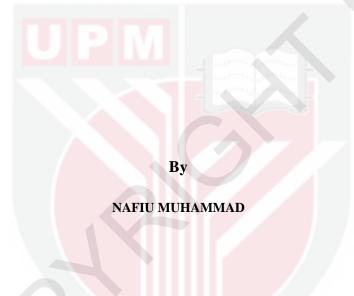


UNIVERSITI PUTRA MALAYSIA


FABRICATION OF ELECTROCHEMICALLY REDUCED GRAPHENE OXIDE COMPOSITE BASED ELECTROCHEMICAL SENSOR FOR THE DETECTION OF 3-NITROPHENOL

NAFIU MUHAMMAD

FS 2015 18

FABRICATION OF ELECTROCHEMICALLY REDUCED GRAPHENE OXIDE COMPOSITE BASED ELECTROCHEMICAL SENSOR FOR THE DETECTION OF 3-NITROPHENOL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for Degree of Master of Science

October 2015

COPYRIGHT

All materials contained within the thesis including without limitation text, logos, icons, photographs, and others, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purpose from the copyright holder. Commercial use of material may only be made with the express, prior written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

This research work is dedicated to my beloved parents, lovely wife and elegant son Musab Ibn Nafiu Gidangona

 \mathbf{G}

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

FABRICATION OF ELECTROCHEMICALLY REDUCED GRAPHENE OXIDE COMPOSITE BASED ELECTROCHEMICAL SENSOR FOR THE DETECTION OF 3-NITROPHENOL

By

NAFIU MUHAMMAD

October, 2015

Chair: Jaafar Abdullah PhD

Faculty: Science

In this research electrochemical sensor for the detection of 3-nitrophenol has been successfully developed based on electro-reduced graphene oxide (ERGO) functionalized with cyltrimethylammonium bromide (CTAB) and electro-reduced graphene oxide functionalized with poly(3,4-ethylenedioxythiophene) (PEDOT) on screen printed carbon electrode (SPCE). Two methods of preparations were used. Firstly, graphene oxide-CTAB was dropped cast onto the SPCE and later reduced using cyclic voltammetry technique to produce ERGO/CTAB. Secondly, ERGO/PEDOT was prepared by direct electrodeposition of mixture containing EDOT/GO in LiClO₄ to produce PEDOT/ERGO on SPCE. The modified SPCE were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Raman spectroscopy, scanning electron microscope (SEM) and energy dispersive X-ray (EDX), respectively. Their electrochemical activities and sensing capability towards 3nitrophenol was investigated using linear sweep voltammetry (LSV). The modified SPCEs showed a remarkable activity which attributed to the excellent conductivity, large surface area, electrocatalytic activity and good synergistic effect of the nanocomposite films toward 3-nitrophenol. To increase the sensitivity of the developed sensors experimental parameters such as pH buffer, scan rate, accumulation time and potential were optimized. Under the optimum experimental conditions, the ERGO/CTAB developed sensor displays two linear calibration curve in the concentration range of 0.5 and 100 μ M with linear regression coefficients R² = 0.9915 and 0.9972 and detection limit of 0.04 µM. While PEDOT/ERGO modified SPCE gave linear calibration curve in the concentration range from 0.3 to 70 µM with linear regression equation $y = 5.0042C (\mu M) + 45.674$, $R^2 = 0.9934$ and detection limit of 0.08 μ M. The proposed methods showed good selectivity of target analyte even in the presence of some foreign ions. A good reproducibility was recorded with RSD of 4.71% for ERGO/CTAB and 3.85% for PEDOT/ERGO, respectively.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperiuan untuk Ijazah Sarjana Sains

FABRIKASI SENSOR ELEKTROKIMIA BERASASKAN KOMPOSIT GRAFEN OKSIDA TERTURUN SECARA ELECTROKIMIA UNTUK PENGESANAN 3-NITROFENOL

