
<td>215</td>
</tr>
<tr>
<td>F</td>
<td>Voucher specimen of \textit{C. caudatus}</td>
<td>216</td>
</tr>
<tr>
<td>G</td>
<td>Approval letter from Taman Pertanian, UPM</td>
<td>217</td>
</tr>
<tr>
<td>H</td>
<td>Picture of rats</td>
<td>218</td>
</tr>
<tr>
<td>I</td>
<td>Loading scatter plot</td>
<td>221</td>
</tr>
</tbody>
</table>
CHAPTER 1
GENERAL INTRODUCTION

Obesity is a leading cause of death worldwide, affecting not only developed but also developing countries. Globally, it is estimated that over 1.4 billion adults are overweight with almost 500 million obese (WHO, 2013). The problem of obesity in Malaysia is at an alarming stage. Reports from the National Health and Morbidity Surveys (NHMS) in 1996, 2006 and 2011 respectively, showed that the prevalence of obesity among adults were increased by three-fold from 4.4% to 14% and 15.1% within 15-years period (NHMS 1996, NHMS 2006, NHMS 2011). Latest study showed that Malaysia is Southeast Asia's most obese country with 49% women and 44% men were either obese or overweight (Ng et al., 2014). Looking at the statistics, scientists are searching for better approach to further understand the diseases and therefore can help in early detection, prevention, and offer solution for effective treatment to this ever-escalating problem.

Malaysia is a tropical country rich with medicinal plants and herbs. In Malaysia and other parts of the world, these medicinal herbs have long been used in the treatment of various ailments. As research on obesity and the use of pharmaceutical drugs in management of obesity is highly controversial and does not provide effective long-term solution, the role of medicinal herbs for treatment of obesity has gained much interest.

Cosmos caudatus, locally known as ‘Ulam raja’ is a well known herbs found mostly in all tropical regions including Mexico, Central and South America, Malaysia, Thailand and Indonesia (Samy et al., 2005). In Malaysia, it is often consumed raw as salad with rice and food flavouring due to its unique taste and aroma (Shui et al., 2005). Traditionally, it has been used to improve blood circulation, promote the formation of healthy bones, reduce body heat, promote fresh breath, treat infections associated with pathogenic microorganisms, lower high blood pressure and also useful in cleansing the blood (Burkill, 1966; Ismail, 2000; Shui et al., 2005; Hassan 2006; Bodeker, 2009). This herb is also known to possess antioxidant, anti-diabetic, anti-hypertensive, anti-bacteria and anti-fungal properties (Rahalison et al., 1991, Shui et al., 2005, Rasdi et al., 2010, Loh and Hadira, 2011).

Metabolomic approach has been shown to be able to distinguish the different phenotypes and discover potential biomarkers associated with certain phenotypes (Kim et al., 2011). This is made possible with the help of high-throughput tool such as NMR. NMR-based metabolomics can provide a snapshot of metabolites and allow comprehensive metabolite profiling of body fluids. Moreover, it is nondestructive, compatible to both liquid and solid samples and requires no derivatisation with only little sample preparation steps required, making it the perfect tool for collecting a
wealth of data sets (Verpoorte et al., 2007). With these benefits and abilities, metabolomics has become an invaluable tool in finding new biomarkers in obesity research and finally help in identifying mechanisms of obesity. This approach not only identifies, but also quantifies all metabolites in biological system in response to physiological or genetical modifications.

The metabolic effects of polyphenolic rich herbs are commonly assessed in animal studies and clinical trials by measuring plasma or serum concentrations of lipids, glucose, and other biochemical assays. However results are often inconsistent and do not reflect the overall effects of the herbs. Metabolomics provide better understanding on the effects of diet intervention on the metabolism with a holistic approach. This approach will allow for better understanding in terms of the mechanism of action and also help to identify biomarkers of effects that may not be possible with conventional methods (Scalbert et al., 2005, Rezzi et al., 2007). Therefore, to discover biomarkers associated with obesity and C. caudatus treatment, both conventional biochemical assays and 1H-NMR based metabolomics approach was used to study the metabolic changes occurring in the urine and serum of obese rats fed a high fat diet and consequently treated with C. caudatus extracts. The combination of both traditional biochemical assay and 1H-NMR based metabolomics will be able to give the more indepth picture in understanding the disease, evaluate the progression, determining the safety and efficacy of therapeutic interventions and also reveal the potential biomarkers altered with obesity and its treatment.

Hence, the objectives of this study were:

1. To determine the anti-obesity, antioxidant activity, phenolic and flavonoid content of C. caudatus extracted with different concentration of ethanol (100, 80, 60, 50 and 40%).
2. To determine the preventive effects of C. caudatus leaf extract on lean rats fed a high fat diet.
3. To determine to treatment effects of C. caudatus leaf extract on high fat diet induced obese rats.
4. To investigate the metabolic abnormalities in high fat diet induced obese rats and the metabolic alterations associated with the therapeutic effects of C. caudatus leaf extract using metabolomics approach.
REFERENCES

randomized, placebo-controlled trial. *Diabetes Obesity Metabolism*, 4(6), 415-23.

Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M.,
Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y.,
Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie,
M., Takeda, S., Aoyama, T, Funahashi, T., and Matsuzawa, Y.
(2002). Diet-induced insulin resistance in mice lacking
adiponectin/ACRP30. Natural Medicines, 8(7), 731-737.

metabonomics for investigating diabetes. Future Medicinal
Chemistry, 1(4), 737-747.

Mahmoud, R.H., and Elnour, W.A. (2013). Comparative evaluation of the
efficacy of ginger and orlistat on obesity management, pancreatic
lipase and liver peroxisomal catalase enzyme in male albino rats.
European Review for Medical and Pharmacological Sciences,
17(1), 75-83.

Mäkinen, V.P., Soininen, P., Forsblom, C., Parkkonen, M., Ingman, P.,
metabonomics approach to the disease continuum of diabetic
complications and premature death. Molecular Systems Biology,
4(167), 1-6.

Prosiding Seminar Kimia Bersama UKM-ITB VII.

Mark, A.L. (2006). Dietary therapy for obesity is a failure and
pharmacotherapy is the future: a point of view. Clinical and
Experimental Pharmacology and Physiology, 33(9), 857-862.

Marloth, R. (1932). The Flora of South Africa with synopsis of the South
African genera of Phanerogamous plant, Vol III, Wheldon and
Wesley, London.

Adiponectin and metabolic syndrome. Arteriosclerosis, Thrombosis,
and Vascular Biology, 24(1), 29-33.

McLaughlin, T., Abbasi, F., Kim, HS., Lamendola, C., Schaaf, P., Reaven,
G.M. (2001). Relationship between insulin resistance, weight loss,
and coronary heart disease risk in healthy, obese women.
Metabolism, 50(7), 795-800.

function, regulation, and role in disease. Journal of Molecular
Medicine (Berlin), 80(12), 753-69.

proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. Journal of Proteome Research, 10(10), 4769–4788.

Salek, R.M., Maguire, M.L., Bentley, E., Rubtsov, D.V., Hough, T., Cheeseman, M., Nunez, D., Sweatman, B.C., Haselden, J.N., Cox,

World Health Organization (WHO), (2014).

nuclear magnetic resonance profiling of the carboxyl-containing metabolome. *Analytical Chemistry*, 81(12), 4882-4888.