Oleh

NAFIU MUHAMMAD

Oktober, 2015

Pengerusi: Jaafar Abdullah Phd

Fakulti: Sains

Dalam kajian ini sensor elektrokimia untuk pengesanan 3-nitrofenol telah berjaya dibangunkan berasaskan elektro-terturun graphene oksida (ERGO) difungsikan dengan siltrimetilammonium bromida (CTAB) dan elektro-terturun graphene oksida difungsikan dengan poli(3,4-etilenadioksitiofena) (PEDOT) pada elektrod skrin bercetak karbon (SPCE). Dua kaedah penyediaan telah digunakan. Pertama, graphene oksida-CTAB disalut-titis ke atas SPCE dan kemudian diturunkan menggunakan teknik voltammetri kitaran untuk menghasilkan ERGO/ CTAB. Kedua, ERGO/PEDOT telah disediakan melalui pemendapan langsung campuran yang mengandungi EDOT/GO dalam LiClO₄ untuk menghasilkan PEDOT/ERGO di atas SPCE. SPCE terubahsuai telah dicirikan menggunakan voltammetri kitaran (CV), spektroskopi impedans elektrokimia (EIS), spektroskopi Raman, mikroskop imbasan elektron (SEM) dan tenaga serakan sinar-X (EDX), masing-masing. Aktiviti elektrokimia dan keupayaan penderiaan terhadap 3-nitrofenol telah dikaji menggunakan voltammetri sapuan linear (LSV). SPCE terubahsuai menunjukkan aktiviti yang luar biasa dikaitkan dengan kekonduksian yang sangat baik, luas permukaan yang besar, aktiviti elektro-mangkin dan kesan sinergi yang baik daripada filem nanokomposit terhadap 3-nitrofenol. Untuk meningkatkan kepekaan sensor yang dibangunkan parameter eksperimen seperti larutan penimbal pH, kadar imbasan, pengumpulan masa dan potensi telah dioptimumkan. Di bawah keadaan eksperimen yang optimum, ERGO/ CTAB yang dibangunkan menunjukkan dua keluk kalibrasi linear dalam julat kepekatan daripada 0.5 dan 100 μ M dengan pekali regresi linear R² = 0,9915 dan 0,9972 dan had pengesanan 0.04 µM. Sementara SPCE terubahsuai PEDOT/ERGO memberikan keluk kalibrasi linear dalam julat kepekatan 0.3-70 µM dengan persamaan linear regresi y = 5.0042C (μ M) 45.674, R² = 0.9934 dan had pengesanan 0.08 μ M. Kaedah yang dicadangkan menunjukkan pemilihan yang baik daripada analit sasaran walaupun dengan kehadiran beberapa ion asing. Kebolehulangan yang baik telah direkodkan dengan nilai Sisihan Piawai Relatif (RSD) bersamaan 4.71 % untuk ERGO/CTAB dan 3.85 bagi PEDOT/ERGO, masing-masing.

ACKNOWLEDGEMENTS

Alhamdulillah, all glory and praises be to Allah the almighty and sustainer for the life, health, wisdom and ability to acquire this knowledge. Special thanks go to my supervisor Dr. Jaafar Abdullah who served as a pillar whenever I become weak and a guardian whenever needed throughout the research period and my stayed in Malaysia.

My appreciation also goes to my co-supervisor Dr. Yusran Suleiman and Dr. Lim Hong Ngee for their advice and guidance.

This work may not have been possible without the prayers, support and encouragement from my beloved parents Alhaji Muhammad Muazu and Hajiya Bilkisu Muhammad. Word cannot be enough to express my appreciation to my beloved wife Hauwau Sulemain Bindawa and my elegant son Musab Ibn Nafiu for their prayers and encouragement. A warm appreciation to my supporting and wonderful brothers and sisters; Malam Anas, Khalid, Maryam, Imrana, Fatima, Aisha, Hafsat, Asma'u, Ismail, Bilyaminu, Muazu, Sanusi and Abubakar Aminu, to mention few for their assistance.

I also acknowledge the assistance render to me by Sani Jibrin Gumel, Hajiya Salamatu Aliyu, Aminu Musa, Mamuda Umaru and Aliyu Muhammad toward completing this research.

I thank all my friends and colleagues Hazani, Fuzi, Aliyu Ahmad Yusuf (HOD), Sani Abubakar, Faruk Birnin Kebbi, Ibrahim Bala, Abdulaziz Kutawa, Abubakar Aisami and Hannatu Abubakar, to mention but a few, for making my stay at UPM and Malaysia a memobrable one.

Last but not the, least my profound appreciation goes to the management of Umaru Musa Yar'adua University for the encouragement and the sponsorship.

I certify that a Thesis Examination Committee has met on 6th October, 2015 to conduct the final examination of (Nafiu Muhammad) on his thesis entitled "Fabrication of Electrochemically Reduced Graphene Oxide Composite Based Electrochemical Sensor For The Detection of 3-Nitrophenol" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science in Environmental Chemistry.

Members of the Thesis Examination Committee were as follows:

Y. Bhg. Prof. Dr. Zulkarnain b Zainal Chemistry Department Faculty of Science

Universiti Putra Malaysia (Chairman)

Y. Bhg. Prof. Dr. Nor Azah binti Yusof

Chemistry Department Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Prof. Madya. Dr Illiyas Md Isa

Chemistry Department Faculty Science and Mathematics Universiti Penddidikan Sultan Idris (External Examiner)

ZULKARNAIN ZAINAL, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.

Members of the Supervisory Committee were as follows:

Jaafar bin Abdullah, PhD

Senior lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Yusran Sulaiman, PhD Senior lecturer Faculty of Science Universiti Putra Malaysia (Member)

Lim Hong Ngee, Janet, PhD

Senior lecturer Faculty of Science Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:		
Chairman of		
Supervisory		
Committee:		
	_	
Signature:		
Member of		
Supervisory		
Committee:		
Signature:		
Member of		
Supervisory		
Committee:		

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
DECLARATION	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATION	XV

CHAPTER

1	INT	RODUCTI		
	1.1	Phenol	and it Derivatives	1
	1.2	Problem	1 Statements	2 2
	1.3	Objectiv	ve of the Research	2
2	LIT	ERATURE	REVIEW	
-	2.0		y of Nitrophenol (NPs)	4
	2.1		al Sensor as Analytical Device	
	2.2		chemical Sensor	5 9
		2.2.1	Voltammetry	10
		2.2.2	Linear Sweep Voltammetry	11
		2.2.3	Cyclic Voltammetry	12
		2.2.4	Screen Printed Electrode	15
	2.3	Grapher	ie	17
		2.3.1	Functionalization and Formation of Graphene Nanocomposite	19
		2.3.2	Graphene as Electrode Modifier	20
	2.4	Conduc	tive polymers	20
		2.4.1	Poly(3,4-ethylenedioxythiophene) (PEDOT)	21
	2.5	Cetyltri	methylammonium Bromide(CTAB)	22
	2.6 1	Electrochem	ical Methods in Electrode Modification Technique	23
3	MET	rhodolo	GY	
c .	3.1		ls and Reagents	25
	3.2		nentation and Apparatus	25
		3.2.1	Cyclic Voltammetry (CV) Characterization	25
		3.2.2	Electrochemical Impedance Spectroscopy (EIS) Characterization	26
		3.2.3	Raman Spectroscopy Characterization	26
		3.2.4 Field (FSEM)	d Emission Scanning Electron Microscope	27

	3.2.5 Energy Dispersive X-Ray Spectrometers (EDX)	27
3.3	Preparation of Modified Electrodes	27
	3.3.1 Preparation of Electro-Reduced Graphene Oxide (ERGO) Modified SPCEs	27
	3.3.2 Preparation of Electro-Reduced Graphene oxide Cetyltrimethylammonium Bromide Modified SPCE	28
	3.3.3 Preparation of Poly(3,4-ethylenedioxythiophene) (PEDOT) and of PEDOT/ERGO Modified SPCE	28
3.4	Preparation of 3-Nitrophenol (3-NP) Stock Solution	28
3.5	Electrochemical Characterization of Modified SPCEs toward 3-Nitrophenol	28
	3.5.1 Effect of Supporting Electrolyte	29
	3.5.2 Influence of Phosphate Buffer pH On Modified SPCEs	29
	3.5.3 Effect of Varying Scan Rates	29
	3.5.4 Effect of Accumulation Time and Accumulation Potential	29
	3.5.5 Calibration Curve of the Developed Sensors	29
	3.5.6 Repeatability, Reproducibility and Stability Study of the Developed Sensors	30
	3.5.7 Effect of Foreign Ions	30
3.6	Application of the Developed Sensor towards Real Sample and Validation Study	30
4 RES	ULT AND DISCUSSION	
4	Preparation and Characterization of SPCEs Modified ERGO and ERGO/CTAB	32
4.1	Preparation of ERGO/SPCE	32
4.2	Preparation of ERGO/CTAB/SPCE	34
	4.2.1 Cyclic Voltammetry of ERGO/CTAB Modified Electrode	34
	4.2.2 Electrochemical Impedance Spectroscopy (EIS)	37
	4.2.3 Raman Spectroscopy Characterization	38
	4.2.4 Field Emission Scanning Electron Microscope	39
	4.2.5 Energy Dispersive X-Ray Spectrometers (EDX)	40
4.3	General Principle of Detection of 3-Nitrophenol	42
4.4	Electrochemical Characterization of Modified SPCEs towards 3-Nitrophenol	43

	4.4.1	Effect of Supporting Electrolyte and pH	44
	4.4.2	Effect of Scan Rate	46
	4.4.3	Effect of Accumulation Time and Accumulation Potentials	47
4.4.4	Analy	tical Performance of SPCE Modified ERGO/CTAB	48
	4.4.5	Interference Study	50
	4.4.6	Repeatability, Reproducibility and Stability	51
	4.4.7	Analysis of Spiked Real sample	52
4.5		ation and Characterization of SPCEs Modified I and PEDOT-ERGO	54
	4.5.1	Preparation of PEDOT Electrode	54
	4.5.2	Preparation of PEDOT/ERGO SPCE	54
	4.5.3	Cyclic Voltammetry of Modified SPCE	55
	4.5.4	Electrochemical Impedance Spectroscopy (EIS)	57
	4.5.5	Raman Spectroscopy	58
	4.5.6	Field Emission Scanning Electron Microscope	59
	4.5.7	Energy Dispersive X-Ray Spectrometers (EDX)	60
4.6	Electro	chemical Characterization of Modified SPCEs	60
		s 3-Nitrophenol	
	4.6.1	Effect of PEDOT/ERGO Load/Thickness on SPCE	62
	4.6.2	toward Reduction on 3-NP Effect of pH	62
	4.6.3	Effect of Scan Rate	63
	4.6.4	Effect of Accumulation Time and Accumulation Potentials	64
	4.6.5	Analytical performance of SPCE Modified PEDOT/ERGO	66
	4.6.6	Interference Study	67
	4.6.7	Repeatability, Reproducibility and Stability	69
	4.6.8	Analysis of Spiked Real sample	70
		N AND RECOMMENDATIONS	
5.1	Conclu		72
5.2	Recom	mendation for Future Research	72
REFERENCE			74
APPENDICES			82
BIO DATA O			95
LIST OF PUBLICATIONS 96			

LIST OF TABLES

Table		Page
2.1	Summary of Reported Electrochemical Sensor for Detection Nitrophenols	6
2.2	Chemical Sensor Classification Based on Transducer	8
2.3	Some Reported Methods of SPCE Modification	16
2.4	Several Techniques of Reducing Graphene Oxide to Graphene	18
2.5	Electrochemical Techniques used in the Reduction of Graphene Oxide	19
3.1	The Interferants Used in the Analysis	30
4.1	The peak Current Obtained at Different Accumulation Potential	48
4.2	Comparison Performance of Different Electrochemical Sensor for the Detection 3-NP	50
4.3a	Effect inorganic foreign ions on the response of the developed sensor	51
4.3b	Effect organic foreign ions on the response of the developed sensor	51
4.4	Comparison study of Spiked Real Sample between the Developed Sensor and the APHA Method	53
4.5	The Effect of Different Accumulation Potential towards Peak Current	65
4.6	Comparison of Several Modified Electrode for Detection 3-NP	67
4.7a	Effect of some organic foreign ions on the response of the developed sensor	67
4.7b	Effect of Some inorganic Foreign Ions on the Response of the Developed Sensor	68
4.8	Analytical Performance of PEDOT/ERGO for 3-NP and 4-NP	69
4.9	Comparison of Real Sample Analysis between the PEDOT/ERGO/SPCE and Spectrophotometer	71

 \overline{O}

LIST OF FIGURES

Figure		Page
1.1	Phenol Structural Formula	1
1.2	Structural Formula of Nitrophenol	2
2.1	Structure of 3-Nitrophenol	4
2.2	Production of Nitrophenol	5
2.3	Process of Analyte Detection Using Chemical Sensor	8
2.4	Schematic Diagram of Electrode Arrangement of in	9
	Electrochemical Sensors	
2.5	Schematic Diagram of an Electrochemical Sensor	10
2.6	Electro-reduction of 3-nitrophenol to 3- hydroxyl aminophenol	11
2.7	Example of Linear Sweep Voltammogram	12
2.8	Excitation Signals for Cyclic Voltammetry showings Triangle	13
	Potential Waveform With Switching Potential at -0.2 and -0.6 V	
2.9	Cyclic Voltammetry of ERGO/SPCE in K ₃ Fe(CN) ₆ for single	14
	scan redox	
2.10	Screen Printed Carbon Electrode	15
2.11	Structure of Graphene	18
2.12	Structure of 3,4-ethylenedioxythiophene (EDOT)	21
2.13	Structure of Cetyltrimethylammonium Bromide	23
3.1	Schematic diagram of experimental setup	26
4.1	Cyclic Voltammogram of Electrochemical Reduction of GO in	32
	0.1 M KCl at Scan Rate of 100 mV/s at potential range -1.5 to 0.4	
	V vs AgCl	
4.2	A) Cyclic voltammetry of different ERGO modified SPCEs in 5	33
	mM K ₃ [Fe(CN) ₆]/0.1 M KCl with scan rate of 100mV/s. B) EIS	
	of different ERGO modified SPCE with frequency of 100 KHz	
	to 0.1 Hz and amplitude of 0.01 V in 5 mM K_3 [Fe(CN) ₆]/0.1 M	
	KCl.	
4.3	Cyclic Voltammogram of Electrochemical Reduction of	34
	GO/CTAB to ERGO/CTAB in 0.1 M KCl, potential range – 1.5	
	to 0.4 V with scan rate of 100 mV/s	
4.4	Cyclic voltammetry behaviour of bare, GO and ERGO in 5 mM	35
	K_3 [Fe(CN) ₆]/0.1 M KCl with scan rate 100 mV/s, potential range	00
	of -0.2 to 0.7 V	
4.5	A) Effect of scan rate on ERGO/CTAB/SPCE in 5mM	36
	K_3 [Fe(CN) ₆]/0.1M KCl from 25 to 175mVs at potential range of	20
	-0.2 to 0.7 V B) Correlation between Current and Square Root	
	of Scan Rate	
4.6	The EIS of bare, GO, GO/CTAB, ERGO, CTAB and	38
 0	ERGO/CTAB in 5 mM K3[Fe(CN6)]/ 0.1 M KCl with frequency	50
	100 KHz to 0.1 Hz and amplitude 0.01 V	
	L	
4.7	Raman Spectra of GO and ERGO	39
4.8	The FESEM of (A) GO Modified SPCE (B) GO/CTAB	40
	Modified SPCE (C) ERGO modified SPCE (D) ERGO/CTAB	
	modified SPCE	

G

4.9	The EDX Spectra of the Modified SPCE with A) GO B) GO/CTAB C) ERGO D) ERGO/CTAB	41
4.10	LSV of Bare SPCE and the Modified SPCEs in the absence and presence of 0.1mM 3-NP with a scan rate of 100 mV/s and potential range of -0.2 to -0.9 V	43
4.1	LSV of influence of Acetate, Citric and PBS Buffers of equal strength and pH (0.1M, pH 6) on the Modified SPCEs Response towards 0.1 mM 3-NP at scan rate of 100 mV/s potential -0.2 to - 0.9 V	45
4.12	A) PBS pH response on the Modified SPCEs towards detection of 0.1 mM 3-NP (pH from 3 to 9) C) Correlation of Reduction Potential with change in pH	45
4.13	A) LSV of ERGO/CTAB/SPCE towards 0.1m M 3-NP in PBS (pH 6.5) at potential range -0.2 to -0.9 V at different scan rate b) correlation of reduction peak current against scan rate	46
4.14	The reduction peak current of 0.1 mM 3-NP in 0.1M PBS (PH=6.5) at Different Accumulation Time	47
4.1:	A) Dynamic behaviour of ERGO/CTAB at Different Concentration of 3-NP in 0.1 M PBS (pH 6.5) Scan Rate of 100 mV/s at Potential Range of 0.0 to -0.9 V B) Calibration curve of the Developed Sensor	49
4.10	5 The Stability Study of ERGO/CTAB Modified SPCE in 4°C Temperature and Room Temperature	52
4.17	7 The Cyclic Voltammogram of Electrodeposition of PEDOT on SPCEs with Potential Range -0.9 to 1.1 V, scan rate 100mVs 0.01 M LiClO ₄	54
4.18	The Cyclic Voltammogram of Electrodeposition of PEDOT/ERGO on SPCEs with Potential Range -1.5 to 1.1 V, scan rate 100mVs 0.01 M LiClO ₄	55
4.1	 Comparison of CV behaviour of bare, ERGO/SPCE, PEDOT/SPCE and PEDOT/ERGO/SPCE in 5 mM K3[Fe(CN)6]/0.1 M KCl with scan rate 100 mV/s at potential range of -0.2 to 0.6 V 	56
4.20	Effect of Scan Rate and Correlation between Peak Current and Scan rate of a) Bare SPCE b) ERGO/SPCE c) PEDOT/SPCE d) PEDOT/ERGO/ERGO in 5mM K ₃ [Fe(CN) ₆]/0.1M KCl scan rate of 10 mV/s to 50 mV/s	56
4.2		58

4.22	Raman spectrum of SPCE modified with ERGO, PEDOT, and PEDOT/ERGO	59
4.23	The FESEM of Modified SPCE with a). PEDOT (b) PEDOT/ERGO	59
4.24	The EDX Spectrum of Modified SPCE with (a) PEDOT (b) PEDOT/ERGO	60
4.25	LSV of bare SPCE and modified SPCE with PEDOT, ERGO and PEDOT/ERGO towards 3-NP, potential ranges of 0 to -0.9 V with scan rate 100 mV/s	61
4.26	The effect of PEDOT/ERGO thickness on detection of 1 mM 3- NP with scan rate 100 mV/s in 0.1M PBS (6.0)	62
4.27	Influence of pH on the PEDOT/ERGO response to 0.1mM 3NP in PBS different PH (from 4 to 8)	63
4.28	The behavioural response of modified SPCE towards 0.1 mM 3- NP in PBS (pH 6.5) a) at different scan rate b) Correlation of Reduction Peak Current with Scan Rate	64
4.29	The Current Peak of 1 mM 3-NP in PBS (pH 6.5) at Different Accumulation Time	65
4.30	Dynamic Behaviour of PEDOT/ERGO at Different Concentration of 3-NP in 0.1 M PBS (pH 6.5) Scan Rate of 100 mV/s at Potential Range of -0.2 to -0.9 V B) Calibration curve of the Developed Sensor.	66
4.31	Behaviour of 1 mM 4-NP in PBS a) at different scan rate b) Correlation of Reduction Peak Current with Scan Rate	68
4.32	Dynamic behaviour of PEDOT/ERGO at Different Concentration of 4-NP in 0.1 M PBS (pH 6.5) Scan Rate of 100 mV/s at Potential Range of 0.0 to -0.9 V B) Calibration curve of the Developed Sensor	69
4.33	The Stability Study of PEDOT/ERGO Modified SPCE at 4°C and room temperature	70

LIST OF ABBREVIATIONS

EC	European Commission
USEPA	United States Environmental Protection Agency
NPs	Nitrophenols
SPCE	Screen Printed Carbon Electrode
ERGO	Electro-reduced Graphene
CTAB	Cetyltrimethylammonium Bromide
PEDOT	Poly(3,4-ethylenedioxythiophene)
EDOT	3,4-ethylenedioxythiophene
AuNps	Gold Nanoparticles
CPE	Carbon Paste Electrode
GE	Graphite Electrode
GCE	Glassy Carbon Electrode
GR	Graphene
GO	Graphene Oxide
H_2O_2	Hydrogen peroxide
WE	Working Electrode
RE	Reference Electrode
CE	Counter Electrode
β-CFRGO	B-cyclodextrin Functionalized Reduced Graphene Oxide
OMC	Ordered Mesoporous carbons,
PdNps	Palladium nanoparticles,
(p-ABSA)	Poly(p-aminobenzene sulfonic acid)
CNT	Carbon nanotubes,
DPV	Differential Pulse Voltammetry
LSV	Linear Sweep Voltammetry,
CV	Cyclic Voltammetry,
SWV	Square Wave Voltammetry,
3-HAP	3- hydroxyaminophenol
3-NP	3-nitrophenol

CHAPTER ONE

Introduction

Since industrial revolution scientists have succeed in synthesizing different compounds that play vital role to man and his environment. However due to lack of enough attention to the fundamental and preliminary principles in planning, production of such compound may lead to inevitable catastrophic problems to the ecosystem. Some of the considerations include establishment of an industry within a residential area. This will affect the surrounding environment through discharging its waste or by sudden escape of toxic gasses which pollutes the ecosystems (Kun et al, 2013; Moradi et al., 2012). Phenol and its derivatives are among the pollutants release by industries which caused serious health hazard ranging from headache, cancer to sudden death. Therefore monitoring these pollutants is prerequisite to healthy environment.

1.1 Phenol and its Derivatives

Phenol is widely known compound and is synonymously refer to as hydroxybenzene, carbolic acids, benzenol or phenolic acid, with a molecular formula C_6H_5OH or C_6H_6O , molar mass 94.11gmol⁻¹ and structural formula as shown in Figure 1.1.

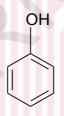


Figure 1.1: Phenol structural formula

Phenol is a transparent crystalline solid, with a sharp burning taste, sweet and tarry odour. It is soluble in water with solubility value of 8.3 g/100 mL (20 °C), melt at 40.5 °C (313.6 K; 104.9 °F) and boil at 181.7 °C (454.8 K; 359.1 °F). Phenol is a compound with benzene ring attached to hydroxyl functional group (OH). This structure makes phenol good candidate for both electrophilic and nucleophilic substitution reactions, as a result phenol becomes an important precursor to many important chemicals production such as dyes, numerous pharmaceutical drugs, cosmetics, resins, synthetic polymers, detergents, herbicides, ink, paints, rubbers, perfumes and fibers (Karim & Fakhruddin, 2012) Unfortunately with all the mentioned advantages, phenol has been classified as pollutant by United States Environmental Protection Agency (USEPA) and European Commission (EC) with environmental legislation restricting the content of phenols in the environment due to its toxicity and persistency to the environment.

Phenol has different derivatives which are either found naturally in coal tar, petroleum, lignin, cigarette, or are chemically synthesized as an intermediary in production of drugs, plastics, dyes and synthetic polymers. Not all derivatives of phenol are listed as pollutant by USEPA but those in the list include chlorophenols, nitrophenols, cresol, catechol, hydroquinone, biphenols, etc.

Nitrophenol (NP) is widely known compound with synonyms hydroxynitrobenzene, with a molecular formula $C_6H_5NO_2$, molar mass 139.11gmol⁻¹ and structural formula as shown in figure 1.2. Pure nitrophenol is solid and ranges from transparent to yellowish in colour depending on the isomer, with a sharp burning taste sweet and tarry odor. It is soluble in water with solubility value of 16 g/L (25 °C), and density of 1.236 g/cm³.

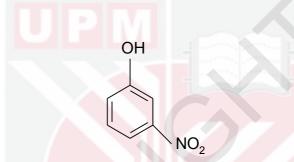


Figure 1.2: Structural formula of 3-Nitrophenol

1.2 Problem Statements

Nitrophenol is one of the derivatives of phenol, it is considered as pollutant to environment by USEPA, due to its persistence toxicity. Because of its uses, several tons are produced annually to meet the world demand, whereby certain amount escapes to the ecosystem. Therefore, facilitating its detection and presence in our ecosystem is prerequisites to healthy environment. Several methods and techniques have been developed for the effective detection of NPs. Conventional analytical methods for determination of NPs in waste water are: chromatography, capillary electrophoresis, spectrophotometry and immunoassays (Various, 1998). Though the techniques have advantages in accuracy, however, they involve complex sample pretreatment, required well trained technician to operate, not suitable in the field, expensive instrumentation and also the analysis is time consuming (Svitel & Miertus, 1998). Therefore to overcome these challenges, a new analytical method called chemical sensor have been designed. Chemical sensor is an analytical tool which is simple, sensitive, high in accuracy, reliable and less expensive instrumentation, thus, making them ideal for environmental analysis.

1.3 Objective of the Research

The aim of this research is to develop simple, high selective and sensitive electrochemical sensor for effective detection of 3-nitrophenol (3-NP). The

objective set to achieve these goals includes:

- 1. To prepare and characterize the screen printed carbon electrode (SPCE) modified with electro-reduced graphene oxide/cetyltrimethylammonium bromide (ERGO/CTAB) nanocomposite and electro-reduced graphene oxide/poly(3,4-ethylenedioxythiophe) (ERGO/PEDOT) nanocomposite.
- 2. To optimize experimental parameter of the modified SPCEs for the determination of 3-nitrophenol.
- 3. To evaluate the sensing capability of the modified SPCEs for the determination of 3-nitrophenol.

